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1 Introduction

The paper is an investigation of the solvability of linear partial differential equa-
tions with constant coefficients in the whole space Rn. The work was motivated
by the Poisson’s equation

∆u = f in Rn, (1.1)

where f is a given smooth function. Here the smoothness can be continuity, Lips-
chitz continuity, C1, C2. . . Its meaning will be made clear when needed. A natural
question is whether Problem (1.1) has a solution in C2(Rn). For n = 1, it certainly
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has a classical solution obtained by taking antiderivatives of both sides twice. In
this case, f only needs to be continuous. For n ≥ 2, however, the question is non-
trivial. One reason is that the continuity of f no longer guarantees the existence
of u in C2(R2). Indeed, consider n = 2: put u(x1, x2) = x1x2(− log |x|)γχ(x1, x2)
where γ ∈ (0, 1) and χ is some smooth cutoff function supported in the unit disk;
define f(x1, x2) = ∆u(x1, x2) ∈ C(R2); then u 6∈ C2(R2) and ∆u = f in R2;
any function v ∈ C2(R2) such that ∆v = f would satisfy ∆(v − u) = 0, which
would imply v − u ∈ C2(R2); this is a contradiction. Another reason is that the
Newtonian potential does not always exist unless f has certain decay at infinity.

The paper does not attempt to give a criterion on the smoothness of f so
that Problem (1.1) is solvable. We simply assume that f is as smooth as we
want. Instead, without any assumption on the decay of f at infinity, we show the
existence of a classical solution to Problem (1.1). Our method is similar to the
method of Mittag-Leffler for constructing a meromorphic function with infinitely
many prescribed poles. It is done in Proposition 2.2 of Section 2. In the same
section, some properties of the solutions are discussed, for example the lack of an
a priori estimate (Proposition 2.3) and the order of growth of the solutions at
infinity (Proposition 2.4). A consequence is that every smooth vector field in R3

has a Helmholtz decomposition (Proposition 2.5).
It is then natural to ask if the existence result is still true for the heat equation,

wave equation or even a general linear partial differential equation with constant
coefficients

P (D)u = f in Rn, (1.2)

where P is a nonzero polynomial of n variables and f is a given smooth function.
Specifically, given a function f ∈ C∞(Rn), does there exist u ∈ C∞(Rn) such
that P (D)u = f? The answer is yes and was proved quite early by L. Ehrenpreis
[Ehr54, Theorem 10] and B. Malgrange [Mal56, Theorem 3, p.294]. Interestingly,
these are also the papers in which the authors independently proved a famous result
saying that every linear partial differential equation with constant coefficients has
a fundamental solution. It was later known as the Malgrange-Ehrenpreis theorem.
J.P. Rosay [Ros91] gave an elementary proof of this theorem without using Fourier
transform or any complex functions. The proof is based on Hörmander’s inequality,
the Riesz representation theorem for L2, and little background in the space of
distributions. Section 3 of this paper is a detail exposition for Rosay’s paper.

Following the theorem on the existence of a fundamental solution, Ehrenpreis
and Malgrange established several general theorems which imply the following
identities.

1o. P (D)(D ′(Rn)) = D ′(Rn) [Ehr56, Theorem 3].

2o. P (D)(C∞(Rn)) = C∞(Rn) [Ehr54, Theorem 10], [Mal56, Theorem 3].

3o. P (D)(Ck(Rn)) ⊃ Ck+[n2 ]+1(Rn) [Mal56, Remark of Theorem 3].

Later, Hörmander [Hor58] showed that
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4o. P (D)(S ′(Rn)) = S ′(Rn),

where S ′(Rn) is the space of tempered distributions in Rn. The theory of linear
partial differential operators was largely developed during the 1950s and 1960s.
For example, 2o and 3o are still true when Rn is replaced by a convex open subset
Ω [Mal56]; with the same replacement, 1o is still true [Mal59]; Hörmander [Hor62]
introduced the notion of strong P (D)-convexity and showed that P (D)(D ′(Ω)) =
D ′(Ω) if and only if the open set Ω is strongly P (D)-convex; Agranovich [Agr61,
Theorem 5] gave a constructive proof of 2o: an explicit solution of Problem (1.2)
was given as a contour integral in Cn, called Hörmander’s steps. Trèves [Tre67,
p.61] pointed out that there was no need to restrict our consideration of 2o to Rn

or its open subsets: the existence result extends trivially to C∞-manifolds. Much
of the literature on linear partial differential operators during the 1950s and 1960s
is systematized in the book [Tre66]. There the author showed 1o, 2o, 3o, 4o and
other identities for C∞-manifolds that satisfy the countability at infinity, P (D)-
convexity and some other conditions. It is interesting to note that the identity

5o. P (D)(H) = H,

where H is the space of all real analytic functions in Rn, is false in general. E. De
Giorgi and L. Cattabriga [GC71] showed that 5o is true for n = 2. L. Piccinini
[Pic73] showed that 5o is false if n ≥ 3. One of his counterexamples is the heat
operator P (x) = xn − x2

1 − . . . − x2
n−1. Hörmander [Hor73] gave a necessary and

sufficient condition for the polynomial P (x) in order to get 5o. Particularly, if
P (0) = 0 and P (x) > 0 for all x 6= 0 then 5o is true.

Our concern in this paper is completely restricted to proving the identity 2o.
Malgrange [Mal56] proved the existence of solutions to Problem (1.2) by a method
analogous to the method we use for the Poisson’s equation in Section 2. The
key step is to show that a function v satisfying P (D)v = 0 in an open bounded
subset Ω of Rn is the limit of a sequence (vm) satisfying P (D)vm = 0 in Rn.
If P (D) is the Laplacian, this result is known as Walsh’s theorem [Gar95, p.8]
(quoted in Proposition 2.1). For a general operator P (D), Malgrange [Mal56,
Theorem 2, p.292] showed that v is the limit of a sequence of linear combinations
of exponential polynomials. After this step, one can construct a solution in C∞(Rn)
to Problem (1.2) by the Mittag-Leffler approximation procedure. Trèves [Tre66]
gave a different method to achieve the first step without resorting the exponential
polynomials. His method requires some background in the topology of the dual
space of C∞(Rn).

Section 4 of the paper is an exposition for [Tre66, Chapter 1]. Much sim-
plification is made because we are considering Problem (1.2) in Rn instead of a
C∞-manifold. However, as mentioned earlier, we do not lose any key ideas due to
this restriction. Section 5 consists of two simple applications of 2o: the solvabil-
ity of a system of linear differential equations and the solvability of linear Stokes
equations without the initial condition. Section 6 is a collection of basic properties
of topological vector spaces (TVS), test-functions and distributions in Rn that are
used in this paper.
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2 Poisson’s equation in Rn

Let us recall the following definitions.
In [GT98, p.52], a function f defined on an open subset Ω of Rn is said to be

locally Hölder continuous with exponent α ∈ (0, 1] if it is Hölder continuous with
that exponent in every compact subset of Ω, i.e. the quantity

[f ]α;D = sup
x,y∈D
x 6=y

|f(x)− f(y)|
|x− y|α

is finite for every compact subset D of Ω. By this definition, it is clear that every
function in C1(Rn) is locally Hölder continuous with exponent α = 1.

Next, the function Γ : Rn\{0} → R,

Γ(z) =


1

2π
log |z|, n = 2

1

n(2− n)|B1|
|z|2−n, n ≥ 3

where |B1| denotes the volume of the unit ball in Rn, is called the fundamental
solution of Laplace’s equation.

Given a function f defined on an open bounded subset Ω of Rn. Suppose that
f is bounded in Ω. Then the function

v(x) =

∫
Ω

Γ(x− y)f(y)dy ∀x ∈ Ω

is well-defined and called the Newtonian potential of f on Ω.

Proposition 2.1. Let n ∈ N, n ≥ 2 and 0 < a < b < c <∞. Denote Ab,c = {x ∈
Rn : b ≤ |x| ≤ c} and Br = {x ∈ Rn : |x| < r} for every r > 0. Then for every
ε > 0 and for every function f : Rn → R that is locally Hölder continuous with
exponent α ∈ (0, 1] in Rn and supported in Ab,c, there exists a function uε ∈ C2(Rn)
such that ∆uε = f in Rn and |uε(x)| ≤ ε in Ba.

Proof. Let v : Rn → R be the Newtonian potential of f , namely

v(x) =

∫
Rn

Γ(x− y)f(y)dy ∀x ∈ Rn.

Then v ∈ C2(Rn) and ∆v = f in Rn by Lemma 2.6. We have ∆v = 0 in Bb

because f(x) = 0 in Bb. Thus v is a harmonic function in Bb, which is an open set
containing Ba. We know that the complement of Ba in Rn is connected. Walsh’s
theorem in [Gar95, p.8] states that:

Let K be a compact subset of Rn, n ≥ 2, such that Rn\K is con-
nected. Then for each function u which is harmonic on an open set
containing K and for each positive number ε, there exists a harmonic
polynomial w such that |w − u| < ε in K.
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For n = 2, this is known as Runge’s theorem [GK06, p.363]. Applying Walsh’s
theorem for K = Ba and u = v, we conclude that for every ε > 0, there exists a
harmonic polynomial vε such that |vε − v| < ε in Ba. Define

uε(x) = v(x)− vε(x) ∀x ∈ Rn.

Then uε ∈ C2(Rn) and ∆uε = ∆v −∆vε = f in Rn. Moreover, |uε(x)| = |v(x) −
vε(x)| ≤ ε for all x ∈ Ba.

Proposition 2.2. Let f : Rn → R be a locally Hölder continuous with exponent
α ∈ (0, 1] in Rn where n ≥ 2. Then there exists a function u ∈ C2(Rn) such that
∆u = f in Rn.

Proof. Denote

A0 = {x ∈ Rn : |x| < 2} ,
Ak = {x ∈ Rn : k < |x| < k + 2} ∀k ∈ N.

Then {Ak : k = 0, 1, 2 . . .} is an open cover of Rn. Let {φk : k = 0, 1, 2 . . .} be a
smooth partition of unity subordinate to this cover. Put fk(x) = f(x)φk(x) for all
x ∈ Rn and k = 0, 1, 2, . . . Because f and φk are locally Hölder continuous with
exponents ≤ 1 in Rn, we conclude that fk is also locally Hölder continuous with
exponent ≤ 1 in Rn by Lemma 2.7. Morever, each fk is supported in Ak. Let
u0 : Rn → R be the Newtonian potential of f0, namely

u0(x) =

∫
Rn

Γ(x− y)f0(y)dy ∀x ∈ Rn.

Then u0 ∈ C2(Rn) and ∆u0 = f0 in Rn by Lemma 2.6.
For each k ∈ N, we have suppf ⊂ Ak ⊂ Ak,k+2, which is the closed annulus

whose inner and outer radii are k and k+ 2 respectively. Then by Proposition 2.1,
there exists a function uk ∈ C2(Rn) such that{

∆uk = fk in Rn,
|uk(x)| ≤ 1

k2
in Bk− 1

2
,

where Br denotes the open ball of radius r centered at the origin.
For each compact subset A of Rn, there exists a number k0 ∈ N such that

A ⊂ Bk0 . Thus A ⊂ Bk− 1
2

for all k > k0. Hence,

|uk(x)| ≤ 1

k2
∀x ∈ Bk− 1

2
,∀k > k0.

This implies that the series
∑∞

k=0 uk(x) converges uniformly on A. We thus con-
clude that the series

∑∞
k=0 uk(x) converges uniformly on every compact subset of

Rn to a (continuous) function u : Rn → R.
We have ∆uk = fk = 0 in Bk. Thus uk is a harmonic function in Bk. Theorem

2.10 in [GT98, p.23] states that:
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Let u be harmonic in Ω [which is an open subset of Rn] and let Ω′

be any compact subset of Ω. Then for any multi-index α we have

sup
Ω′
|Dαu| ≤

(
n|α|
d

)|α|
sup

Ω
|u|,

where d = dist(Ω′, ∂Ω).

Applying this theorem for uk, Bk− 1
2
, Bk−1 in place of u,Ω,Ω′ respectively, we get

sup
Bk−1

|Dαuk| ≤
(
n|α|
1/2

)|α|
sup
B
k− 1

2

|uk| ∀k ≥ 2.

For 1 ≤ |α| ≤ 2, we have

sup
Bk−1

|Dαuk| ≤ (2n|α|)|α| sup
B
k− 1

2

|uk| ≤
(4n)2

k2
∀k ≥ 2.

Therefore,

|Dαuk(x)| ≤ (4n)2

k2
∀x ∈ Bk−1, ∀1 ≤ |α| ≤ 2, ∀k ≥ 2.

This implies that the series
∑∞

k=0D
αuk(x) converges uniformly on every compact

subset of Rn for all multi-indicies 1 ≤ |α| ≤ 2. Thus u ∈ C2(Rn) and

Dαu(x) =
∑∞

k=0
Dαuk(x) ∀x ∈ Rn, ∀1 ≤ |α| ≤ 2.

In particular,

∆u(x) =
∞∑
k=0

∆uk(x) =
∞∑
k=0

fk(x) = f(x) ∀x ∈ Rn.

Proposition 2.3. Denote A1,2 = {x ∈ R2 : 1 ≤ |x| ≤ 2} and Br = {x ∈ R2 : |x| <
r} for any r > 0. There exists a function f ∈ C∞(R2) such that suppf ⊂ A1,2

and that there is no function u ∈ C2(R2) satisfying simultaneously the following
conditions.

(i) ∆u = f in R2,

(ii) u = 0 in Bε for some 0 < ε < 1.

Such a counterexample shows that it is impossible to find an estimate of the
form

sup
Br

|uf | ≤ C(r) sup
Br

|f | ∀r > 0, ∀f ∈ C∞0 (Rn),

where uf is a classical solution to the problem ∆u = f in Rn.
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Proof of Proposition 2.3. Let η : R→ R be a smooth function such that
η(t) = 0, |t| ≥ 1
η(t) = 1, |t| ≤ 1

2

0 ≤ η(t) ≤ 1, otherwise.

Then the function t 7→ η(2t−3) is supported in [1,2] and η(2t−3) = 1 if t ∈
[

5
4
, 7

4

]
.

Define a function f : R2 → R,

f(x) = f(x1, x2) = η(2r − 3)
∞∑
k=1

cos kθ

2k
, (2.1)

where x1 = r cos θ, x2 = r sin θ, r ≥ 0, θ ∈ R. For each m = 0, 1, 2, . . . the series∑∞
k=1

km

2k
converges. Thus the function

g(θ) =
∞∑
k=1

cos(kθ)

2k

belongs to C∞(R) and

dmg

dθm
=
∞∑
k=1

km cos
(
kθ + mπ

2

)
2k

∀m ∈ N.

Equation (2.1) is the representation of f in polar coordinates. Such a representa-
tion in general may have a singularity at r = 0, but it is not the case here because
η(2r − 3) = 0 for all 0 ≤ r ≤ 1. Thus, f ∈ C∞(R2) and suppf ⊂ A1,2.

Suppose by contradiction that there exists a function u ∈ C2(R2) satisfying
the conditions (i) and (ii) mentioned above. Put

v(x) =

∫
R2

Γ(x− y)f(y)dy =

∫
A1,2

Γ(x− y)f(y)dy, where Γ(z) =
1

2π
log |z|.

Then v ∈ C2(R2) and ∆v = f in R2 by Lemma 2.6. Put w = v−u. Then ∆w = 0
in R2. Consequently, w is real analytic in R2. Thus, the restriction of w to the
real line, namely w(·, 0), is given by a power series

w(t, 0) = a0 + a1t+ a2t
2 + . . . ∀t ∈ R. (2.2)

The radius of convergence of this series is equal to infinity, so

lim sup
k→∞

k
√
|ak| = 0. (2.3)

In addition, w = v in Bε because u = 0 in Bε. For each k ∈ N, we define

fk(x) = fk(x1, x2) = η(2r − 3)
cos(kθ)

2k
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where x1 = r cos θ, x2 = r sin θ, r ≥ 0, θ ∈ R. Then fk ∈ C∞(R2) and suppfk ⊂
A1,2. Put

vk(x) =

∫
R2

Γ(x− y)fk(y)dy =

∫
A1,2

Γ(x− y)fk(y)dy.

Then vk ∈ C2(R2) and ∆vk = fk in R2 by Lemma 2.6. Note that |fk(x)| ≤ 1
2k

.

Thus, the series
∞∑
k=1

fk(x) converges to f(x) uniformly in R2. Because Γ ∈ L1
loc(R2),

the series
∞∑
k=1

vk(x) =
∞∑
k=1

∫
A1,2

Γ(x− y)fk(y)dy

converges to v(x) uniformly on every compact subset of R2.

Next, we compute vk in Bε. Take x = (x1, x2) = (ρ cosφ, ρ sinφ) where 0 < ρ <
ε < 1. For each y ∈ A1,2, we write y = (y1, y2) = (r cos θ, r sin θ) where 1 ≤ r ≤ 2.
Then |x− y|2 = ρ2 + r2 − 2ρr cos(θ − φ). We have

vk(x) =

∫
A1,2

Γ(x− y)fk(y)dy =
1

4π

∫
A1,2

log(|x− y|2)η(2r − 3)
cos(kθ)

2k
dy

=
1

4π

∫
A2,3

log(ρ2 + r2 − 2ρr cos(θ − φ))η(2r − 3)
cos(kθ)

2k
dy

=
1

4π2k

∫ 2

1

[∫ 2π

0

log(ρ2 + r2 − 2ρr cos(θ − φ)) cos(kθ)dθ

]
rη(2r − 3)dr.

For φ = 0, we have x = (ρ, 0) and

vk(ρ, 0) =
1

4π2k

∫ 2

1

[∫ 2π

0

log(ρ2 + r2 − 2ρr cos θ) cos(kθ)dθ

]
︸ ︷︷ ︸

{1}

rη(2r − 3)dr (2.4)

We have

{1} =

∫ 2π

0

[
log(r2) + log

((ρ
r

)2

+ 1− 2
ρ

r
cos θ

)]
cos(kθ)dθ

=

∫ 2π

0

log(r2) cos(kθ)dθ +

∫ 2π

0

log(t2 + 1− 2t cos θ) cos(kθ)dθ

where t = ρ/r ∈ (0, 1). The first integral is equal to zero. The second integral is
equal to −2π

k
tk by Lemma 2.9 below. Thus,

{1} = −2π

k

(ρ
r

)k
.
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Then (2.4) becomes

vk(ρ, 0) =
1

4π2k

∫ 2

1

−2π

k

(ρ
r

)k
rη(2r − 3)dr = − ρk

2k+1k

∫ 2

1

η(2r − 3)

rk−1
dr.

Put

ak = − 1

2k+1k

∫ 2

1

η(2r − 3)

rk−1
dr < 0. (2.5)

We get vk(ρ, 0) = akρ
k for all 0 < ρ < ε. Hence,

v(ρ, 0) =
∞∑
k=1

vk(ρ, 0) =
∞∑
k=1

akρ
k ∀ρ ∈ (0, ε).

Because w = v in Bε, we have

w(ρ, 0) = v(ρ, 0) =
∞∑
k=1

akρ
k ∀ρ ∈ (0, ε). (2.6)

Thus, the equality (2.3) must be satisfied. By (2.5) we have

|ak| =
1

2k+1k

∫ 2

1

η(2r − 3)

rk−1
dr

≥ 1

2k+1k

∫ 7/4

5/4

1

rk−1
dr =

1

2k+1k

(
5
4

)2−k −
(

7
4

)2−k

k − 2
∀k ≥ 3.

There exists a number k0 ≥ 3 such that (7/4)2−k ≤ 1
2
(5/4)2−k for all k > k0. Then

for k > k0 we have

|ak| ≥
1

2k+1k

(
5
4

)2−k − 1
2

(
5
4

)2−k

k − 2
=

25

64k(k − 2)

(
5

4

)−k
.

Then

lim sup
k→∞

k
√
|ak| ≥ lim sup

k→∞

k

√
25

64k(k − 2)

(
5

4

)−1

=
4

5
> 0.

This is a contradiction.

Proposition 2.4. If f is smooth and bounded in R2 then there may NOT exist
any function u whose Laplacian is f and which grows at most at quadratic order
at infinity.

Proof. Define the map η : R→ R,

η(t) =

 exp

(
t2

t2 − 1

)
|t| < 1,

0 |t| ≥ 1.
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Then η ∈ C∞(R) with 0 ≤ η(t) ≤ 1 for all t ∈ R and η(0) = 1. Put g : R2 → R,

g(x, y) =
1− η(r)

r2
where r =

√
x2 + y2.

First we show that g ∈ C∞(R2). It is clear that g ∈ C∞(R2\{0}). Thus it
suffices to show that g is smooth in B1/2, which is the disk of radius 1/2 centered

at the origin. The complex function z 7→
1− exp

(
z
z−1

)
z

is holomorphic in B1/2

because the numerator is holomorphic in B1/2 and vanishes at z = 0. This implies
that the restriction of that function to the real segment

(
−1

2
, 1

2

)
is real analytic,

i.e. the map h :
(
−1

2
, 1

2

)
→ R,

h(t) =
1− exp

(
t
t−1

)
t

is real analytic. Thus, h ∈ C∞((−1
2
, 1

2
)). For (x, y) ∈ B1/2, we have

g(x, y) =
1− η(r)

r2
=

1− exp
(

r2

r2−1

)
r2

= h(r2) = h(x2 + y2),

which is in C∞(B1/2).

Next, we define a function f : R2 → R,

f(x, y) =
1− η(r)

r2
(x2 − y2).

By the first step, f ∈ C∞(R2). Moreover, f is bounded because

|f(x, y)| ≤ (1− η(r))
|x2 − y2|
x2 + y2

≤ |x
2 − y2|
x2 + y2

≤ 1

We claim that there exists a function w ∈ C2(R2) such that ∆w = f in R2 and

1

8
R2 log(R) ≤ ||w||L∞(BR) ≤

1

2
R2 log(R) (2.7)

for all R sufficiently large, where BR denotes the disk of radius R centered at the
origin.

With x = r cos θ and y = r sin θ, we can write f(x, y) in polar coordinates

f(x, y) =
1− η(r)

r2
(x2 − y2) = (1− η(r)) cos(2θ) = c(r) cos(2θ)

where c(r) = 1− η(r). By the first step, c(r)/r ∈ C∞(R). Put

v1(t) =

∫ t

1

1

4

c(s)

s
ds, v2(t) = −

∫ t

0

1

4
c(s)s3ds.
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Then v1 and v2 are smooth. Define v(t) = v1(t)t2 + v2(t)t−2. Because

lim
t→0

v2(t)t−2 = lim
t→0

v2(t)

t2
= lim

t→0

v2
′(t)

2t
= lim

t→0

1

4
c(t)

t2

2
= 0,

we conclude that v ∈ C(R). It is clear that v ∈ C2(R2\{0}). By direct computa-
tion, we get

v′′(r) +
1

r
v′(r)− 4

r2
v(r) = c(r) ∀r > 0

For r > 0 and θ ∈ R, we define w̃(r, θ) = v(r) cos(2θ). Then w̃ ∈ C2(R+ ×R) and

∂2w̃

∂r2
+

1

r

∂w̃

∂r
+

1

r2

∂2w̃

∂θ2
=

(
v′′(r) +

1

r
v′(r)− 4

r2
v(r)

)
cos(2θ) = c(r) cos(2θ)

Since v(r) → 0 as r → 0, there is ε > 0 such that |v(r)| < 1 for all 0 < r < ε.
Thus |w̃(r, θ)| ≤ |v(r)| < 1 for all 0 < r < ε, θ ∈ R. Then by Lemma 2.8 below,
w ∈ C2(R2) and ∆w = f in R2. We see that 0 ≤ c(s) ≤ 1 for all s > 0 and
c(s) = 1 for all s ≥ 1. Hence, for r > 1,

|v1(r)| =
∫ r

1

1

4

c(s)

s
ds =

∫ r

1

1

4

1

s
ds =

log(r)

4
.

Also,

|v2(r)r−2| = r−2

∫ r

0

1

4
c(s)s3ds ≤ r−2

∫ r

0

1

4
s3ds =

r2

16
.

We have

v(r) = v1(r)r2 + v2(r)r−2 =
1

4
r2 log(r) + v2(r)r−2 (2.8)

Then

|v(r)| ≤ 1

4
r2 log(r) + |v2(r)|r−2 ≤ 1

4
r2 log(r) +

r2

16
≤ 1

2
r2 log(r)

provided that r > exp(1/4). Also, (2.8) implies that

v(r) ≥ 1

4
r2 log(r)− |v2(r)|r−2 ≥ 1

4
r2 log(r)− r2

16
≥ 1

8
r2 log(r)

provided that r > exp(1/2). Therefore,

1

8
r2 log(r) ≤ |v(r)| ≤ 1

2
r2 log(r) ∀r > exp(1/2),

and thus

|w̃(r, θ)| ≤ 1

2
r2 log(r) ∀r > exp(1/2), ∀θ ∈ R. (2.9)

Then

||w||L∞(BR) ≤
1

2
R2 log(R) ∀R > exp(1/2).

11



On the other hand,

||w||L∞(BR) ≥ |w(R, 0)| = |w̃(R, 0)| = |v(R)| ≥ 1

8
R2 log(R) ∀R > exp(1/2).

Thus the claim (2.7) is proved. Note that it is important that we have

|w(R, 0)| ≥ 1

8
R2 log(R) ∀R > exp(1/2). (2.10)

Now suppose by contradiction that there exists a function u ∈ C2(R2) such that
∆u = f in R2 and that u(x) grows at most at quadratic order as x go to infinity.
There exists R0 > 0 such that

|u(x)| ≤ |x|2 ∀|x| > R0.

We can assume R0 > exp(2). By (2.9),

|w(x)| ≤ 1

2
|x|2 log |x| ∀|x| > R0.

Put u0 = w − u. Then u0 ∈ C2(R2), ∆u0 = 0 in R2 and

|u0(x)| ≤ |u(x)|+ |w(x)| ≤ |x|2 +
1

2
|x|2 log |x| ≤ |x|2 log |x| ∀|x| > R0.

We now show that u0 is a polynomial of degree at most 2. Because u0 is harmonic
in R2, it is the real part of a complex function φ(z) which is holomorphic in C.
For any R > 0 we have the Poisson’s formula

φ(z) =
1

2π

∫ 2π

0

u0(Reiθ)Re

(
Reiθ + z

Reiθ − z

)
dθ ∀|z| < R.

For each |z| > R0, we choose R = 2|z|. Then we get the estimation

|φ(z)| ≤ 1

2π

∫ 2π

0

|u0(Reiθ)|
∣∣∣∣Reiθ + z

Reiθ − z

∣∣∣∣ dθ ≤ 1

2π

∫ 2π

0

R2(logR)
R + |z|
R− |z|

dθ

= 3R2 logR = 12|z|2 log(2|z|).

Thus,
|φ(z)| ≤ 12|z|2 log(2|z|) ∀|z| > R0. (2.11)

Since φ(z) is holomorphic in C, it has a Taylor expansion φ(z) = a0+a1z+a2z
2+. . .,

where

am =
1

2πi

∫
γ

φ(ξ)

ξm+1
dξ

and γ is any circle centered at the origin. We can choose γ to be a circle of radius
r > R0. By (2.11) we have the estimation

|am| ≤
1

2π

∫
γ

|φ(ξ)|
|ξ|m+1

|dξ| ≤ 1

2π
(2πr)

12r2 log(2r)

rm+1
= 12r2−m log(2r) (2.12)

12



If m > 3 then am = 0 because RHS(2.12) goes to 0 as r goes to infinity. Hence
φ(z) = a0 + a1z + a2z

2. Because u0(z) = Re(φ(z)), u0 is a polynomial (of degree
at most 2) in two real variables. Thus there exists R1 > 0 such that

|u0(x) ≤ |x|2 ∀|x| > R1.

Then
|w(x)| ≤ |u(x)|+ |u0(x)| ≤ 2|x|2 ∀|x| > max{R0, R1}.

In particular,
|w(R, 0)| ≤ 2R2 ∀R > max{R0, R1}.

This contradicts (2.10).

Proposition 2.5 (Helmholtz decomposition). Let ~F : R3 → R3 be a locally Hölder

continuous map with exponent α ∈ (0, 1]. Then there exist φ ∈ C1(R3) and ~A ∈
C1(R3,R3) such that ~F = −∇φ+∇× ~A.

Proof. By Proposition 2.2, there exists a vector field ~G ∈ C2(R3,R3) such that

∆~G = −~F . Using the identity ∇× (∇× ~G) = ∇(∇ · ~G)−∆~G, we get

~F = −∆~G = −∇(∇ · ~G) +∇× (∇× ~G).

Therefore, we can choose φ = ∇ · ~G ∈ C1(R3) and ~A = ∇× ~G ∈ C1(R3,R3).

Lemma 2.6. Let f be a locally Hölder continuous function with exponent α ∈ (0, 1]
in Rn where n ≥ 2. Suppose that f is also compactly supported in Rn. Then the
Newtonian potential of f , namely

v(x) =

∫
Rn

Γ(x− y)f(y)dy,

belongs to C2(Rn) and ∆v = f in Rn.

Proof. There exists a number r0 > 0 such that suppf ⊂ Br0 . Then

v(x) =

∫
Br

Γ(x− y)f(y)dy

for all r ≥ r0 and x ∈ Rn. Lemma 4.2 in [GT98, p.55] states that:

If f is bounded and locally Hölder continuous with exponent α ≤ 1
in Ω [which is an open bounded set], and let w be the Newtonian
potential of f [on Ω]. Then w ∈ C2(Ω) and ∆w = f in Ω.

Applying this result for Ω = Br and w = v|Br , we get v|Br ∈ C2(Br) and ∆v = f
in Br. Because r can be chosen arbitrarily large, we conclude that v ∈ C2(Rn)
and ∆v = f in Rn.
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Lemma 2.7. Suppose that f and g are locally Hölder continuous functions with
exponents ≤ 1 in Rn. Then so is the product fg.

Proof. Let K be any compact subset of Rn. We want to show that the product
function fg is Hölder continuous on K. Because f and g are continuous in Rn,
they are bounded in K. Thus there exists a number M = M(K) > 0 such that
|f(x)|, |g(x)| ≤ M for all x ∈ K. Because f and g are locally Hölder continuous
in Rn, there exist α1, α2 ∈ (0, 1] and C1(K), C2(K) > 0 such that

|f(x)− f(y)|
|x− y|α1

≤ C1 ∀x, y ∈ K, x 6= y,

|g(x)− g(y)|
|x− y|α2

≤ C2 ∀x, y ∈ K, x 6= y.

Denote α = min(α1, α2) and d = diam(K) <∞. For any x, y ∈ K, x 6= y, we have

f(x)g(x)− f(y)g(y)

|x− y|α
= f(x)

g(x)− g(y)

|x− y|α
+ g(x)

f(x)− f(y)

|x− y|α

= f(x)
g(x)− g(y)

|x− y|α2
|x− y|α2−α + g(x)

f(x)− f(y)

|x− y|α1
|x− y|α1−α

Hence,

|f(x)g(x)− f(y)g(y)|
|x− y|α

≤ |f(x)| |g(x)− g(y)|
|x− y|α2

|x− y|α2−α + |g(x)| |f(x)− f(y)|
|x− y|α1

|x− y|α1−α

≤ MC2d
α2−α +MC1d

α1−α.

This means fg is Hölder continuous with exponent α ∈ (0, 1] in every compact
subset K of Rn.

Lemma 2.8. Denote R+ = {t ∈ R : t > 0}. Let f ∈ C2(R2) and define

f̃(r, θ) = f(r cos θ, r sin θ) ∀r ∈ R+, θ ∈ R.

Suppose that there is a function ũ ∈ C2(R+ × R) satisfying

(i) ũ(r, θ + 2π) = ũ(r, θ) ∀r ∈ R+, θ ∈ R,

(ii) there exist M, ε > 0 such that |ũ(r, θ)| ≤M ∀0 < r < ε, θ ∈ R,

(iii) ∂2ũ
∂r2

+ 1
r
∂ũ
∂r

+ 1
r2
∂2ũ
∂θ2

= f̃(r, θ) ∀r ∈ R+, θ ∈ R.

Define a function u : R2\{0} → R by u(r cos θ, r sin θ) = ũ(r, θ) for (r, θ) ∈ R+×R.
Then u ∈ C2(R2) and ∆u = f in R2.
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Proof. Note that u is well-defined because ũ is periodic in θ with period 2π. For
each (x, y) ∈ R2\{0}, we have

u(x, y) =



ũ
(√

x2 + y2, arctan
(y
x

))
, x > 0

ũ
(√

x2 + y2, π + arctan
(y
x

))
, x < 0

ũ

(√
x2 + y2,

π

2
− arctan

(
x

y

))
, y > 0

ũ

(√
x2 + y2,

π

2
− arctan

(
x

y

))
, y < 0

Since ũ ∈ C2(R+ × R), we have u ∈ C2(R2\{0}). By the chain rule, we have

∆u(x, y) =
∂2u

∂x2
+
∂2u

∂y2
=
∂2ũ

∂r2
+

1

r

∂ũ

∂r
+

1

r2

∂2ũ

∂θ2
= f̃(r, θ) = f(x, y),

for all (x, y) ∈ R2\{0}, x = r cos θ, y = r sin θ, r > 0, θ ∈ R. For (x, y) ∈
B(0, ε)\{0}, we have |u(x, y)| = |ũ(r, θ)| ≤M . Thus, u is bounded in B(0, ε)\{0}.

Put g = u|∂B1 ∈ C(∂B1) where B1 is the unit disk centered at the origin. Then
the problem {

∆v = f in B1,
v = g on ∂B1

has a solution v ∈ C2(B1) ∩ C(B1) which is given via a Green function [GT98,
p.56, Theorem 4.3]. Put w = u − v. Then w ∈ C2(B1\{0}) ∩ C(B1\{0}) and is
bounded in B1. Moreover, {

∆w = 0 in B1\{0},
w = 0 on ∂B1.

By the theorem of removable singularity of harmonic functions [ABR00, p.32,
Theorem 2.3], w is a harmonic function in B1. Then w = 0 in B1 by the maximum
principle. Thus u = v, which is in C2(B1). Therefore, u ∈ C2(R2) and ∆u = f in
R2.

Lemma 2.9. For 0 < t < 1 and k ∈ N, we have∫ 2π

0

log(t2 + 1− 2t cos θ) cos(kθ)dθ = −2π

k
tk

Proof. Denote

J(t) =

∫ 2π

0

log(t2 + 1− 2t cos θ) cos(kθ)dθ.

Then J(t) is continuously differentiable on [0,1). We denote

I(t) = J ′(t) =

∫ 2π

0

∂

∂t

[
log(t2 + 1− 2t cos θ)

]
cos(kθ)dθ

=

∫ 2π

0

2t− 2 cos θ

t2 + 1− 2t cos θ
cos(kθ)dθ.
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On the complex plane, we consider the unit circle z = eiθ. Then

cos θ =
z + z̄

2
=

1

2

(
z +

1

z

)
,

cos(kθ) =
zk + z̄k

2
=

1

2

(
zk +

1

zk

)
,

dθ = −idz
z
.

Therefore,

I =
−i
2

∫
|z|=1

z2k + 1

zk+1

z2 − 2tz + 1

t(z2 + 1)− (t2 + 1)z︸ ︷︷ ︸
f(z)

dz. (2.13)

We have

f(z) =
z2k + 1

zk+1

z2 − 2tz + 1

(tz − 1)(z − t)
,

which is a meromorphic function in C. The poles of f(z) are at z = 1/t, z = t
(both with multiplicity one), and z = 0 (with multiplicity k + 1). Only t and 0
are the poles enclosed in the unit circle. Thus,∫

|z|=1

f(z)dz = 2πi (Resz=0f(z) + Resz=tf(z)) .

Substituting this equality into (2.13) we get

I(t) = πi (Resz=0f(z) + Resz=tf(z)) . (2.14)

Compute the residue of f(z) at z = t.
Because z = t is a simple pole,

Resz=tf(z) = lim
z→t

f(z)(z − t) = lim
z→t

z2k + 1

zk+1

z2 − 2tz + 1

tz − 1
= −t

2k + 1

tk+1
. (2.15)

Compute the residue of f(z) at z = 0.
Denote t1 = t and t2 = 1/t. Then t1t2 = 1, 0 < t1 < 1, t2 > 1. Then

f(z) =
z2k + 1

t1zk+1

z2 − 2t1z + 1

(z − t2)(z − t1)

=
1

t1(t2 − t1)

z2k + 1

zk+1

z2 − 2t1z + 1

z − t2︸ ︷︷ ︸
f1(z)

− z
2k + 1

zk+1

z2 − 2t1z + 1

z − t1︸ ︷︷ ︸
f2(z)

 (2.16)

When z is near 0,

z2 − 2t1z + 1

z − t2
= z − t2 − 2(t1 − t2)− t2 − t1

1− t1z
= z − t2 − 2(t1 − t2)− (t2 − t1)(1 + t1z + t21z

2 + . . .)
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Thus,

f1(z) =
z2k + 1

zk+1

[
z − t2 − 2(t1 − t2)− (t2 − t1)(1 + t1z + t21z

2 + ...)
]

= (zk−1 + z−k−1)

[
z − t2 − 2(t1 − t2)− (t2 − t1)

∞∑
j=0

tj1z
j

]
.

The coefficient of z−1 in the Laurent series of f1(z) is equal to the coefficient of zk

in the square bracket. That is,

Resz=0f1(z) =

{
1− (t2 − t1)t1, k = 1
−(t2 − t1)tk1, k ≥ 2

(2.17)

When z is near 0,

z2 − 2t1z + 1

z − t1
= z − t1 −

t2 − t1
1− z

t1

= z − t1 − (t2 − t1)

(
1 +

z

t1
+
z2

t1
2

+ . . .

)
.

Thus,

f2(z) =
z2k + 1

zk+1

[
z − t1 − (t2 − t1)

(
1 +

z

t1
+
z2

t1
2

+ ...

)]
= (zk−1 + z−k−1)

[
z − t1 − (t2 − t1)

∞∑
j=0

t−j1 zj

]

The coefficient of z−1 in the Laurent series of f2(z) is equal to the coefficient of zk

in the square bracket. That is,

Resz=0f2(z) =

{
1− (t2 − t1)t−1

1 , k = 1
−(t2 − t1)t−k1 , k ≥ 2

(2.18)

By (2.17) and (2.18), we have Resz=0f1(z) − Resz=0f2(z) = −(t2 − t1)(tk1 − t−k1 ).
Replacing this identity into (2.16), we get

Resz=0f(z) =
1

t1(t2 − t1)
(Resz=0f1(z)− Resz=0f2(z))

= −t1
k − t1−k

t1
= −t

k − t−k

t
= −t

2k − 1

tk+1
(2.19)

Now substituting (2.15) and (2.19) into (2.14), we get

I(t) = π

(
−t

2k + 1

tk+1
− t2k − 1

tk+1

)
= −2πtk−1.

Recall that I(t) = J ′(t). Since J(0) =
∫ 2π

0
log(1) cos(kθ)dθ = 0, we get

J(t) = −2π

k
tk.
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3 A proof of the Malgrange-Ehrenpreis theorem

This section gives a detail proof for the Malgrange-Ehrenpreis theorem accord-
ing to the method in [Ros91]. This is an elementary proof which requires little
background in the space of distributions. The necessary background is collected
in Section 6.4. Throughout the section, P always denotes a non-identically-zero
polynomial in n real variables, where n ∈ N. Write

P (x) =
∑
|α|≤N

cαx
α =

∑
|α|≤N

cαx1
α1 . . . xn

αn .

If the set {cα : |α| = N} has at least one nonzero element, we say that P has
degree N and each nonzero element of that set is called a highest coefficient of P .
Define the differential operators P (D) and P (−D) as follows.

P (D) =
∑
|α|≤N

cαD
α =

∑
|α|≤N

cαD
α1
1 . . . Dαn

n ,

P (−D) =
∑
|α|≤N

(−1)|α|cαD
α =

∑
|α|≤N

(−1)|α|cαD
α1
1 . . . Dαn

n .

P (−D) is called the conjugate differential operator of P (D). By the integration-
by-part formula, we have

〈P (D)u,Q(D)φ〉 = 〈Q(−D)u, P (−D)φ〉 ∀u, φ ∈ D(Rn), (3.1)

where the brackets 〈·, ·〉 denotes the usual inner product in L2(Rn). Consequently,

||P (D)φ||L2(Rn) = ||P (−D)φ||L2(Rn) ∀φ ∈ D(Rn). (3.2)

Below is the outline of the proof of the Malgrange-Ehrenpreis theorem.

Step 1. Hörmander’s inequality: for each open bounded set Ω ⊂ Rn, there exists
a number C = C(P,N) > 0 such that

||P (D)φ||L2(Ω) ≥ C||φ||L2(Ω) ∀φ ∈ D(Ω).

Step 2. If Ω is an open bounded subset of Rn and g ∈ L2(Ω), then there exists
u ∈ L2(Ω) such that P (D)u = g in sense of D ′(Ω).

Step 3. For each φ ∈ D(Rn), [suppP (D)φ] = [suppφ]. Here [K] denotes the convex
hull of a set K ⊂ Rn in Rn.

Step 4. For each u ∈ E ′(Rn), [suppP (D)u] = [suppu].†

Step 5. Suppose we have 0 < s < r < R and v ∈ L2(Br) such that P (D)v = 0 in
sense of D ′(Br). Then there exists a sequence (vk) in L2(BR) such that
P (D)vk = 0 in sense of D ′(BR) and ||vk − v||L2(Bs) → 0 as k →∞.

†See the definition of the space E ′(Rn) in the remark preceding Proposition 6.16.
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Step 6. For each g ∈ L2
loc(Rn), there exists u ∈ L2

loc(Rn) such that P (D)u = g in
sense of D ′(Rn).

Step 7. Consider the Heaviside function H : Rn → R,

H(x1, . . . , xn) =

{
1 if x1, . . . , xn > 0,
0 otherwise.

Then Q(D)H = δ0, where Q(x) = x1x2 . . . xn and δ0 is the Dirac measure
defined in Proposition 6.22.

Step 8. There exists E ∈ D ′(Rn) such that P (D)E = δ0.

Proposition 3.1 (Hörmander’s Inequality). Let Ω be a nonempty open bounded
subset of Rn, and P ∈ R[x1, . . . , xn]\{0}. Then there exists a number C > 0
depending only on Ω, the degree of P and the highest coefficients of P such that

||P (D)φ||L2(Ω) ≥ C||φ||L2(Ω) ∀φ ∈ D(Ω). (3.3)

Proof. Put r = sup {|x| : x ∈ Ω}. First, we show by induction in m = 0, 1, 2, . . .
that

||P (D)(xjφ)− xjP (D)φ||L2(Ω) ≤ 2mr||P (D)φ||L2(Ω) (3.4)

for all 1 ≤ j ≤ n, φ ∈ D(Ω) and P ∈ R[x1, . . . , xn], degP = m.
For m = 0, P is a constant c. Then (3.4) is true because the left hand side

is zero. Suppose that (3.4) is true for all m = 0, 1, . . . , N − 1 where N ≥ 1. Let
j ∈ {1, 2, . . . , n}, φ ∈ D(Ω) and P ∈ R[x1, . . . , xn], degP = N . Write P (D) =∑
|α|≤N cαD

α. Recall the generalized Leibniz formula

Dα(uv) =
∑

{β:β≤α}

(
α
β

)
(Dα−βu)(Dβv). (3.5)

Here α = (α1, . . . , αn) and β = (β1, . . . , β2) are multi-indices. We write β ≤ α if
βi ≤ αi for all 1 ≤ i ≤ n. Also, we define(

α
β

)
=

(
α1

β1

)(
α2

β2

)
. . .

(
αn
βn

)
.

Hence, P (D)(xjφ) = xjP (D)φ+ Pj(D)φ where

Pj(D) =
∑

|α|≤N
cα
∑

{β: β≤α}
|β|≥1

(
α
β

)
Dβ(xj)D

α−β. (3.6)

We have

Dβ(xj) =

{
1 if β = ej,
0 otherwise,

where ej is the j’th vector of the standard basis of Rn. By the definition of Pj,
degPj < N . If Pj 6≡ 0 then by the induction hypothesis,

||Pj(D)(xjφ)− xjPj(D)φ||L2(Ω) ≤ 2r deg(Pj)||Pj(D)φ||L2(Ω)

≤ 2r(N − 1)||Pj(D)φ||L2(Ω).
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By the triangle inequality,

||Pj(D)(xjφ)||L2(Ω) ≤ ||xjPj(D)φ||L2(Ω) + ||Pj(D)(xjφ)− xjPj(D)φ||L2(Ω)

≤ r||Pj(D)φ||L2(Ω) + 2r(N − 1)||Pj(D)φ||L2(Ω)

= r(2N − 1)||Pj(D)φ||L2(Ω).

Thus,
||Pj(D)(xjφ)||L2(Ω) ≤ r(2N − 1)||Pj(D)φ||L2(Ω). (3.7)

Note that (3.7) is also true when Pj ≡ 0. Taking the inner product of both sides
of the identity P (D)(xjφ)− xjP (D)φ = Pj(D)φ with Pj(D)φ, we get

〈P (D)(xjφ), Pj(D)φ〉︸ ︷︷ ︸
{1}

−〈xjP (D)φ, Pj(D)φ〉︸ ︷︷ ︸
{2}

= ||Pj(D)φ||2L2(Ω).

Hence,
||Pj(D)φ||2L2(Ω) ≤ |{1}|+ |{2}|. (3.8)

By (3.1), {1} = 〈Pj(−D)(xjφ), P (−D)φ〉, Thus,

|{1}| ≤ ||Pj(−D)(xjφ)||L2(Ω) ||P (−D)φ||L2(Ω) (Schwarz)

= ||Pj(D)(xjφ)||L2(Ω) ||P (D)φ||L2(Ω) (by (3.1))

≤ r(2N − 1)||Pj(D)φ||L2(Ω) ||P (D)φ||L2(Ω) (by (3.7)).

Also we have

|{2}| ≤ ||xjP (D)φ||L2(Ω) ||Pj(D)φ||L2(Ω) (Schwarz)

≤ r||P (D)φ||L2(Ω) ||Pj(D)φ||L2(Ω).

With the estimation of {1} and {2} above, (3.8) implies

||Pj(D)φ||2L2(Ω) ≤ r(2N − 1)||Pj(D)φ||L2(Ω) ||P (D)φ||L2(Ω)

+ r||P (D)φ||L2(Ω) ||Pj(D)φ||L2(Ω)

= 2Nr||Pj(D)φ||L2(Ω) ||P (D)φ||L2(Ω).

Thus, ||Pj(D)φ||L2(Ω) ≤ 2Nr||P (D)φ||L2(Ω). Thus, we have proved (3.4) for m =
N . Thus (3.4) is true for all m = 0, 1, 2, . . . We rewrite (3.4) as follows.

||Qj(D)(xjφ)− xjQj(D)φ||L2(Ω) ≤ 2r deg(Q)||Q(D)φ||L2(Ω), (3.9)

for all 1 ≤ j ≤ n, φ ∈ D(Ω) and Q ∈ R[x1, . . . , xn]. Now return to the problem.
We prove (3.3) by induction in m = degP. If degP=0 then P is a constant c.
Then (3.3) is true by taking C = c. Suppose that (3.3) is true if degP = N − 1,
for some N ≥ 1. Consider a polynomial P ∈ R[x1, . . . , xn] with degP = N . Write
P (D) =

∑
|α|≤N cαD

α. Then cα0 6= 0 for some multi-index α0 with |α0| = N . Write

α0 = (α1, . . . , αn). Then αj ≥ 1 for some 1 ≤ j ≤ n. We define a polynomial Pj
as in (3.6). Then degPj = N − 1 and

P (D)(xjφ)− xjP (D)φ = Pj(D)φ ∀φ ∈ D(Ω).
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Applying (3.9) for Q = P , we get

||Pj(D)φ||L2(Ω) ≤ 2Nr||P (D)φ||L2(Ω) ∀φ ∈ D(Ω). (3.10)

The highest coefficients of Pj correspond to β = ej and |α| = N . Thus, these
coefficients are in the set

A =

{
cα

(
α
β

)
: |α| = N, β = ej

}
.

By the induction hypothesis, there exists a number C1 > 0 depending only on Ω,
degPj = N − 1 and the elements of A such that

||Pj(D)φ||L2(Ω) ≥ C1||φ||L2(Ω) ∀φ ∈ D(Ω). (3.11)

Choose C = (2Nr)−1C1. Then C depends only on Ω, degP = N and the elements
of the set {cα : |α| = N}. From (3.10) and (3.11) we get

||P (D)φ||L2(Ω) ≥ (2Nr)−1C1||φ||L2(Ω) = C||φ||L2(Ω) ∀φ ∈ D(Ω).

This means (3.3) is true for the case degP = N .

Proposition 3.2. Let P ∈ R[x1, . . . , xn]\{0} and Ω be a nonempty open bounded
subset of Rn. Then for each g ∈ L2(Ω), there exists u ∈ L2(Ω) such that P (D)u = g
in sense of D ′(Ω). Moreover, there is a number C > 0 depending only on Ω, the
degree of P , and the highest coefficients of P such that ||g||L2(Ω) ≥ C||u||L2(Ω).

Proof. The identity P (D)u = g in sense of D ′(Ω) means

〈u, P (−D)φ〉 = 〈g, φ〉 ∀φ ∈ D(Ω). (3.12)

Define a map T1 : D(Ω) → D(Ω), T1(φ) = P (−D)φ. This is a linear map. Thus,
the range of T1, denoted by E, is a vector subspace of D(Ω). Hence, E is also a
vector subspace of L2(Ω). Because P (x) 6≡ 0, P (−x) 6≡ 0. By Proposition 3.1,
there exists a number C > 0 depending only on Ω, degP and the highest coefficients
of P such that

||P (−D)φ||L2(Ω) ≥ C||φ||L2(Ω) ∀φ ∈ D(Ω).

This means ||T1φ||L2(Ω) ≥ C||φ||L2(Ω). Thus, T1 is injective. Given a function
g ∈ L2(Ω), we define a map T2 : E → R, T2ψ =

〈
g, T−1

1 ψ
〉
. Then T2 is linear.

Also, for every ψ ∈ E,

|T2ψ| = |
〈
g, T−1

1 ψ
〉
| ≤ ||g||L2(Ω)||T−1

1 ψ||L2(Ω) ≤ C−1||g||L2(Ω)||ψ||L2(Ω).

Thus, T2 is a linear continuous functional on (E, ||.||L2(Ω)) and ||T2|| ≤ C−1||g||L2(Ω).

By Hahn-Banach theorem, T2 can extend to a linear continuous functional T̃2 on
L2(Ω) with ||T̃2|| ≤ C−1||g||L2(Ω). By Riesz representation theorem, there exists
u ∈ L2(Ω) such that

T̃2(ψ) = 〈u, ψ〉 ∀ψ ∈ L2(Ω),
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and ||u||L2(Ω) = ||T̃2|| ≤ C−1||g||L2(Ω). Thus,
〈
g, T−1

1 ψ
〉

= 〈u, ψ〉 for all ψ ∈ E.
Write T−1

1 ψ = φ. Then

〈g, φ〉 = 〈u, T1φ〉 = 〈u, P (−D)φ〉 ∀φ ∈ D(Ω).

Therefore, (3.12) is proved.

For each subset K of Rn, we denote by [K] the convex hull of K in Rn, i.e. the
smallest convex subset of Rn containing K.

Proposition 3.3. Let P ∈ R[x1, . . . , xn]\{0} and φ ∈ D(Rn). Then [suppP (D)φ] =
[suppφ].

Proof. Take any x ∈ Rn\suppφ. Then φ = 0 in a neighborhood U of x. Then
P (D)φ = 0 in U . Thus, x ∈ Rn\suppP (D)φ. This means Rn\suppφ is con-
tained in Rn\suppP (D)φ. Hence, suppP (D)φ ⊂ suppφ and [suppP (D)φ] ⊂
[suppφ]. Suppose by contradiction that [suppP (D)φ] 6= [suppφ]. Then there
exists a point a ∈ suppφ\[suppP (D)φ]. Since suppφ is closed, we can assume
a ∈ {x ∈ Rn : φ(x) 6= 0}. Then there exists a hyperplane (H) separating a and
suppP (D)φ. We choose a new Cartesian coordinate system y = (y1, . . . , yn) by
translating and rotating the old one, i.e. y = Ax + b where A and b are a matrix
and a vector of real constant coefficients. They are chosen so that (H) = {y1 = 0},
a ∈ {y1 > 0} and suppP (D)φ ⊂ {y1 < 0}.

Under this change of variables, the differential operator P (D) = P
(

∂
∂x1
, . . . , ∂

∂xn

)
becomes a differential operator Q(D) = Q

(
∂
∂y1
, . . . , ∂

∂yn

)
which also has constant

coefficients. The function φ(x) becomes ψ(y) with ψ(a) 6= 0. Therefore, all hy-
potheses in the problem still hold after the change of variables. Thus, we could
have assumed from the beginning that (H) = {x1 = 0}, a ∈ {x1 > 0} and
suppP (D)φ ⊂ {x1 < 0}.

Write a = (a1, . . . , an) with a1 > 0. Since suppP (D)φ is compact, there exists
ε > 0 such that suppP (D)φ ⊂ {x1 < −ε}. Let Ω be an open bounded subset of Rn

that contains suppφ. Since φ(a) 6= 0 and a ∈ suppφ ⊂ Ω, there exists a number
r ∈ (0, a1

2
) such that Br(a) ⊂ Ω and

|φ(x)| > |φ(a)|
2

∀x ∈ Br(a). (3.13)

For every x ∈ Br(a),

x1 ∈ (a1 − r, a1 + r) ⊂
(
a1

2
,
3a1

2

)
.

Thus,

x1 >
a1

2
∀x ∈ Br(a). (3.14)

For each ψ ∈ D(Rn) and s ∈ R, s > 0, we define

Qs(D)ψ = e
sx1
2 P (D)

(
e
−sx1

2 ψ
)
. (3.15)
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It is important to note that Qs(D) is also a differential operator with constant
coefficients. Put N = degP ≥ 0 and write

P (D) =
∑

|α|=N
cαD

α +
∑

|α|<N
cαD

α.

Then by the definition of Qs(D), we have

Q(D) =
∑

|α|=N
cαD

α +
∑

|α|<N
c̃αD

α

where c̃α are numbers that may depend on s. In other words, the degree and
the highest coefficients of Qs are the same as those of P . In particular, they are
independent of s. Put

ψs(x) = e
sx1
2 φ(x) ∈ D(Ω). (3.16)

By Proposition 3.1, there exists a number C > 0 depending only on Ω, N and the
highest coefficients of P such that

||Qs(D)ψs||L2(Ω) ≥ C||ψs||L2(Ω) ∀s > 0.

Taking the square of both sides, we get∫
Ω

|Qs(D)ψs|2dx ≥ C2

∫
Ω

|ψs|2dx ∀s > 0. (3.17)

Replacing (3.15) and (3.16) into (3.17) we get∫
Ω

esx1(P (D)φ)2dx ≥ C2

∫
Ω

esx1φ2dx ∀s > 0.

Thus,∫
Ω

esx1φ2dx ≤ C−2

∫
Ω

esx1(P (D)φ)2dx ≤ C−2

∫
Ω

e−sε(P (D)φ)2dx = C−2e−sε
∫

Ω

(P (D)φ)2dx.

Thus,

lim
s→∞

∫
Ω

esx1φ2dx = 0. (3.18)

On the other hand,∫
Ω

esx1φ2dx ≥
∫
Br(a)

esx1φ2dx

≥
∫
Br(a)

es
a1
2

(
φ(a)

2

)2

dx (by (3.13) and (3.14))

= es
a1
2

(
φ(a)

2

)2

|Br(a)| → ∞ as s→∞.

This contradicts (3.18).
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Proposition 3.4. Let P ∈ R[x1, . . . , xn]\{0} and u ∈ E ′(Rn). Then [suppP (D)u] =
[suppu].

Proof. Let {ηε}ε>0 be the approximate identity defined on Page 73. Put uε = u∗ηε.
Then uε ∈ D(Rn) by Part (ii) of Proposition 6.21. Then by Proposition 3.3,

[suppP (D)uε] = [suppuε] ∀ε > 0. (3.19)

Put v = P (D)u. Then v ∈ E ′(Rn) and suppv ⊂ suppu. Then [suppv] ⊂ [suppu].
Now we want to show that [suppu] ⊂ [suppv]. For each ε > 0, we put vε = v ∗ ηε.
Then

P (D)uε = P (D)(u ∗ ηε)
= (P (D)u) ∗ ηε (by Proposition 6.20)

= v ∗ ηε = vε. (3.20)

Take any δ > 0. By Part (ii) of Proposition 6.24, there exists λ > 0 such that

suppu ⊂ (suppuε) + B̄δ ∀0 < ε < λ. (3.21)

Since [suppuε] + B̄δ is a convex set containing (suppuε) + B̄δ, it also contains the
convex hull of (suppuε) + B̄δ. Then (3.20) and (3.21) imply

[suppu] ⊂ [(suppuε) + B̄δ] ⊂ [suppuε] + B̄δ

= [suppP (D)uε] + B̄δ

= [suppvε] + B̄δ ∀0 < ε < λ. (3.22)

By Part (i) of Proposition 6.24, suppvε ⊂ (suppv)+B̄ε. Thus, [suppvε] ⊂ [suppv]+
B̄ε. Together with (3.22) we have [suppu] ⊂ [suppv]+B̄ε+B̄δ for 0 < ε < λ. Thus,

[suppu] ⊂
⋂

0<ε<λ

([suppv] + B̄ε + B̄δ) = [suppv] + B̄δ.

Because this is true for all δ > 0, we have

[suppu] ⊂
⋂
δ>0

([suppv] + B̄δ) = [suppv].

For each r > 0, we denote by Br the open ball in Rn centered at the origin
with radius r. We know that L2(Br) is a Hilbert space with the inner product

〈u1, u2〉Br =

∫
Br

u1u2dx ∀u1, u2 ∈ L2(Br).

The induced norm on L2(Br) is

||u||Br =

(∫
Br

u2dx

)1/2

.
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Proposition 3.5. Let 0 < s < r < R, P ∈ R[x1, . . . , xn]\{0} and v ∈ L2(Br) such
that P (D)v = 0 in sense of D ′(Br). Then there exists a sequence (vk) in L2(BR)
such that P (D)vk = 0 in sense of D ′(BR) and ||vk − v||Bs → 0 as k →∞.

Proof. Define a set

E = {u ∈ L2(Bs) : ∃extension ũ ∈ L2(BR) such that P (D)ũ = 0 in sense of D ′(BR)}.

Note that E is a vector subspace of (L2(Bs), ||.||Bs). We need to show v|Bs ∈ Ē.
To do so, we take any linear continuous functional T : L2(Bs) → R such that
T (E) = {0} and show that Tv = 0. By Riesz representation theorem, there exists
a function g ∈ L2(Bs) such that

T (u) = 〈g, u〉Bs =

∫
Bs

gu dx ∀u ∈ L2(Bs).

We have
〈g, u〉Bs = 0 ∀u ∈ E. (3.23)

We want to show that 〈g, v〉Bs = 0. First, we show that there exists w ∈ L2(BR)
such that

〈g, φ〉Bs = 〈w,P (D)φ〉BR ∀φ ∈ D(Rn). (3.24)

Consider the map T1 : D(BR+1)→ D(BR+1), T1(φ) = P (D)φ for all φ ∈ D(BR+1).
By Proposition 3.1, T1 is injective. Put F = T1(D(BR+1)). We can regard F
as a vector subspace of (L2(BR), ||.||BR). Define a map T2 : F → R, T2(ψ) =
〈g, T−1

1 (ψ)〉Bs for all ψ ∈ F .
For each ψ ∈ F , there exists φ ∈ D(BR+1) such that ψ = T1(φ) = P (D)φ.

By Proposition 3.2, there exists u0 ∈ L2(BR) such that P (D)u0 = ψ in sense of
D ′(BR). Moreover, there exists a number C > 0 depending only on the domain
BR and the polynomial P such that

C||u0||L2(BR) ≤ ||ψ||L2(BR). (3.25)

We have P (D)u0 = ψ = P (D)φ in sense of D ′(BR). Thus, P (D)(u0 − φ) = 0 in
sense of D ′(BR). By (3.23), we have 〈g, u0 − φ〉Bs = 0. Thus, 〈g, u0〉Bs = 〈g, φ〉Bs .
Thus,

|T2(ψ)| = |
〈
g, T−1

1 (ψ)
〉
Bs
| = |〈g, φ〉Bs| = |〈g, u0〉Bs|

≤ ||g||L2(Bs)||u0||L2(Bs)

≤ C−1||g||L2(Bs)||ψ||L2(BR) (by (3.25)).

Because this estimation is true for all ψ ∈ F , T2 is a linear continuous functional
on (F, ||.||L2(BR)). By Hahn-Banach theorem, T2 can extend to a linear continuous

functional T̃2 on L2(BR). By Riesz representation theorem, there exists w ∈
L2(BR) such that

T̃2(ψ) = 〈w,ψ〉BR ∀ψ ∈ L2(BR).
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Thus,
〈
g, T−1

1 (ψ)
〉
Bs

= 〈w,ψ〉BR for all ψ ∈ F . Thus,

〈g, φ〉Bs = 〈w,P (D)φ〉BR ∀φ ∈ D(BR+1). (3.26)

Now take any ψ ∈ D(Rn). Let χ be a function in D(BR+1) such that χ = 1 in BR.
Then ψχ ∈ D(BR+1) and ψχ = ψ in BR. Applying (3.26) for φ = ψχ, we have

〈w,P (D)(ψχ)〉BR = 〈g, ψχ〉Bs . (3.27)

Because ψχ = ψ inBR, LHS(3.27)=〈w,P (D)ψ〉BR and RHS(3.27)=〈g, ψ〉Bs . Thus,
(3.27) implies

〈w,P (D)ψ〉BR = 〈g, ψ〉Bs ∀ψ ∈ D(Rn).

We have proved (3.24). Next, we define two functions g̃, w̃ : Rn → R,

g̃(x) =

{
g(x) if x ∈ Bs,
0 otherwise.

w̃(x) =

{
w(x) if x ∈ BR,
0 otherwise.

Then (3.24) implies 〈g̃, φ〉Bs = 〈w̃, P (D)φ〉BR for all φ ∈ D(Rn). Consequently, if g̃
and w̃ are viewed as distributions on Rn, then g̃ = P (−D)w̃. By the definition of g̃
and w̃, we have g̃, w̃ ∈ E ′(Rn), suppg̃ ⊂ B̄s and suppw̃ ⊂ B̄R. By Proposition 3.4,
[suppw̃] = [suppP (−D)w̃]. Thus, [suppw̃] = [suppg̃] ⊂ B̄s. Thus, suppw ⊂ B̄s.

Extend v by zero outside of Br. Let {ηε}ε>0 be the approximate identity on Rn

as defined on Page 73. For 0 < ε < min{R − r, r − s}, we put vε = v ∗ ηε. Then
vε ∈ D(BR) and limε→0 ||vε − v||Br = 0 according to [Adm75, Lemma 2.18]. For
each φ ∈ DBs , we have

〈P (D)vε, φ〉Br = 〈vε, P (−D)φ〉 = 〈v ∗ ηε, P (−D)φ〉Br
=

∫
Br

(v ∗ ηε)(x)(P (−D)φ)(x)dx

=

∫
Br

∫
Rn
v(y)ηε(x− y)(P (−D)φ)(x)dydx

=

∫
Rn

∫
Rn
v(y)ηε(y − x)(P (−D)φ)(x)dxdy

=

∫
Rn
v(y)(ηε ∗ (P (−D)φ))(y)dy

= 〈v, ηε ∗ (P (−D)φ)〉Br
= 〈v, P (−D)(ηε ∗ φ)〉Br .

Thus,
〈P (D)vε, φ〉Br = 〈v, P (−D)(ηε ∗ φ)〉Bs ∀φ ∈ D(Bs). (3.28)

We have supp(φ∗ηε) ⊂ (suppφ)+(suppηε) ⊂ Bs+ B̄ε ⊂ Br. Thus, φ∗ηε ∈ D(Br).
Since P (D)v = 0 in sense of D ′(Br), we have

〈v, P (−D)(ηε ∗ φ)〉Bs = 〈v, P (−D)(ηε ∗ φ)〉Br = 0 ∀φ ∈ D(Bs). (3.29)
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Applying (3.24) for φ = vε, we have

〈g, vε〉Bs = 〈w,P (D)vε〉BR = 〈P (D)vε, w〉BR .

Because suppw ⊂ B̄s, we have

〈g, vε〉Bs = 〈P (D)vε, w〉Bs . (3.30)

Because D(Bs) is dense in L2(Bs), there exists a sequence (φn) in D(Bs) such that
||φn − w||Bs → 0 as n→∞. By (3.29) we have 〈P (D)vε, φn〉Bs = 0 for all n ∈ N.
Let n→∞, we get 〈P (D)vε, w〉Bs = 0. Thus, (3.30) implies 〈g, vε〉Bs = 0. This is
true for every 0 < ε < min{R− r, r − s}. Therefore,

〈g, v〉Bs = lim
ε→0
〈g, vε〉Bs = 0.

Proposition 3.6. Let P ∈ R[x1, . . . , xn]\{0} and g ∈ L2
loc(Rn). Then there exists

u ∈ L2
loc(Rn) such that P (D)u = g in sense of D ′(Rn).

Proof. Because g ∈ L2(B2), by Proposition 3.2, there exists a function u1 ∈ L2(B2)
such that P (D)u1 = g in sense of D ′(B2).

Suppose that uk ∈ L2(Bk+1) has been defined such that P (D)uk = g in sense
of D ′(Bk+1). We define uk+1 as follows. Since g ∈ L2(Bk+2), by Proposition 3.2,
there exists a function w ∈ L2(Bk+2) such that P (D)w = g in sense of D ′(Bk+2).
Put v = w − uk ∈ L2(Bk+1). By Proposition 3.5, there exists a sequence (vk)
in L2(Bk+2) such that P (D)vk = 0 in sense of D ′(Bk+2) and ||vk − v||Bk → 0 as
k →∞. Thus, there exists k0 ∈ N such that

||vk0 − v||Bk ≤ 2−k.

Define uk+1 = w−vk0 . Then uk+1 ∈ L2(Bk+2). Moreover, because P (D)w = g and
P (D)vk0 = 0 in sense of D ′(Bk+2), we have P (D)uk+1 = P (D)w−P (D)vk0 = g in
sense of D ′(Bk+2). Also, we have

||uk+1 − uk||Bk = ||(w − vk0)− uk||Bk = ||v − vk0||Bk ≤ 2−k.

This induction process defines a sequence of functions (uk) satisfying
uk ∈ L2(Bk+1),
P (D)uk = g in sense of D ′(Bk+1),
||uk+1 − uk||Bk ≤ 2−k.

Extend each function uk by zero outside Bk+1 so that it is defined in Rn. Put

f(x) =
∞∑
k=1

|uk+1(x)− uk(x)| ∀x ∈ Rn.
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Put A = {x ∈ Rn : f(x) = ∞}. We show that A is of measure zero in Rn. For
each m ∈ N, we have uk ∈ L2(Bm) for all k ∈ N. Thus, |uk+1 − uk| ∈ L2(Bm) for
all k ∈ N. Then

||f ||L2(Bm) = lim
N→∞

∥∥∥∥∥
N∑
k=1

|uk+1 − uk|

∥∥∥∥∥
L2(Bm)

(Lebesgue′s monotone convergence)

≤ lim
N→∞

N∑
k=1

‖uk+1 − uk‖L2(Bm) (triangle inequality)

=
∞∑
k=1

‖uk+1 − uk‖L2(Bm). (3.31)

For k > m, Bm ⊂ Bk. Thus, ||uk+1 − uk||L2(Bm) ≤ ||uk+1 − uk||L2(Bk) ≤ 2−k. This
means the series at (3.31) converges. Thus, ||f ||L2(Bm) <∞. This implies that the
set A ∩Bm = {x ∈ Bm : f(x) =∞} is of measure zero. Because

A = A ∩ Rn = A ∩
(⋃∞

m=1
Bm

)
=
⋃∞

m=1
(A ∩Bm),

A is also of measure zero. Thus, the series
∑∞

k=1 (uk+1(x)− uk(x)) converges
absolutely for almost every x ∈ Rn. This allows us to define a function

u(x) = u1(x) +
∑∞

k=1
(uk+1(x)− uk(x))

almost everywhere in Rn. We have

||u||L2(Bm) ≤ ||u1||L2(Bm) + ||f ||L2(Bm) <∞ ∀m ∈ N.

Thus, u ∈ L2
loc(Rn). For almost every x ∈ Rn, we have

u(x) = u1(x) + lim
k→∞

∑k−1

l=1
(ul+1(x)− ul(x)) = lim

k→∞
uk(x).

For each m ∈ N and for every x ∈ Rn,

|uk(x)| ≤ |u1(x)|+
∑k−1

l=1
|ul+1(x)− ul(x)|

≤ |u1(x)|+
∑∞

l=1
|ul+1(x)− ul(x)|

= |u1(x)|+ |f(x)| ∀k ∈ N.

Because |u1|+ |f | ∈ L2(Bm), by Lebesgue’s Dominated Convergence Theorem, we
have ||uk − u||L2(Bm) → 0 as k →∞.

Take any φ ∈ D(Rn). There exists m ∈ N such that φ ∈ D(Bm). Then

〈u, P (−D)φ〉Rn = 〈u, P (−D)φ〉Bm = lim
k→∞
〈uk, P (−D)φ〉Bm . (3.32)

Since P (D)uk = g in sense of D ′(Bk), we have P (D)uk = g in sense of D ′(Bm)
whenever k > m. Thus, 〈uk, P (−D)φ〉Bm = 〈g, φ〉Bm for all k > m. Then (3.32)
gives

〈u, P (−D)φ〉Rn = lim
k→∞
〈g, φ〉Bm = 〈g, φ〉Bm = 〈g, φ〉Rn .

Therefore, P (D)u = g in sense of D ′(Rn).
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Proposition 3.7. Consider the Heaviside function H : Rn → R,

H(x1, . . . , xn) =

{
1 if x1, . . . , xn > 0,
0 otherwise.

Then Q(D)H = δ0, where Q(x) = x1x2 . . . xn.

Proof. We need to show that 〈H,Q(−D)φ〉 = φ(0) for all φ ∈ D(Rn). By the defi-
nition of the conjugate differential operator on Page 18, Q(−D) = (−1)nD1D2 . . . Dn.
Therefore, we want to show that∫

Rn
H(x)(D1D2 . . . Dn)φ(x)dx = (−1)nφ(0) ∀φ ∈ D(Rn). (3.33)

For convenience, we denote the set of all points x ∈ Rn whose all coordinates are
positive by {x1, . . . , xn > 0}. Showing (3.33) is equivalent to showing that∫

{x1,...,xn>0}
(D1D2 . . . Dn)φ(x)dx = (−1)nφ(0) ∀φ ∈ D(Rn). (3.34)

We prove (3.34) by induction in n ∈ N. For n = 1, (3.34) becomes∫
{x>0}

φ′(x)dx = −φ(0) ∀φ ∈ D(R). (3.35)

For each φ ∈ D(R), there exists a number M > 0 such that φ(x) = 0 for all
x ≥M . Thus,

LHS(3.35) =

∫ M

0

φ′(x)dx = φ(M)− φ(0) = −φ(0) = RHS(3.35).

Thus, (3.35) is proved.
Suppose that (3.34) is true for n = N − 1. Take φ ∈ D(RN) arbitrarily. We

show that ∫
{x1,...,xN>0}

(D1D2 . . . DN)φ(x)dx = (−1)Nφ(0).

Since suppφ is bounded, there exists a numberM > 0 such that max{|x1|, . . . , |xn|} <
M for all x ∈ suppφ. Put Ω = (0,M)N , which is a Lipschitz domain. According
to [Nec67, p.117], the Green formula is still valid for the domain Ω. Namely,∫

Ω

D1fdx =

∫
∂Ω

fn1dσ, (3.36)

where f is a sufficiently regular function and ~n = (n1, . . . , nN) is the exterior
normal vector. Applying (3.36) for f = (D2 . . . DN)φ, we get∫

Ω

(D1D2 . . . DN)φ(x)dx =

∫
∂Ω

(D2 . . . DN)φ(x)n1dσ. (3.37)
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Note that

LHS(3.37) =

∫
{x1,...,xN>0}

(D1D2 . . . DN)φ(x)dx. (3.38)

The boundary of Ω consists of 2N faces. However, φ vanishes on all but (at most)
N faces, namely

σi = {(x1, ..., xN) : xi = 0, 0 ≤ xj ≤M ∀1 ≤ j 6= i ≤ N} ∀1 ≤ i ≤ N.

Thus,

RHS(3.37) =
∑N

i=1

∫
σi

(D2...DN)φ(x)n1dσ. (3.39)

The exterior normal vector ~n on the face σi is ~n = −ei. Thus, n1 = −1 on σ1 and
n1 = 0 on other faces. Thus, (3.39) becomes

RHS(3.37) = −
∫
σ1

(D2 . . . DN)φ(x)n1dσ = −
∫

{x1=0,x2,...,xN>0}

(D2 . . . DN)φ(x)n1dσ.

(3.40)
On the plane {x1 = 0}, we write x = (0, y) with y = (y1, . . . , yN−1) = (x2, . . . , xN) ∈
RN−1. Put ψ(y) = φ(0, y) ∈ D(Rn). Then (3.40) becomes

RHS(3.37) =

∫
{y1,...,yN−1>0}

(D1 . . . DN−1)ψ(y)dy

= −(−1)N−1ψ(0) (by the induction hypothesis)

= (−1)Nφ(0).

Then together with (3.38) we get∫
{x1,...,xN>0}

(D1D2 . . . DN)φ(x)dx = (−1)Nφ(0).

Proposition 3.8 (Malgrange-Ehrenpreis theorem). Let P ∈ R[x1, . . . , xn]\{0}.
Then there exists E ∈ D ′(Rn) such that P (D)E = δ0 in sense of D ′(Rn).

The distribution E is called a fundamental solution of P (D).

Proof. By Proposition 3.7, Q(D)H = δ0 where His the Heaviside function on Rn

and Q(D) = D1D2 . . . DN . Since H is bounded, H ∈ L2
loc(Rn). By Proposition 3.6

there exists a function u ∈ L2
loc(Rn) such that P (D)u = H in sense of D ′(Rn). Put

E = Q(D)u. Then E ∈ D ′(Rn) by Proposition 6.18. We have

P (D)E = P (D)(Q(D)u)

= Q(D)(P (D)u) (by Proposition 6.19)

= Q(D)H = δ0.
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4 Existence of smooth solutions to P (D)u = f

Let P ∈ R[x1, . . . , xn]\{0} and f ∈ C∞(Rn). In this section, we show the existence
of u ∈ C∞(Rn) satisfying P (D)u = f . We again use the idea which was used for
the Poisson problem in Proposition 2.2. Specifically, we choose an open cover of
Rn by annuli and take a smooth partition of unity subordinate to this cover. Then
the function f is decomposed into the sum of compactly supported functions fk’s.
By Malgrange-Ehrenpreis theorem, there exists a smooth function vk such that
P (D)vk = fk. In general, the series

∑
k vk does not converge in C∞(Rn) because

Dαvk(x) is not small as α and x are fixed and k increases.
The idea is to replace vk by uk = vk − wk where wk satisfies P (D)wk = 0 in

Rn. Each function wk has to be chosen so that for each α, the series
∑

kD
αuk

converges uniformly on every compact subset of Rn. We expect that all derivatives
up to order k of uk should be bounded by 1

k2
in the ball Bk− 1

2
. If this can be done,

the function u =
∑

k uk will be a smooth solution of P (D)u = f . This method is
inspired by the method of Mittag-Leffler for constructing a meromorphic function
with infinitely many prescribed poles. Note that we only prove the ‘pure’ existence
of the functions wk instead of constructing them. To do so, we need some properties
of the dual space of C∞(Rn).

4.1 Some topological properties of the dual of a TVS

First we recall the definition of weak* topology. Let X be a TVS† and E be
either the dual of X, i.e. the set of all linear continuous maps from X to R,
or the algebraic dual of X, i.e. the set of all linear maps from X to R. For
each x ∈ X, we define a map px : E → R, px(g) = |〈g, x〉| for all g ∈ E.
Then px is a seminorm‡ on E. For g ∈ E\{0}, there exists x ∈ X such that
〈g, x〉 6= 0. Thus, px(g) 6= 0. This means that {px}x∈X is a separating family of
seminorms on E. By Part (i) of Proposition 6.5, this family gives rise to a locally
convex TVS structure on E. Moreover, E has a local base consisting of open sets
{Uε(x1, . . . , xm) : ε > 0, x1, . . . , xm ∈ X}, where

Uε(x1, . . . , xm) = {g ∈ E : |〈g, xi〉| < ε ∀1 ≤ i ≤ m}.

We call this topology the weak* topology on E and denote it by σ(E,X). By this
definition, for each x ∈ X, the map g ∈ (E, σ(E,X)) 7→ 〈g, x〉 ∈ R is linear and
continuous.

Next, we define another topology on the dual of X. Let E be the dual of X, i.e.
the set of all linear continuous maps from X to R. For each compact, balanced§,
convex subset A of X, we define a map pA : E → R,

pA(g) = max
x∈A
| 〈g, x〉 | ∀g ∈ E.

†See the definition of a topological vector space on Page 46.
‡See the definition of a seminorm on Page 47.
§See the definition of a balanced set on Page 47.

31



Then pA is a seminorm on E. For each g ∈ E\{0}, there exists x ∈ X such that
〈g, x〉 6= 0. Put A = {tx : − 1 ≤ t ≤ 1}. Then A is a compact, balanced and
convex subset of X. We have

pA(g) = max
y∈A
| 〈g, y〉 | ≥ | 〈g, x〉 | > 0.

Thus, the family {pA : A is a compact, balanced, convex subset of X} is a sep-
arating family of seminorms on E. By Part (i) of Proposition 6.5, this family
gives rise to a locally convex TVS structure on E. Moreover, E has a local base
consisting of open subsets

Uε(A) =

{
g ∈ E : max

x∈A
| 〈g, x〉 | < ε

}
,

where ε > 0 and A varies over the family of all compact, balanced and convex
subsets of X. This topology is called the topology of compact convergence on E,
and is denoted by γ(E,X). Because Uε(A) = U1(ε−1A), we can say that γ(E,X)
has a local base consisting of the open sets

U1(A) =

{
g ∈ E : max

x∈A
| 〈g, x〉 | < 1

}
,

where A varies over the family of all compact, balanced and convex subsets of X.
In conclusion, given a topological vector space X, the algebraic dual of X has

one locally convex TVS structure, namely σ(E,X), the weak* topology, while the
dual of X two locally convex TVS structures, namely σ(E,X), the weak* topology,
and γ(E,X), the topology of compact convergence. It is clear from the definitions
that γ(E,X) is finer than σ(E,X).

Proposition 4.1. Let X be a TVS and E be the dual of X, i.e. the set of all linear
continuous maps from X to R. Let F be the algebraic dual of E, i.e. the set of all
linear maps from E to R. Equip E with the weak* topology σ(E,X) and F with
the weak* topology σ(F,E). Then the map J : X → (F, σ(F,E)), Jx(g) = 〈g, x〉
for all g ∈ E, is linear and continuous.

Proof. We know that (F, σ(F,E)) has a local base consisting of the open sets

Vε(g1, . . . , gm) = {v ∈ F : | 〈v, gi〉 | < ε ∀1 ≤ i ≤ m} ,

where ε > 0 and the set {g1, . . . , gm} varies over the family of all finite subsets of
E. For a fixed set Vε(g1, . . . , gm), we put U =

⋂m
i=1 g

−1
i ((−ε, ε)).

Since gi ∈ E, the set g−1
i ((−ε, ε)) is open in X. Thus, U is open in X. For

each x ∈ U , we have | 〈Jx, gi〉 | = | 〈gi, x〉 | < ε for all 1 ≤ i ≤ m. Thus, Jx ∈
Vε(g1, . . . , gm). This means J(U) ⊂ Vε(g1, . . . , gm). Therefore, J is continuous
from X to (F, σ(F,E)).
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Proposition 4.2. Let E be a vector space and F be the algebraic dual of E, i.e.
the set of all linear maps from E to R. Equip F with the weak* topology σ(F,E).
Let Λ : (F, σ(F,E)) → R be a linear continuous map. Then there exists g ∈ E
such that

〈Λ, h〉 = 〈h, g〉 ∀h ∈ F.

Proof. By the definition of the weak* topology, F has a local base consisting of
the sets

Uε(x1, . . . , xm) = {h ∈ F : | 〈h, xi〉 | < ε ∀1 ≤ i ≤ m} ,

where ε > 0 and the set {x1, . . . , xm} varies over the family of all finite subsets of
E. Because Λ is continuous, there exist ε > 0 and x1, . . . , xm ∈ E such that

Λ(Uε(x1, . . . , xm)) ⊂ (−1, 1).

If h ∈ F satisfies 〈h, x1〉 = . . . 〈h, xm〉 = 0, then h ∈ Uε(x1, . . . , xm); and thus
|〈Λ, h〉| < 1. Consider a linear map T : F → Rm+1,

T (h) = (〈Λ, h〉 , 〈h, x1〉 , . . . , 〈h, xm〉) ∀h ∈ F.

The point (1,0,. . . ,0) does not belong to T (F ). Let S1 be the orthogonal component
of T (F ) in Rm+1 with respect to the usual inner product.

Put S2 = {(0, y1, . . . , ym) : yi ∈ R} ⊂ Rm+1. Suppose by contradiction that
S1 ⊂ S2. Then S⊥2 ⊂ S⊥1 . Thus, {(y0, 0, . . . , 0) : y0 ∈ R} ⊂ T (F ). This implies
(1, 0, . . . , 0) ∈ T (F ), which is a contradiction. Therefore, S1 6⊂ S2. This means
there exists a vector α = (α0, . . . , αm) ∈ S1 with α0 6= 0. By replacing α by α−1

0 α,
we can assume α = (1, α1, . . . , αm). We have α⊥T (F ). Thus, α · T (h) = 0 for all
h ∈ F . Hence,

〈Λ, h〉+ α1 〈h, x1〉+ . . .+ αm 〈h, xm〉 = 0 ∀h ∈ F.

Put g = −α1x1 − . . . − αmxm ∈ E. We have 〈Λ, h〉 − 〈h, g〉 = 0 for all h ∈ F .
Therefore, 〈Λ, h〉 = 〈h, g〉 for all h ∈ F .

Proposition 4.3. Let X be a TVS, E be its dual, i.e. the set of all linear contin-
uous maps from X to R, and f : E → R be a linear map. Then f is continuous
on (E, γ(E,X)) if and only if it is continuous on (E, σ(E,X)).

Proof. We know that (E, γ(E,X)) is finer than (E, σ(E,X)). Thus, if f is contin-
uous on (E, σ(E,X)), it is also continuous on (E, γ(E,X)). Now suppose that f
is continuous on (E, γ(E,X)). We show that it is continuous on (E, σ(E,X)). Let
F be the algebraic dual of E, i.e. the set of all linear maps from E to R. Equip
F with the weak* topology σ(F,E). By Proposition 4.1, the map J : X → F ,
Jx(g) = 〈g, x〉 for all g ∈ E, is linear continuous from X to (F, σ(F,X)).

Since f : E → R is linear, f ∈ F . We know that (E, γ(E,X)) has a local base
consisting of the open sets

U1(A) = {g ∈ E : | 〈g, x〉 | < 1 ∀x ∈ A} ,
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where A varies over the family of all compact, balanced, convex subsets of X.
Because f is continuous on (E, γ(E,X)), there exists a compact balanced convex
subset A of X such that

f(U1(A)) ⊂ (−1, 1). (4.1)

Put K = J(A) ⊂ F . Since A is compact and J is continuous, K is also compact.
Because A is balanced convex and J is linear, K is also balanced convex. We want
to show f ∈ K. Suppose by contradiction that f ∈ F\K. Applying Lemma 4.6
with x0 therein being replaced by f , we conclude that there is a linear continuous
map Λ : (F, σ(F,E))→ R such that 〈Λ, f〉 = 1 and |〈Λ, h〉| < 1 for all h ∈ K. By
Proposition 4.2, there exists g ∈ E such that 〈Λ, h〉 = 〈h, g〉 for all h ∈ F . Thus,
〈Λ, f〉 = 〈f, g〉 and 〈Λ, h〉 = 〈h, g〉 for all h ∈ K. Therefore,

〈Λ, f〉 = 〈f, g〉, (4.2)

|〈h, g〉| < 1 ∀h ∈ K = J(A).

For every x ∈ A, we have

| 〈g, x〉 | = | 〈Jx, g〉 | < 1.

Thus, g ∈ U1(A). By (4.1), 〈f, g〉 < 1. This contradicts (4.2). Therefore, f ∈
J(A). Then there exists x ∈ A such that f = Jx. Thus, 〈f, g〉 = 〈g, x〉 for
all g ∈ E. Then it is straightforward from the definition of the weak* topology
(E, σ(E,X)) that f is continuous on (E, σ(E,X)).

Proposition 4.4. Let X be a TVS, E be its dual, i.e. the set of all linear con-
tinuous maps from X to R, and S be a convex subset of E. Then S is closed in
(E, σ(E,X)) if and only if it is closed in (E, γ(E,X)).

Proof. (⇐) Suppose that S is closed in (E, γ(E,X)). Because γ(E,X) is finer
than σ(E,X), S is also closed in (E, σ(E,X)).

(⇒) Suppose that S is closed in (E, σ(E,X)) Take any y in the closure of S with
respect to (E, γ(E,X)). By Hahn-Banach theorem, to show that y ∈ S, it suffices
to show that 〈Λ, y〉 = 0 for all linear continuous map Λ : (E, σ(E,X))→ R which
vanishes on S. Let Λ be such a map. Then by Proposition 4.3, Λ is continuous
on (E, σ(E,X)). Applying Proposition 4.2 with E therein being replaced by X
and F therein being replaced by E, we conclude that there exists x ∈ X such that
〈Λ, z〉 = 〈z, x〉 for all z ∈ E. Thus, 〈Λ, y〉 = 〈y, x〉. Put

A = {tx : − 1 ≤ t ≤ 1}.

Then A is a compact, balanced, convex subset of X. For each ε > 0, we know
from the definition of the topology γ(E,X) that the set

Uε(A) = {g ∈ E : | 〈g, z〉 | < ε ∀z ∈ A}

is a neighborhood of 0 in (E, γ(E,X)). Thus, y + Uε(A) is a neighborhood of y
in (E, γ(E,X)). Because y lies in the closure of S with respect to (E, γ(E,X)),
there exists yε ∈ S such that yε ∈ y + Uε(A). Thus,

| 〈yε − y, z〉 | < ε ∀z ∈ A,∀ε > 0.
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In particular, | 〈yε − y, x〉 | < ε for all ε > 0. We have

〈yε, x〉 = 〈Λ, yε〉 = 0.

Thus, |〈y, x〉| < ε for all ε > 0. Therefore, 〈y, x〉 = 0 and thus 〈Λ, y〉 = 0.

Let X be a TVS and E be its dual, i.e. the set of all linear continuous maps
from X to R. For each subset U of X, we put

U o = {g ∈ E : | 〈g, x〉 | ≤ 1 ∀x ∈ U} ,

which is called the polar of U . It is easy to see that U o is balanced and convex. We
know that the weak* topology σ(E,X) is the topology generated be the separating
family of seminorms {px}x∈X . Thus, each map px is continuous on (E, σ(E,X)).
Since U o =

⋂
x∈U p

−1
x ([−1, 1]), U o is closed in (E, σ(E,X)).

If U is a neighborhood of 0 in X then by Banach-Alaoglu theorem [Rud73,
p.67], U o is compact in (E, σ(E,X)). In the sequel, we write (U o, σ(E,X)) to
indicate the topology which U o inherits from (E, σ(E,X)).

Proposition 4.5. Let X be a TVS and E be its dual, i.e. the set of all linear
continuous maps from X to R. Let S be a convex subset of E. Then S is closed in
(E, σ(E,X)) if and only if S∩U o is closed in (U o, σ(E,X)) for every neighborhood
U of 0 in X.

Proof. If S is closed in (E, σ(E,X)) then it is obvious that S ∩ Ũ is closed in
(Ũ , σ(E,X)) for every subset Ũ of E.

Now suppose that S ∩ U o is closed in (U o, σ(E,X)) for every neighborhood U
of 0 in X. Since S and U o are convex, so is S ∩ U o. By Proposition 4.4, S ∩ U o

is closed in (U o, γ(E,X)). We need to show that S is closed in (E, σ(E,X)). By
Proposition 4.4 again, this is equivalent to showing that S is closed in (E, γ(E,X)).
Put O = E\S. Then

O ∩ U o = (E\S) ∩ U o = U o\(S ∩ U o),

which is open in (U o, γ(E,X)) for every open neighborhood U of 0 in X. We need
to show that O is open in (E, γ(E,X)).

Take any y ∈ O, and put W = O − {y} = {g − y : g ∈ O}. We show that
W is a neighborhood of 0 in (E, γ(E,X)). Since y ∈ E, there exists an open
neighborhood Ũ of 0 in X such that |〈y, z〉| < 1 for all z ∈ Ũ . Because X is
metrizable, there exists a countable local base U0 ⊃ U1 ⊃ U2 ⊃ . . . We can assume
U0 = U1 = X and U2 = Ũ . Then Um+1 ⊂ Ũ for all m ≥ 1. Thus,

|〈y, z〉| < 1 ∀z ∈ Um+1, ∀m ≥ 1. (4.3)

We will show that there is a sequence of finite sets B0, B1, B2, . . . such that Bm ⊂
Um for all m ≥ 0 and U o

m ∩ Aom ⊂ W for all m ≥ 1, where

Am =
⋂m−1

k=0
Bk.
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Choose B0 = {0}. Then A1 = B0 = {0}. We have

U o
1 = Xo = {g ∈ E : | 〈g, x〉 | ≤ 1 ∀x ∈ X} = {0}.

Thus, U o
1 ∩ Ao1 = {0} ∩ Ao1 = {0} ⊂ W . Now suppose that for some m ≥ 1, we

have found B0, B1, . . . , Bm−1 such that U o
m ∩ Aom ⊂ W . We need to find a finite

set Bm ⊂ Um such that U o
m+1 ∩ (Am ∪Bm)o ⊂ W .

Suppose by contradiction that there is no such Bm. Then for every finite set
B ⊂ Un, U o

m+1∩ (Am∪B)o 6⊂ W . Put Km = U o
m+1∩ (E\W ). Then for every finite

set B ⊂ Um,

Km ∩ (Am ∪B)o = U o
m+1 ∩ (Am ∪B)o ∩ (E\W ) 6= ∅.

Denote by P the family of all sets Km∩ (Am ∪B)o where B varies over the family
of all finite subsets of Um. Then every member of P is nonempty. If B and B̃ are
two finite subsets of Un then

[Km ∩ (Am ∪B)o] ∩ [Km ∩ (Am ∪ B̃)o] = Km ∩ [(Am ∪B)o ∩ (Am ∪ B̃)o]

= Km ∩ [(Am ∪B) ∪ (Am ∪ B̃)]o

= Km ∩ (Am ∪ B̂)o,

where B̂ = B ∪ B̃, which is a finite subset of Un. Thus, P is closed under finite
intersection. Since every member of P is nonempty, P has the finite intersection
property. We have

Km = U o
m+1 ∩ (E\W )

= U o
m+1 ∩ [(E\O)− {y}]

= U o
m+1 ∩ (S − {y})

= [(U o
m+1 + {y}) ∩ S]− {y}.

Put Û = 1
2
Um+1, which is a neighborhood of 0 in X. For every y ∈ U o

m+1 and
w ∈ U , we write w = 1

2
z for some z ∈ Um+1. Then

| 〈g + y, w〉 | =
1

2
| 〈g + y, z〉 |

≤ 1

2
| 〈g, z〉 |+ 1

2
| 〈y, z〉 |

<
1

2
+

1

2
= 1 (by (4.3)).

Thus, g + y ∈ (Û)o. Thus, U o
m+1 + {y} ⊂ (Û)o. By the hypothesis, (Û)o ∩ S is

closed in ((Û)o, σ(E,X)). Thus, (U o
m+1 + {y}) ∩ S is closed in U o

m+1 + {y}. Then
[(U o

m+1 + {y}) ∩ S] − {y} is closed in U o
m+1. Thus, U o

m+1 ∩ (S − {y}) is closed
in U o

m+1. Therefore, Km is closed in (U o
m+1, σ(E,X)). According to the remark

before the statement of Proposition 4.5, U o
m+1 is compact in (E, σ(E,X)). Thus,

Km is compact in (E, σ(E,X)).
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Each member of P is of the form Km ∩ (Am ∪ B)o where B is a finite subset
of Um. According to a remark before the statement of Proposition 4.5, (Am ∪B)o

is closed in (E, σ(E,X)). Thus, P is a family of closed subsets of (Km, σ(E,X))
that has the finite intersection property. Thus, the intersection of all members of
P is nonempty. In particular,

∅ 6=
⋂

z∈Um
[Km ∩ (An ∪ {z})o] = Km ∩

[ ⋃
z∈Um

(Am ∪ {z})

]o
= Km ∩ (Am ∪ Um)o

= Km ∩ Aom ∩ U o
m

⊂ (E\W ) ∩ (Aom ∩ U o
m).

However, (E\W )∩ (Aom∩U o
m) = ∅ because Aom∩U o

m ⊂ W . This is a contradiction.
Therefore, we have finished proving the existence of the sequence of finite sets
B0, B1, B2, . . . such that Bm ⊂ Um for all m ≥ 0 and U o

m ∩Aom ⊂ W for all m ≥ 1.
Put

A =
⋃∞

n=1
An = {0} ∪

(⋃∞

m=1
Bm

)
.

Then A is a countable and compact subset of X. We have Ao =
⋂∞
m=1A

o
m. Thus,

for each m ∈ N, U o
m ∩ Ao ⊂ U o

m ∩ Aom ⊂ W . This implies(⋃∞

m=1
U o
m

)
∩ Ao =

⋃∞

m=1
(U o

m ∩ Ao) ⊂ W.

Moreover, ⋃∞

m=1
U o
m =

(⋂∞

m=1
Um

)o
= {0}o = E.

Hence,

Ao = E ∩ Ao =
(⋃∞

m=1
U o
m

)
∩ Ao ⊂ W.

By the definition of the topology of compact convergence γ(E,X), the set U 1
2
(A) ={

g ∈ E : | 〈g, x〉 | < 1
2
∀x ∈ A

}
is an open neighborhood of 0 inE. Because U 1

2
(A) ⊂

Ao ⊂ W , W is an open neighborhood of 0 in (E, σ(E,X)).

Lemma 4.6. Let F be a locally convex TVS, K be a closed balanced convex subset
of F , and x0 ∈ F\K. Then there exists a linear continuous map Λ : F → R such
that 〈Λ, x0〉 = 1 and |〈Λ, x〉| < 1 for all x ∈ K.

Proof. Because K is closed in F and x0 ∈ F\K, there exists a neighborhood U
of 0 in F such that (x0 + U) ∩K = ∅. Since F is locally convex, we can assume
that U is convex. By Part (ii) of Proposition 6.1, we can even assume that U is
balanced. Put L = K − U = {x− y : x ∈ K, y ∈ U}. Then L is a neighborhood
of 0 in F and x0 6∈ L. Because K and U are balanced and convex, so is L. By
Proposition 6.4, the Minkowski functional µL : F → R is a seminorm. Since 0 ∈ K
and x0 ∈ F\K, x0 6= 0. Put F0 = {λx0 : λ ∈ R}, which is a vector subspace of F .
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Because the scalar multiplication on F is continuous, the family {(−ε, ε)x0}ε>0

is a local base of F0. Thus, the map Λ0 : F0 → R, Λ0(λx0) = λ, is linear and
continuous on F0. Since x0 6∈ L, µL(x0) > 1. Hence,

|Λ(λx0)| = |λ| ≤ |λ|µL(x0) = µL(λx0) ∀λ ∈ R.

By Hahn-Banach theorem [Rud73, p.57], Λ0 has a linear continuous extension
Λ : F → R such that |Λ(x)| ≤ µL(x) for all x ∈ F . We have Λ(x0) = Λ0(x0) = 1.
For every x ∈ K, x lies in the interior of L. Thus, |Λ(x)| ≤ µL(x) < 1.

4.2 Some topological properties of the dual of C∞(Rn)

In this section, we denote by X the metrizable TVS C∞(Rn) as described in
Section 6.2. We also denote by E the dual of X, i.e. the set of all linear continuous
maps from C∞(Rn) to R. By Proposition 6.9, X is a Fréchet space.

Proposition 4.7. For each m ∈ N and φ ∈ C∞(Rn), we put

pm(φ) = max
{
|Dαφ(x)| : |α| ≤ m,x ∈ B̄m

}
,

where B̄m is the closed ball in Rn which is centered at the origin and with radius
m. Let U be a neighborhood of 0 in X. Then there exists N ∈ N such that

|Tψ| ≤ 2NpN(ψ) ∀ψ ∈ X, T ∈ U o.

An immediate consequence of Proposition 4.7 is that suppT ⊂ B̄N for all
T ∈ U o.

Proof of Proposition 4.7. For each m ∈ N, we put

Vm =

{
φ ∈ C∞(Rn) : |Dαφ(x)| < 1

m
∀|α| ≤ m, ∀x ∈ B̄m

}
.

By the definition of the topology on C∞(Rn) in Section 6.2, the family {Vm}m∈N
is a local base of C∞(Rn). Thus, there exists N ∈ N such that VN ⊂ U . Thus, for
every T ∈ U o,

|T (φ)| ≤ 1 ∀φ ∈ VN .
For each ψ ∈ C∞(Rn) and ε > 0, we put

φε =
ψ

2NpN(ψ) + ε
∈ C∞(Rn).

Then

pN(φε) =
pN(ψ)

2NpN(ψ) + ε
<

1

2N
.

Thus, φε ∈ VN . Hence, |T (φε)| ≤ 1. Then

|Tψ| = (2NpN(ψ) + ε)|Tφε| ≤ 2NpN(ψ) + ε.

Because this inequality is true for every ε > 0, we must have |Tψ| ≤ 2NpN(ψ) for
all ψ ∈ C∞(Rn).
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Proposition 4.8. Let D(Rn) be the test-function space on Rn, i.e. the TVS
defined in Proposition 6.10. Then the embedding D(Rn) ↪→ X is linear and con-
tinuous.

Proof. It is clear that the identity map D(Rn) ↪→ C∞(Rn) is linear. Proposi-
tion 6.14 gives us a method to show that this map is continuous. Let (φn) be
any sequence in D(Rn) that converges to 0. We show that (φn) also converges
to 0 in C∞(Rn). By Proposition 6.8, we need to show that for every multi-index
α, (Dαφn) converges to 0 uniformly on every compact subset of Rn. By Proposi-
tion 6.13, there exists a compact set K ⊂ Rn such that φn ∈ DK for all n ∈ N,
and that (Dαφn) converges to 0 uniformly on K for every multi-index α. Let L
be any compact set in Rn. We have φn|L is supported in K ∩ L. Because (Dαφn)
converges to 0 uniformly on K ∩ L, it converges to 0 uniformly on L.

Recall that E ′(Rn) denotes that set of all compactly supported distributions
on Rn. By Part (ii) of Proposition 6.17, an element in E ′(Rn) can be considered as
an element in E thanks to the unique linear continuous extension from D(Rn) to
C∞(Rn). Now let us consider T ∈ E. Thanks to Proposition 4.8, the restriction
of T on D(Rn) is a distribution on Rn. Since T is continuous, there exists a
neighborhood U of 0 in X such that |T (φ)| < 1 for all φ ∈ U . Thus, T ∈ U o.
Then by Proposition 4.7, T is compactly supported. Hence, T |D(Rn) ∈ E ′(Rn).
Therefore, E can be identified with the set E ′(Rn) in a natural way.

Proposition 4.9. Let P ∈ R[x1, . . . , xn]\{0}. Then the differential operator
P (D) : C∞(Rn)→ C∞(Rn) is linear and continuous.

Proof. It suffices to show that for every multi-index α, the differential operator
Dα : C∞(Rn) → C∞(Rn) is continuous. Proposition 6.8 gives a necessary and
sufficient condition for the convergence of a sequence in C∞(Rn). Let (fn) be any
sequence in C∞(Rn) that converges to f ∈ C∞(Rn). Then for every multi-index β,
the sequence (DβDαfn) converges to DβDαf uniformly on every compact subset
of Rn. Thus, (Dαfn) converges to Dαf in C∞(Rn). Therefore, Dα is a continuous
map.

Proposition 4.10. Let P ∈ R[x1, . . . , xn]\{0}. Define a map f : X → X, f(φ) =
P (D)φ for all φ ∈ X. Note that by Proposition 4.9, f is linear and continuous.
Let f ∗ : E → E be the dual map of f , i.e. f ∗(T ) = T ◦ f for all T ∈ E. Let U be
a neighborhood of 0 in X. Then f ∗(E) ∩ U o is closed in (U o, σ(E,X)).

Proof. Consider a net {Ti}i∈I in f ∗(E)∩U o that converges to T0 ∈ U o in (U o, σ(E,X)).
We need to show that T0 ∈ f ∗(E). By Proposition 4.7, there exists N ∈ N such
that

| 〈T, φ〉 | ≤ 2NpN(φ) ∀T ∈ U o, ∀φ ∈ X,

where pN(φ) = max
{
|Dαφ(x)| : |α| ≤ N, x ∈ B̄N

}
and B̄N is the closed ball in

Rn which is centered at the origin and with radius N . Thus,

| 〈Ti, φ〉 | ≤ 2NpN(φ) ∀i ∈ I, ∀φ ∈ X. (4.4)
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If φ ∈ D(Rn\B̄N) then |〈Ti, φ〉| ≤ 2NpN(φ) = 0. Thus, Ti vanishes in Rn\B̄N .
This implies suppTi ⊂ B̄N for all i ∈ I. Because Ti ∈ f ∗(E), there exists Si ∈ E
such that Ti = f ∗(Si) = Si ◦ f . For every φ ∈ X we have

〈Ti, φ〉 = 〈Si ◦ f, φ〉 = 〈Si, f(φ)〉 = 〈Si, P (D)φ〉 = 〈P (−D)Si, φ〉 . (4.5)

Hence, Ti = P (−D)Si for all i ∈ I. Because Si ∈ E, Si|D(Rn) ∈ E ′(Rn) by the
remark before Proposition 4.9. By Proposition 3.4, we have

[suppSi] = [suppTi] ⊂ B̄N ∀i ∈ I,

where [K] denotes the convex hull of a set K ⊂ Rn. Take ψ0 ∈ C∞(Rn) arbitrarily.
We show that the net {〈Si, ψ0〉}i∈I is bounded and convergent in R.

Let χ be a function in D(Rn) such that χ = 1 in B̄N+1. Then χψ0 = ψ0 in
B̄N+1, which implies supp(χψ0 − ψ0) ⊂ Rn\BN+1. Thus,

suppSi ∩ supp(χψ0 − ψ0) ⊂ BN ∩ (Rn\BN+1) = ∅.

By Part (i) of Proposition 6.17, 〈Si, χψ0 − ψ0〉 = 0. Hence,

〈Si, χψ0〉 = 〈Si, ψ0〉. (4.6)

Since χψ0 ∈ D(Rn), by Proposition 4.13, there exists φ0 ∈ X such that P (D)φ0 =
χψ0. Then from (4.5) we have

〈Si, χψ0〉 = 〈Si, P (D)ψ0〉 = 〈Ti, φ0〉 .

Together with (4.6), this identity yields

〈Si, ψ0〉 = 〈Ti, φ0〉 ∀i ∈ I. (4.7)

Because the net {Ti}i∈I converges to T0 in (U o, σ(E,X)), the net {〈Ti, φ0〉}i∈I
converges in R. Thus, the net {〈Si, ψ0〉}i∈I converges in R. Denote by 〈S, ψ0〉 the
limit. Then we get a linear map S : X → R such that lim 〈Si, ψ〉 = 〈S, ψ〉 for all
ψ ∈ X. By (4.4) and (4.7), we have

| 〈Si, ψ0〉 | ≤ 2NpN(φ0) ∀i ∈ I.

Thus, the set {〈Si, ψ0〉 : i ∈ I} is bounded in R. Put Γ = {Si : i ∈ I}. Then
Γ is a family of linear continuous maps from X to R which is pointwise bounded.
Because X is a Fréchet space (Proposition 6.9), X is a complete metric space.
According to Banach-Steinhaus theorem (see [Rud73, p.43]), Γ is equicontinuous.
In other words, for each ε > 0, there exists a neighborhood U of 0 in X such that

| 〈Si, ψ〉 | < ε ∀ψ ∈ U, ∀i ∈ I.

Thus, |〈S, ψ〉| ≤ ε for all ψ ∈ U . Thus, S is a continuous map from X to R. This
means S ∈ E. For every φ ∈ X, we have

〈Ti, φ〉 = 〈Si, f(φ)〉 → 〈S, f(φ)〉 = 〈S ◦ f, φ〉 = 〈f ∗(S), φ〉 .

On the other hand, we know that 〈Ti, φ〉 → 〈T0, φ〉. Thus,

〈f ∗(S), φ〉 = 〈T0, φ〉 ∀φ ∈ X.

Therefore, T0 = f ∗(S) ∈ f ∗(E).
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4.3 Existence of smooth solutions to P (D)u = f

With the background in the dual space of C∞(Rn) discussed in the previous section,
we are now able to make concrete the ideas mentioned at the beginning of Section 4.
It is necessary to approximate (in Ck-norm) a function v satisfying P (D)v = 0 in
a finite ball in Rn by functions satisfying the same equation in the whole space
Rn. If P (D) is the Laplacian, this can be done by applying, first, Walsh’s theorem
(quoted in Proposition 2.1) to get an approximation for the function v itself, and,
secondly, the estimation of the derivatives of v by the function v itself (quoted
in Proposition 2.2). Proposition 4.12 is a generalization of Walsh’s theorem for a
general linear differential operator P (D).

Let us introduce some notations. For each s > 0, we denote by Bs the open
ball in Rn which is centered at the origin and with radius s. Recall that for each
nonnegative integer k and nonempty open bounded set Ω ⊂ Rn, Ck(Ω̄) denotes
the vector space of all functions f : Ω→ R such that Dαf exists and is uniformly
continuous in Ω for all multi-indices |α| ≤ k. It is well-known that Ck(Ω̄) is a
normed vector space with

||u||Ck(Ω̄) = max
{
|Dαu(x)| : |α| ≤ k, x ∈ Ω̄

}
∀u ∈ Ck(Ω̄).

Proposition 4.11. Let k be a nonnegative integer and Ω be a nonempty open
bounded subset of Rn. Suppose that L : Ck(Ω̄) → R is a linear continuous map.
Then there exists a distribution T ∈ E ′(Rn) supported in Ω̄ such that

L(u|Ω̄) = 〈T, u〉 ∀u ∈ C∞(Rn).

Proof. Because L is continuous, there exists a constant C > 0 such that

|Lφ| ≤ C‖φ‖Ck(Ω̄) ∀φ ∈ C
k(Ω̄).

Define a linear map T : D(Rn)→ R, 〈T, φ〉 = L(φ|Ω) for all φ ∈ D(Rn). For every
φ ∈ D(Rn),

| 〈T, φ〉 | = |L(φ|Ω)| ≤ C‖φ|Ω‖Ck(Ω̄)

= C max
{
|Dαφ(x)| : x ∈ Ω̄, |α| ≤ k

}
(4.8)

= C max {|Dαφ(x)| : x ∈ Rn, |α| ≤ k} .

According to the notation in Proposition 6.15, we have

| 〈T, φ〉 | ≤ C||φ||k ∀φ ∈ D(Rn)

and thus T ∈ D ′(Rn). By (4.8), T vanishes in Rn\Ω̄. Thus, T ∈ E ′(Rn). Define
a linear map T̃ : C∞(Rn) → R, T̃ (u) = L(u|Ω) for all u ∈ C∞(Rn). Let (um) be
any sequence in C∞(Rn) which converges to u0 ∈ C∞(Rn). By Proposition 6.8,
Dβum → Dβu0 uniformly on Ω̄ as m→∞ for every multi-index β. In particular,
‖um − u0‖Ck(Ω̄) → 0 as m → ∞. Because L is continuous, L(um|Ω) → L(u0|Ω) in

R. Then T̃ (um) → T̃ (u0). Therefore, T̃ is continuous. Because T̃ (u) = 〈T, u〉 =
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L(u|Ω) for all u ∈ D(Rn), T̃ is the linear continuous extension of T to C∞(Rn).
This allows us to write 〈T, u〉 = L(u|Ω) for all u ∈ C∞(Rn).

Next, we show that T is supported in Ω̄. For every u ∈ D(Rn\Ω̄),

〈T, u〉 = L(u|Ω) = L(0) = 0.

Thus, T vanishes in Rn\Ω̄. Therefore, suppT ⊂ Ω̄.

Proposition 4.12. Let k be a nonnegative integer and 0 < s < r. Let P ∈
R[x1, . . . , xn]\{0} and v ∈ C∞(Rn) such that P (D)v = 0 in Br. Then there exists
a sequence (vm) in C∞(Rn) such that P (D)vm = 0 in Rn and

lim
m→∞

||vm − v||Ck(B̄s) = 0.

Proof. Denote by X the metrizable TVS C∞(Rn) as defined in Section 6.2, and E
its dual, i.e. the set of all linear continuous maps from X to R. Equip E with the
weak* topology σ(E,X). Define a linear map f : X → X, f(φ) = P (D)φ for all
φ ∈ X. By Proposition 4.9, f is continuous. Let f ∗ : E → E be the dual map of
f , i.e. f ∗(T ) = T ◦ f for all T ∈ E. Put

X1 = {u ∈ Ck(B̄s) : ∃extension ũ ∈ C∞(Rn) such that P (D)ũ = 0 in Rn}.

Then X1 is a vector subspace of X. We want to show that v|Bs ∈ X̄1. Let L be any
linear continuous functional on Ck(B̄s) which vanishes on X1. We want to show
that L(v|Bs) = 0. By Proposition 4.11, there exists a distribution T ∈ E ′(Rn)
supported in B̄s such that

L(u|B̄s) = 〈T, u〉 ∀u ∈ C∞(Rn). (4.9)

By Part (ii) of Proposition 6.17, we can regard T ∈ E. We will show that T ∈
f ∗(E). For every φ ∈ ker f , φB̄s ∈ X1. Thus, 〈T, φ〉 = L(φB̄s) = 0. This implies
that T vanishes on ker f . First, we show that T belongs to the closure of f ∗(E)
in (E, σ(E,X)). Let Γ be any linear continuous map from (E, σ(E,X)) to R such
that

〈Γ, h〉 = 0 ∀h ∈ f ∗(E). (4.10)

We need to show that 〈Γ, T 〉 = 0. According to Proposition 4.2, where E therein
is replaced by X, F therein is replaced by E, and Λ therein by Γ, we conclude
that there exists φ0 ∈ X such that

〈Γ, h〉 = 〈h, φ0〉 ∀h ∈ E. (4.11)

By (4.10), we have 〈h, φ0〉 = 0 for all h ∈ f ∗(E). Thus, for every S ∈ E,

〈S, f(φ0)〉 = 〈S ◦ f, φ0〉 = 〈f ∗(S), φ0〉 = 0.

Hence, f(φ0) = 0 by Hahn-Banach theorem. Thus, φ0 ∈ ker f . By (4.11), 〈Γ, T 〉 =
〈T, φ0〉, which is zero because T vanishes on ker f . We have proved that T lies in
the closure of f ∗(E) in (E, σ(E,X)).
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Now we show that f ∗(E) is a closed set in (E, σ(E,X)). Since f ∗ is a linear
map, f ∗(E) is a vector subspace of E. In particular, f ∗(E) is convex. According
to Proposition 4.5 where S therein is replaced by f ∗(E), it suffices to show that
f ∗(E) ∩ U o is closed in (U o, σ(E,X)) for every neighborhood U of 0 in X. This
was proved in Proposition 4.10. Therefore, we have proved that T ∈ f ∗(E). Write
T = f ∗(Λ) = Λ ◦ f . Then

〈T, φ〉 = 〈Λ ◦ f, φ〉 = 〈Λ, f(φ)〉 = 〈Λ, P (D)φ〉 ∀φ ∈ X. (4.12)

Thus, 〈T, φ〉 = 〈P (−D)Λ, φ〉 for all φ ∈ X. Hence, P (−D)Λ = T . Because Λ ∈ E,
Λ|D(Rn) ∈ E ′(Rn) by Proposition 4.8. Then by Proposition 3.4,

[suppΛ] = [suppT ] ⊂ B̄s.

We have suppΛ ∩ sup p(P (D)v) ⊂ B̄s ∩ (Rn\Br) = ∅. By Part (i) of Proposi-
tion 6.17, 〈Λ, P (D)v〉 = 0. By (4.12), we get

〈T, v〉 = 〈Λ, P (D)v〉 = 0.

Therefore, from (4.9) we get L(v|B̄s) = 〈T, v〉 = 0.

Proposition 4.13. Let P ∈ R[x1, . . . , xn]\{0} and φ ∈ D(Rn). Then there exists
u ∈ C∞(Rn) such that P (D)u = φ in Rn.

Proof. By Proposition 3.8 (the Malgrange-Ehrenpreis theorem), the differential
operator P (D) has a fundamental solution Γ ∈ D ′(Rn). By Proposition 6.20, the
function u = Γ ∗ φ belongs to C∞(Rn). We also have

P (D)u = P (D)(Γ ∗ φ) = (P (D)Γ) ∗ φ.

Thus, P (D)u = δ0 ∗ φ = φ by Proposition 6.22.

Proposition 4.14. Let P ∈ R[x1, . . . , xn]\{0} and f ∈ C∞(Rn). Then there
exists u ∈ C∞(Rn) such that P (D)u = f in Rn.

Proof. Put
A0 = {x ∈ Rn : |x| < 2} ,
Ak = {x ∈ Rn : k < |x| < k + 2} ∀k ∈ N.

Then the collection {Ak : k = 0, 1, 2, . . .} is an open cover of Rn. Let {φk : k =
0, 1, . . .} be a smooth partition of unity subordinate to this cover. Put

fk(x) = f(x)φk(x) ∀x ∈ Rn, ∀k ≥ 0.

Then f =
∑∞

k=0 fk. Because fk ∈ D(Rn), by Proposition 4.13, there exists
ηk ∈ C∞(Rn) such that P (D)ηk = fk. Then P (D)ηk = 0 in Bk. Applying
Proposition 4.12 for s = k − 1

2
, r = k and v = ηk, we conclude that there exists

η̃k ∈ C∞(Rn) such that P (D)η̃k = 0 in Rn and

‖η̃k − ηk‖Ck(B̄k−1/2) <
1

k2
.
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Put uk = ηk − η̃k ∈ C∞(Rn). Then P (D)uk = P (D)ηk − P (D)η̃k = P (D)ηk = fk
and

‖uk‖Ck(B̄k−1/2) <
1

k2
.

For each compact set A ⊂ Rn, there exists k0 ∈ N such that A ⊂ Bk−1/2 for all
k > k0. Then

|uk(x)| ≤ ‖uk‖Ck(B̄k−1/2) <
1

k2
∀x ∈ A, ∀k > k0.

Thus, the series
∑∞

k=0 uk converges uniformly on every compact set in Rn. Put
u =

∑∞
k=0 uk. Then for every multi-index α, we have

|Dαuk(x)| ≤ ‖uk‖Ck(B̄k−1/2) <
1

k2
∀x ∈ A, ∀k > max {k0, α} .

Hence, the series
∑∞

k=0D
αuk converges uniformly on every compact subset of Rn.

Therefore, u ∈ C∞(Rn) and Dαu =
∑∞

k=0 D
αuk. Consequently,

P (D)u =
∑∞

k=0
P (D)uk =

∑∞

k=0
fk = f.

5 Some applications

In this section, we present some applications of Proposition 4.14. An immediate
application is the existence of solutions of a system of linear partial differential
equations with constant coefficients. This was first pointed out in [Ehr54, Theorem
15] and [Mal56, Prop. 8, p.318].

Proposition 5.1. Consider a system of differential equations in Rn of the form

N∑
k=1

Pjk(D)uk = fj ∀1 ≤ j ≤ N, (5.1)

where Pjk ∈ R[x1, . . . , xn] and fj ∈ C∞(Rn) are given. Suppose that the deter-
minant det(Pjk) is not the zero-polynomial. Then the system (5.1) has solutions
u1, u2, . . . , uN ∈ C∞(Rn).

According to the terminology in [Ehr54], when det(Pjk) ≡ 0, the matrix
differential operator (Pjk(D)) is called degenerate. Otherwise, it is called non-
degenerate.

Proof of Proposition 5.1. Put Q = det(Pjk) ∈ R[x1, . . . , xn]\{0}. By Proposi-
tion 4.14, for each 1 ≤ j ≤ N , the equation Q(D)vj = fj in Rn has a solution
vj ∈ C∞(Rn). For each x ∈ Rn, we denote by (P jk(x)) the adjugate matrix of
(Pjk(x)). Note that P jk(x) ∈ R[x1, . . . , xn]. Moreover,∑N

k=1
P ik(x)Pkj(x) = det(Pjk(x))δij = Q(x)δij ∀x ∈ Rn,
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where δij is the Kronecker delta. For each 1 ≤ k ≤ N , we put

uk =
∑N

k=1
P ik(D)vi ∈ C∞(Rn).

Then ∑N

k=1
Pjk(D)uk =

∑N

k=1

∑N

i=1
Pjk(D)P ik(D)vi

=
∑N

i=1

(∑N

k=1
Pjk(D)P ik(D)

)
vi

=
∑N

k=1
Q(D)(δijvi)

= Q(D)vj = fj.

Therefore, (u1, u2, . . . , uN) is a solution to the system (5.1).

Proposition 5.2. Consider the linear Stokes equations in the whole space R3

without the initial condition.{
∂t~u−∆~u+∇p = ~f,

∇ · ~u = 0.
(5.2)

where
~u = (u1(x1, x2, x3, t), u2(x1, x2, x3, t), u3(x1, x2, x3, t)),
p = p(x1, x2, x3, t),
~f = (f1(x1, x2, x3, t), f2(x1, x2, x3, t), f3(x1, x2, x3, t)).

Suppose that f1, f2, f3 ∈ C∞(R4). Then the system (5.2) has solutions ~u ∈
[C∞(R4)]3 and p ∈ C∞(R4).

Proof. Put
u4(x1, x2, x3, t) = p(x1, x2, x3, t),
x4 = t,
f4(x1, x2, x3, t) = 0.

Then the system (5.2) becomes a system of linear differential equations in R4,
D4u1 −D11u1 −D22u1 −D33u1 +D1u4 = f1,
D4u2 −D11u2 −D22u2 −D33u2 +D2u4 = f2,
D4u3 −D11u3 −D22u3 −D33u3 +D3u4 = f3,

D1u1 +D2u2 +D3u3 = f4.

(5.3)

These equations can be rewritten as

4∑
k=1

Pjk(D)uk = fj ∀1 ≤ j ≤ 4,

where
P11 = P22 = P33 = x4 − x2

1 − x2
2 − x2

3,
P14 = x1, P24 = x2, P34 = x3,
P41 = x1, P42 = x2, P43 = x3,
Pjk = 0 for other pairs (j, k).
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Thus,

(Pjk(x1, x2, x3, x4)) =


x4 − x2

1 − x2
2 − x2

3 0 0 x1

0 x4 − x2
1 − x2

2 − x2
3 0 x2

0 0 x4 − x2
1 − x2

2 − x2
3 x3

x1 x2 x3 0


Then det(Pjk) = (x4−x2

1−x2
2−x2

3)2(x2
1 +x2

2 +x2
3), which is not a zero polynomial.

By Proposition 5.1, the system (5.3) has solutions u1, u2, u3, u4 ∈ C∞(R4).

6 Some background in test functions and distri-

butions

This section collects some basic properties of topological vector spaces, test func-
tions and distributions in Rn that are needed to study the existence of smooth
solutions to the problem P (D)u = f . Most of these properties are taken from
Chapters 1 and 6 in [Rud73]. All vector spaces of our concern are over the field R.

6.1 Topological vector spaces

Below is a list of terminologies that are used in the paper.

1. A vector space X equipped with a topology τ is called a topological vector
space, abbreviated by TVS, if it is a T1 space (i.e. every singleton is closed)
on which the addtition and scalar multiplication maps are continuous.

2. A family B of neighborhoods of 0 in a TVS X is called a local base if every
neighborhood of 0 in X contains a member of B. A local base B of X is
said to be balanced (respectively convex ) if every member of its is balanced
(respectively convex).

3. A TVS (X, τ) is said to be metrizable if τ is induced by a metric on X. A
metric d on X is called translation-invariant if d(x + z, y + z) = d(x, y) for
all x, y, z ∈ X.

4. A TVS X is said to be locally convex if it has a convex local base.

5. A TVS (X, τ) is said to be a Fréchet space if

(i) (X, τ) is locally convex,

(ii) (X, τ) is metrized by a translation-invariant metric d,

(iii) (X, d) is a complete metric space.

6. A subset A of a TVS X is said to be topologically bounded if for every open
neighborhood V of 0, there exists a number s > 0 such that A ⊂ tV for all
t > s.
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7. A map p : X → R is called a seminorm on a TVS X if

(i) p(x) ≥ 0 ∀x ∈ X,

(ii) p(x+ y) ≤ p(x) + p(y) ∀x, y ∈ X,

(iii) p(αx) = |α|p(x) ∀α ∈ R, x ∈ X.

A family P of seminorms on X is said to be separating if for every x ∈
X\{0}, there exists p ∈P such that p(x) 6= 0.

8. Let A be a subset of a TVS X. We say that A is balanced if A 6= ∅ and
tA ⊂ A for all −1 ≤ t ≤ 1. We say that A is absorbing if X =

⋃
t>0 tA.

9. Let A be an absorbing subset of a TVS X. The map µA : X → R, µA(x) =
inf{t > 0 : t−1x ∈ X}, is called the Minkowski functional of A.

Proposition 6.1. Let X be a TVS and U be an neighborhood of 0 in X. We have
the following statements.

(i) There is an open neighborhood V1 of 0 in X such that V1 is balanced, V1+V1 ⊂
U , and V̄1 ⊂ U .

(ii) If U is convex, it contains an open neighborhood V2 of 0 in X such that V2

is balanced and convex.

Proof. (i) Because the addition map X × X → X, (x, y) 7→ x + y is continuous,
there exist open neighborhoods O1,O2 of 0 in X such that O1 + O2 ⊂ U . Put
O3 = O1 ∩ O2. Because the scalar multiplication R × X → X, (λ, x) 7→ λx is
continuous, there exist a number δ > 0 and an open neighborhood O4 of 0 in X
such that (−δ, δ)× O4 ⊂ O3. Put

V1 =
⋃
|t|<δ

tO4.

Then V1 is also an open neighborhood of 0 in X. Moreover, V1 is balanced and
V1 ⊂ O3. We have V1 +V1 ⊂ O3 +O3 ⊂ O1 +O2 ⊂ U . Next, we show that V̄1 ⊂ U .
Take any x ∈ V̄1. Then (x + V1) ∩ V1 6= ∅. Thus, there exists y, z ∈ V1 such that
x = y − z. By the definition of V1, we have −V1 = V1. In particular, −z ∈ V1.
Then x = y + (−z) ∈ V1 + V1 ⊂ U . Therefore, V̄1 ⊂ U .

(ii) Put V0 = U ∩ (−U). Because U and −U are convex neighborhoods of 0,
V0 is also a convex neighborhood of 0. Now we show that V0 is balanced. Take
any x ∈ V0 and t ∈ [−1, 1]. By replacing x by −x if necessary, we can assume
t ∈ [0, 1]. Then tx lies on the line segment from 0 to x. This segment lies entirely
in U because U is convex. Similarly, this segment lies entirely in −U because −U
is convex. Therefore, tx ∈ U ∩ (−U) = V0. Let V2 be the interior of V0. Then
V2 ⊂ U and V2 is an open neighborhood of 0.

We show that V2 is balanced. Take any x ∈ V2 and t ∈ [−1, 1]. If t = 0
then tx = 0 ∈ V2. Consider ther case t 6= 0. Because x lies in the interior of V0,
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there exists an open neighborhood O of x contained in V0. Since V0 is balanced,
tO ⊂ tV0 ⊂ V0. Note that tO is an open neighborhood of tx. Thus, tx ∈ V2.

We show that V2 is convex. Take any x, y ∈ V2 and t ∈ [−1, 1]. Because x
and y lie in the interior of V0, there exist open neighborhoods O1 of x and O2 of
y such that O1,O2 ⊂ V0. Since V0 is convex, tO1 + (1 − t)O2 ⊂ V0. Note that
tO1+(1−t)O2 is an open neighborhood of tx+(1−t)y. Thus, tx+(1−t)y ∈ V2.

Proposition 6.2. Let X be a TVS. We have the following statements.

(i) Every singleton is topologically bounded.

(ii) Every convergent sequence of X is topologically bounded.

Proof. (i) Take a ∈ X and let V be any neighborhood of 0 in X. Because the
scalar multiplication is continuous, there exists ε > 0 such that δa ∈ V for all
0 < δ < ε. Thus, a ∈ δ−1V for all 0 < δ < ε. Hence, a ∈ tV for all t > ε−1.
Therefore, the singleton {a} is topologically bounded in X.

(ii) Let (xn) be a convergent sequence in X. Denote a = limxn. Let V be any
neighborhood of 0 in X. By Part (i) of Proposition 6.1, there exists a balanced
neighborhood W of 0 in X such that W + W ⊂ V . Because xn → a, there
exists n0 ∈ N such that xn − a ∈ W for all n > n0. Because the singleton {a} is
topologically bounded, there exists a number s > 1 such that a ∈ tW for all t > s.
Then

xn ∈ a+W ⊂ tW +W ⊂ tW + tW = t(W +W ) ⊂ tV ∀n > n0, ∀t > s.

Because each singleton {xi}, 1 ≤ i ≤ n0, is topologically bounded in X, there
exists s0 > 0 such that xi ∈ tV for all t > s0 and 1 ≤ i ≤ n0. Take s1 =
max{s, s0} > 1. Then xn ∈ tV for all t > s1 and n ∈ N. Therefore, the sequence
{xn} is topologically bounded.

Proposition 6.3. Let X and Y be two TVS and Λ : X → Y be a linear map.
Consider the following statements.

(i) Λ is continuous.

(ii) Λ is bounded, i.e. Λ maps topologically bounded sets into topologically bounded
sets.

(iii) Λ(xn)→ 0 if the sequence (xn) converges to 0.

Then (i) implies (ii). If X is metrizable then (i),(ii),(iii) are equivalent.

Proof. (i)⇒(ii). Suppose that Λ is continuous. Let A be any topologically bounded
subset of X and V be any neighborhood of 0 in Y . We need to find s > 0 such
that Λ(A) ⊂ tV for all t > s. Since Λ is continuous, there exists a neighborhood
U of 0 in X such that Λ(U) ⊂ V . Since A is topologically bounded in X, there is
s0 > 0 such that A ⊂ tU for all t > s0. Thus, Λ(A) ⊂ Λ(tU) = tΛ(U) ⊂ tV for all
t > s0. We can choose s = s0.
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(ii)⇒(iii) (assuming that X is metrizable). Suppose by contradiction that there
exists a sequence (xn) in X such that xn → 0 and Λ(xn) 6→ 0. Then there exists an
open neighborhood O of 0 in Y and a subsequence (xnk) such that Λ(xnk) 6∈ O for
all k ∈ N. By replacing (xn) with this subsequence, we can assume that Λ(xn) 6∈ O
for all n ∈ N. Let d be a metric on X that is compatible with the topology on X.
Since xn → 0 in sense of topology, we have d(xn, 0) → 0. For each k ∈ N, there
exists nk ∈ N such that d(xnk , 0) < 1

k2
. Moreover, the sequence (nk) can be chosen

to be increasing in N. Then (xnk) is a subsequence of (xn). By replacing (xn) with
this subsequence, we can assume that d(xn, 0) < 1

n2 for all n ∈ N. Thus,

d(nxn, 0) ≤ d(xn, 0) + . . .+ d(xn, 0) <
1

n2
+ . . .+

1

n2
=

1

n
.

This means the sequence (nxn) converges to 0 in X. By Part (ii) of Proposition 6.2,
both (xn) and (nxn) are topologically bounded sequences in X. Because Λ is a
bounded map, (Λxn) and (nΛxn) are topologically bounded in Y . Thus, there
exists s > 0 such that nΛxn ∈ tO for all t > s and n ∈ N. Consider n > s and
t = n. Then nΛxn ∈ nO for all n > s. Thus, Λxn ∈ O for all n > s. This is a
contradiction.

(iii)⇒(i) (assuming that X is metrizable). It suffices to show that Λ is contin-
uous at the origin of X. Let U be a neighborhood of 0 in Y . We need to find a
neighborhood V of 0 in X such that Λ(V ) ⊂ U . For each n ∈ N, denote by B1/n

the open ball in X centered at 0 with radius 1
n
. Suppose by contradiction that

Λ(B1/n) 6⊂ U for all n ∈ N. Then there exists yn ∈ Λ(B1/n)\U for all n ∈ N. Write
yn = Λ(xn) for some xn ∈ B1/n. Then xn → 0 in X and yn = Λ(xn) 6∈ U for all
n ∈ N. This contradicts the fact that Λ(xn)→ 0 in Y . Thus, there exists n0 ∈ N
such that Λ(B1/n0) ⊂ U . We now can choose V = B1/n0 .

Proposition 6.4. Let A be a balanced, convex, absorbing subset of a TVS X.
Then the Minkowski functional µA is a seminorm on X.

Proof. By the definition of µA, it is clear that µA(x) ≥ 0 for all x ∈ X. Take
x ∈ X and α ∈ R. We show that µA(αx) = |α|µA(x). Because A is balanced,
0 ∈ A. Thus, µA(0) = 0. This implies that our claim is true for the case α = 0.
Consider α 6= 0. We have µA(αx) = inf A1 and µA(x) = inf A2, where

A1 =
{
t > 0 : t−1αx ∈ A

}
, A2 =

{
s > 0 : s−1x ∈ A

}
.

We want to show that inf A1 = |α| inf A2. It suffices to show A1 = |α|A2. Because
A is balanced, A1 = {t > 0 : t−1|α|x ∈ A}. Take t ∈ A1. To show that t ∈ |α|A2,
we will show that |α|−1t ∈ A2. We have t−1|α|x ∈ A. Thus, (t|α|−1)−1x ∈ A, which
implies t|α|−1 ∈ A2. Therefore, A1 ⊂ |α|A2. Now take s ∈ A2. We will show that
|α|s ∈ A1. We have s−1x ∈ A. Thus, s−1|α|−1|α|x ∈ A. Thus, (s|α|)−1|α|x ∈ A.
This implies s|α| ∈ A1. Therefore, |α|A2 ⊂ A1.

Next, we show that µA(x+ y) ≤ µA(x) + µA(y) for all x, y ∈ X. We have

µA(x) = inf
{
t > 0 : t−1x ∈ A

}
,

µA(y) = inf
{
s > 0 : s−1y ∈ A

}
,

µA(x+ y) = inf
{
r > 0 : r−1(x+ y) ∈ A

}
.
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Take any t, s > 0 such that t−1x ∈ A and s−1y ∈ A. Since A is convex,

(t−1x)
t

t+ s
+ (s−1y)

s

t+ s
∈ A.

In other words, (t+ s)−1(x+ y) ∈ A. Thus, t+ s ≥ µA(x+ y). Because this is true
for all t, s > 0 satisfying t−1x, s−1y ∈ A, we have µA(x+ y) ≤ µA(x) + µA(y).

Proposition 6.5. Let X be a vector space and P be a separating family of semi-
norms on X. For each p ∈P and n ∈ N, we put

V (p, n) =

{
x ∈ X : p(x) <

1

n

}
.

Let B be the family of all finite intersections of these sets. Then we have the
following statements.

(i) There is a topology τ on X such that (X, τ) is a TVS and B is a convex
balanced local base consisting of open sets.

(ii) Each p ∈P is continuous.

(iii) A subset E of X is topologically bounded if and only if p(E) is bounded in R
for all p ∈P.

Proof. (i) Define a collection

τ =
{⋃

i∈I
(xi + Ui) : xi ∈ X,Ui ∈ B, and I is some index set

}
.

We show that τ is a topology on X. It is clear that ∅, X ∈ τ , and that τ is closed
under arbitrary union. It remains to show that τ is closed under finite intersection.
It suffices to show that the intersection of two elements in τ also belongs to τ . Let⋃
i∈I (xi + Ui) and

⋃
j∈J (yj + Vj) be two elements of τ . The intersection is⋃

i∈I,j∈J
[(xi + Ui) ∩ (yj + Vj)].

Therefore, it suffices to show that each (xi + Ui) ∩ (yj + Vj) belongs to τ . Because
Ui ∈ B, there are pi1 , . . . , pim ∈P and ni1 , . . . , nim ∈ N such that

Ui =

{
x ∈ X : pik(x) <

1

nik
∀1 ≤ k ≤ m

}
.

Because Vj ∈ B, there are pj1 , . . . , pjl ∈P and nj1 . . . , njl ∈ N such that

Vj =

{
x ∈ X : pjs(x) <

1

njs
∀1 ≤ s ≤ l

}
.

For each z ∈ (xi + Ui) ∩ (yj + Vj),{
pik(xi − z) < 1

nik
∀1 ≤ k ≤ m,

pjs(yj − z) < 1
njs

∀1 ≤ s ≤ l.
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There exists Nz ∈ N such that{
pik(xi − z) + 1

Nz
< 1

nik
∀1 ≤ k ≤ m,

pjs(yj − z) + 1
Nz

< 1
njs

∀1 ≤ s ≤ l.

Put

Wz =

{
w ∈ X : pik(w) <

1

Nz

∀1 ≤ k ≤ m, and pjs(w) <
1

Nz

∀1 ≤ s ≤ l

}
.

Then Wz ∈ B. We will show that z+Wz ⊂ (xi+Ui)∩(yj+Vj). Take any w ∈ Wz,
we need to show z + w ∈ (xi + Ui) ∩ (yj + Vj). For any 1 ≤ k ≤ m and 1 ≤ s ≤ l,
we need to show pik(xi − z − w) < 1

nik
and pjs(yj − z − w) < 1

njs
. We have

pik(xi − z − w) ≤ pik(xi − z) + pik(w) < pik(xi − z) +
1

Nz

<
1

nik
,

pjs(xi − z − w) ≤ pjs(xi − z) + pjs(w) < pjs(xi − z) +
1

Nz

<
1

njs
.

Therefore, we have proved that τ is a topology on X. Moreover, τ is translation-
invariant in sense that a set O is open in X if and only if every translation of O
in X is also open.

Next, we will show that (X, τ) is a TVS. We first show that every singleton
is closed in X. Because τ is translation-invariant, it suffices to show that {0} is
closed in X. For each p ∈P and n ∈ N, we will show that the set

Ṽ (p, n) =

{
x ∈ X : p(x) >

1

n

}
is open in X. Take any x ∈ Ṽ (p, n). We want to show that there is an open
neighborhood of x contained in Ṽ (p, n). Because p(x) > 1

n
, there exists N ∈ N

such that p(x) − 1
N
> 1

n
. We will show that x + V (p,N) ⊂ Ṽ (p, n). Take any

y ∈ x+ V (p,N). Then y − x ∈ V (p,N). Thus, p(y − x) < 1
N

. Then

p(y) ≥ p(x)− p(x− y) > p(x)− 1

N
>

1

n
.

Hence, y ∈ Ṽ (p, n). Therefore, x + V (p,N) ⊂ Ṽ (p, n). We have proved that the
set Ṽ (p, n) is open in X. Thus, the set

A =
⋂
p∈P
n∈N

(X\Ṽ (p, n))

is closed in X. We have

A =

{
x ∈ X : p(x) ≤ 1

n
∀p ∈ P, ∀n ∈ N

}
= {x ∈ X : p(x) = 0} .
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Because P is a separating family of seminorms, A = {0}. Therefore, {0} is closed
in X.

Next, we will show that the addition map is continuous. Take x, y ∈ X and
put z = x + y. We will show that the addition map X × X → X is continuous
at (x, y). Any neighborhood of z contains an open set of the form z + V for some
V ∈ B. By the definition of B, there are p1, . . . , pm ∈ P and n1, . . . , nm ∈ N
such that

V =

{
u ∈ X : pk(u) <

1

nk
∀1 ≤ k ≤ m

}
.

Put N = 2 max{n1, . . . , nm} and

V1 =

{
u ∈ X : pk(u) <

1

N
∀1 ≤ k ≤ m

}
.

We will show that (x+ V1) ∩ (y + V1) ⊂ (z + V ). We have

x+ V1 =
{
v ∈ X : pk(x− v) < 1

N
∀1 ≤ k ≤ m

}
,

y + V1 =
{
w ∈ X : pk(y − w) < 1

N
∀1 ≤ k ≤ m

}
,

z + V =
{
u ∈ X : pk(z − u) < 1

nk
∀1 ≤ k ≤ m

}
.

Take v ∈ x+ V1 and w ∈ y + V1. We will show that v + w ∈ z + V . We have

pk(z − v−w) = pk(x− v + y−w) ≤ pk(x− v) + pk(y−w) <
1

N
+

1

N
=

2

N
≤ 1

nk
.

Therefore, v + w ∈ z + V .
Next, we show that the scalar multiplication is continuous from R ×X to X.

Take λ ∈ R and x ∈ X. Put y = λx. Every neighborhood of y in X contains
an open set of the form y + V with V ∈ B. We want to show that the scalar
multiplication map is continuous at (λ, x). Write

V =

{
u ∈ X : pk(u) <

1

nk
∀1 ≤ k ≤ m

}
.

Let N ∈ N be any number such that

N > max {n1, . . . , nm} (|λ|+ 1 + max {p1(x), . . . , pm(x)}).

Put

V2 =

{
v ∈ X : pk(x) <

1

N
∀1 ≤ k ≤ m

}
.

We will show that (
λ− 1

N
, λ+

1

N

)
(x+ V2) ⊂ y + V.

We have
x+ V2 =

{
v ∈ X : pk(x− v) < 1

N
∀1 ≤ k ≤ m

}
,

y + V =
{
u ∈ X : pk(y − u) < 1

nk
∀1 ≤ k ≤ m

}
.
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For − 1
N
< t < 1

N
and v ∈ x+ V2, we will show that (λ+ t)v ∈ y + V .

pk((λ+ t)v − y) = pk(λ(v − x) + tv)

≤ pk(λ(v − x)) + pk(tv)

≤ |λ|pk(v − x) + |t|pk(v)

≤ |λ| 1
N

+
1

N
(pk(v − x) + pk(x))

<
|λ|
N

+
1

N

(
1

N
+ pk(x)

)
≤ |λ|+ 1 + pk(x)

N

<
1

nk
∀1 ≤ k ≤ m.

Thus, (λ+ t)v ∈ y + V .
(ii) Take any seminorm p ∈ P. We will show that p : X → R is continuous.

Take x ∈ X arbitrarily and put α = p(x) ∈ R. For every ε > 0, we will find a set
V ∈ B such that p(x + V ) ⊂ (α − ε, α + ε). Let n ∈ N be any number such that
1
n
< ε. Put V = V (p, n) ∈ B. For each y ∈ x + V , we have y − x ∈ V . Thus,

p(y − x) < 1
n
< ε. Then

|p(y)− α| = |p(y)− p(x)| ≤ p(y − x) < ε.

Thus, p(y) ∈ (α− ε, α + ε). Therefore, p(x+ V ) ⊂ (α− ε, α + ε).
(iii) Let E be a topologically bounded subset of X. We will show that p(E) is

bounded in R for every p ∈P. Fix p ∈P. Because E is topologically bounded,
there exists a number s > 0 such that E ⊂ sV (p, 1). Then s−1E ⊂ V (p, 1). Thus
s−1x ∈ V (p, 1) for every x ∈ E. Thus, p(s−1x) < 1. Thus, p(x) < s. This means
p(E) ⊂ [0, s). Therefore, p(E) is bounded in R.

Next, suppose that p(E) is bounded in R for every p ∈P. We will show that
E is topologically bounded in X. Take any open neighborhood V of 0 in X. We
will find s > 0 such that E ⊂ tV for all t > s. Because V contains an element
of B, we can shrink V if necessary to be able to assume V ∈ B. Then there are
p1, . . . , pm ∈ V and n1, . . . , nm ∈ N such that

V =

{
x ∈ X : pk(x) <

1

nk
∀1 ≤ k ≤ m

}
.

Because p1(E), . . . , pm(E) are bounded in R, there exists a number M > 0 such
that pk(E) ⊂ [0,M ] for all 1 ≤ k ≤ m. Choose s = (n1 + . . . + nm)M > 0. For
t > s, x ∈ E, 1 ≤ k ≤ m, we have

pk(t
−1x) = t−1pk(x) ≤ t−1M < s−1M <

1

n1 + . . .+ nm
≤ 1

nk
.

Thus, t−1x ∈ V . This means x ∈ tV . Therefore, E ⊂ tV for all t > s.
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Proposition 6.6. Let X be a vector space and P = {pn : n ∈ N} be a separating
family of seminorms on X. Let τ be the topology on X generated by P in the
manner of Proposition 6.5. Define a map d : X ×X → R,

d(x, y) =
∞∑
n=1

2−npn(x− y)

1 + pn(x− y)
.

Then d is a translation-invariant metric on X and (X, τ) is metrized by d.

Proof. First, we will show that d is a translation-invariant metric on X. It is clear
that d is a well-defined map and d(x+ z, y + z) = d(x, y) for all x, y, z ∈ X. Also,
we have d(x, y) ≥ 0 and d(x, y) = d(y, x) for all x, y ∈ X. It remains to check the
triangle inequality. It suffices to show that

pn(x− y)

1 + pn(x− y)
≤ pn(x− z)

1 + pn(x− z)
+

pn(z − y)

1 + pn(z − y)
∀n ∈ N, ∀x, y, z ∈ X.

Put a = pn(x − y), b = pn(x − z), c = pn(z − y). Then a, b, c ≥ 0 and a ≤ b + c.
We want to show that

a

1 + a
≤ b

1 + b
+

c

1 + c
.

This inequality is equivalent to a(1 + b)(1 + c) ≤ (1 + a)[b(1 + c) + c(1 + b)]. It is
true because RHS-LHS=abc+ 2bc+ b+ c− a ≥ 0.

Next, we will show that d is compatible with τ . Let B be the local base of τ
as in Proposition 6.5. Because d is translation-invariant, it suffices to show that
each ball Br = {x ∈ X : d(x, 0) < r} contains a member of B and each member of
B contains such a ball. First, we will find V ∈ B such that V ⊂ Br. There exists
N ∈ N such that

∑∞
n=N+1 2−n < r/2. There exists n0 ∈ N such that 1

n0
< r

2
. Put

V =

{
x ∈ X : pk(x) <

1

n0

∀1 ≤ k ≤ N

}
.

For each x ∈ V , we have

d(x, 0) =
N∑
n=1

2−npn(x)

1 + pn(x)
+

∞∑
n=N+1

2−npn(x)

1 + pn(x)

≤
N∑
n=1

2−npn(x) +
∞∑

n=N+1

2−n

<

N∑
n=1

2−n
1

n0

+
r

2
<

∞∑
n=1

2−n
r

2
+
r

2
= r.

Thus, x ∈ Br. Therefore, V ⊂ Br.
Next, for each V ∈ B, we will find r > 0 such that Br ⊂ V . There are

pi1 , . . . , pim ∈P and n1, . . . , nm ∈ N such that

V =

{
x ∈ X : pik(x) <

1

nk
∀1 ≤ k ≤ m

}
.
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Take any r > 0 such that

0 <
r2nk

1− r2nk
<

1

nk
∀1 ≤ k ≤ m.

For each x ∈ Br, we have

2−nkpik(x)

1 + pik(x)
≤ d(x, 0) < r.

Multiplying both sides by (-1) and then adding 2−nk , we get

2−nk

1 + pik(x)
> 2−nk − r > 0.

Hence,

1 + pik(x) <
1

1− r2nk
.

Therefore,

pik(x) <
r2nk

1− r2nk
<

1

nk
.

Thus, x ∈ V , Hence, Br ⊂ V .

6.2 The spaces C∞(Ω) and DK

Let Ω be a nonempty open subset of a Euclidean space. This section gives a
construction for a topology on C∞(Ω) which turns it into a Fréchet space. For the
purpose of studying the existence of smooth solutions to the problem P (D)u = f
where f is a given smooth function on Rn, we only consider the case Ω = Rn.
However, we will still deal with a generic open set Ω in this section because the
method below still works in such a case.

Let (Kn) be a sequence of compact subsets of Ω such that each Kn is contained
in the interior of Kn+1 and that Ω =

⋃∞
n=1Kn. For example, we can choose

Kn =

{
x ∈ Ω : dist(x,Ωc) ≥ 1

n
, |x| ≤ n

}
,

where n may start from some index. For each n ∈ N, we define a map pn :
C∞(Ω)→ R,

pn(f) = max {|Dαf(x)| : x ∈ Kn, |α| ≤ n} .
This is a seminorm on C∞(Ω). If f ∈ C∞(Ω)\{0}, there exists x0 ∈ Ω such that
f(x0) 6= 0; then for each n ∈ N such that x0 ∈ K0 we have pn(f) 6= 0. Thus, the
family of seminorms pn is separating.

By Proposition 6.5, the family {pn} generates a locally convex TVS structure
on C∞(Ω). Moreover, C∞(Ω) has a local base B consisting of open sets

V (n, k) =

{
f ∈ C∞(Ω) : pn(f) <

1

k

}
∀n, k ∈ N.
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Because V (k, k) ⊂ V (n, k) for all k ≥ n, the family {V (k, k) : k ∈ N} is a local
base of C∞(Ω). Moreover, by Proposition 6.6, the topology on C∞(Ω) is metrized
by a translation-invariant metric

d(f, g) =
∞∑
n=1

2−npn(f − g)

1 + pn(f − g)
∀f, g ∈ C∞(Ω). (6.1)

For a compact set K ⊂ Ω, we put

DK = {f ∈ C∞(Ω) : suppf ⊂ K} .

Then DK is a vector subspace of C∞(Ω) and hence inherits the TVS structure for
C∞(Ω).

Proposition 6.7. The topology which we have defined on C∞(Ω) does not depend
on the specific choice of a sequence (Kn).

Proof. Let τ be the topology corresponding to a sequence (Kn) of compact subsets
of Ω such that each Kn is contained in the interior of Kn+1 and that Ω =

⋃∞
n=1Kn.

Then τ has a local base B consisting of the sets

V (n, k) =

{
f ∈ C∞(Ω) : pn(f) <

1

k

}
∀n, k ∈ N.

Let (K̃n) be another sequence of compact subsets of Ω such that each K̃n is con-
tained in the interior of K̃n+1 and that Ω =

⋃∞
n=1 K̃n. For each n ∈ N, we define

a map p̃n : C∞(Ω)→ R,

p̃n(f) = max
{
|Dαf(x)| : x ∈ K̃n, |α| ≤ n

}
.

Let τ̃ be the topology on C∞(Ω) generated by the sequence of seminorm (p̃n).
Then τ̃ has a local base B̃ consisting of the sets

Ṽ (n, k) =

{
f ∈ C∞(Ω) : p̃n(f) <

1

k

}
∀n, k ∈ N.

To show that τ = τ̃ , it suffices to show that each member of B contains a member
of B̃ and vice versa. To do so, it suffices to show each set V (n, k) contains a set
Ṽ (m, l) and vice versa.

Consider a set V (n, k). Because
⋃∞
m=1 K̃m = Ω and K̃1 ⊂ K̃2 . . ., there exists

m ≥ n such that Kn ⊂ K̃m. For each f ∈ Ṽ (m, k), we have

1

k
> p̃m(f) = sup

K̃m

{|Dαf(x)| : |α| ≤ m} ≥ sup
Kn

{|Dαf(x)| : |α| ≤ n} = pn(f).

Thus, f ∈ V (n, k). This means Ṽ (m, k) ⊂ V (n, k).
Consider a set Ṽ (m, l). Because

⋃∞
n=1Kn = Ω and K1 ⊂ K2 . . ., there exists

n ≥ m such that K̃m ⊂ Kn. For each f ∈ V (n, l), we have

1

l
> pn(f) = sup

Kn

{|Dαf(x)| : |α| ≤ n} ≥ sup
K̃m

{|Dαf(x)| : |α| ≤ m} = pm(f).

Thus, f ∈ Ṽ (m, l). This means V (n, l) ⊂ Ṽ (m, l).

56



Proposition 6.8. Let (fn) be a sequence in C∞(Ω) and f ∈ C∞(Ω). Then (fn)
converges to f if and only if for every multi-index β, the sequence (Dβfn) converges
to Dβf uniformly on every compact subset of Ω.

Proof. We know that the sequential convergence in the topological space C∞(Ω) is
the same as that in the metric space (C∞(Ω), d) where d is given by (6.1). Suppose
that d(fn, f)→ 0 as n→∞. For m ∈ N,

2−mpm(fn − f)

1 + pm(fn − f)
≤ d(fn, f)

for all n sufficiently large. Thus, pm(fn − f) → 0 as n → ∞. Thus, for each
|α| ≤ m, the sequence (Dαfn) converges to Dαf uniformly on Km as n → ∞.
Because m can be chosen arbitrarily large, the sequence (Dαfn) converges to Dαf
uniformly on every compact subset of Ω.

Now suppose that for every multi-index β, the sequence (Dβfn) converges to
Dβf uniformly on every compact subset of Ω. For every ε > 0, there exists N ∈ N
such that

∑∞
m=N+1 2−m < ε/2. There exists n0 ∈ N such that for all n > n0,

|Dβfn(x)−Dβf(x)| < ε

2
∀|β| ≤ N, ∀x ∈ KN .

Thus,

pm(fn − f) <
ε

2
∀1 ≤ m ≤ N, ∀n > n0.

For n > n0,

d(fn, f) =
N∑
m=1

2−mpm(fn − f)

1 + pm(fn − f)
+

∞∑
m=N+1

2−mpm(fn − f)

1 + pm(fn − f)

≤
N∑
m=1

2−m pm(fn − f)︸ ︷︷ ︸
<ε/2

+
∞∑

m=N+1

2−m︸ ︷︷ ︸
<ε/2

<
ε

2
+
ε

2
= ε.

Therefore, d(fn, f)→ 0 as n→∞.

Proposition 6.9. C∞(Ω) is a Fréchet space.

Proof. From the construction of the topology on C∞(Ω), C∞(Ω) is a locally convex
TVS and is metrized by a translation-invariant metric d. It remains to show that
d is a complete metric. Let (fi)i∈N be a Cauchy sequence in (C∞(Ω), d). Then for
each n ∈ N,

2−npn(fi − fj)
1 + pn(fi − fj)

≤ d(fi, fj).

Thus,

0 ≤ pn(fi − fj) ≤
2nd(fi, fj)

1− 2nd(fi, fj)
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for all i, j ∈ N that are sufficiently large. Put pn(fi − fj) → 0 as i, j → ∞.
Thus, for |α| ≤ n, max{|Dαfi(x) − Dαfj(x)| : x ∈ Kn} → 0 as i, j → ∞. This
means for every multi-index α, {(Dαfi)|Kn} is a Cauchy sequence in C(Kn). Thus,
{(Dαfi)|Kn} converges to a function in C(Kn). Because this is true for all n ∈ N
and that Kn is contained in the interior of Kn+1, there exists a function fα ∈ C(Ω)
such that (Dαfi)|Kn → fα|Kn in C(Kn).

For |α| = 0, we denote f = fα. Because the sequence (Dαfi) converges to
fα uniformly on every compact subset of Ω for all α, we have f ∈ C∞(Ω) and
Dαf = fα. Thus, the sequence (Dαfi) converges to Dαf uniformly on every
compact subset of Ω. By Proposition 6.8, the sequence (fi) converges to f in
C∞(Ω).

6.3 The test-function space D(Ω)

Let Ω be a nonempty open subset of Rn. Denote by D(Ω) the set of all functions
φ ∈ C∞(Ω) which are compactly supported in Ω. It is clear that D(Ω) is a vector
subspace of C∞(Ω). Hence, D(Ω) inherits a topology from that of C∞(Ω) which we
defined in Section 6.2. However, in this section, we will introduce a new topology
on D(Ω) in which the convergence of sequences becomes more demanding. With
the new topology, D(Ω) is called a test-function space. For the purpose of studying
the existence of smooth solutions to the problem P (D)u = f where f is a given
smooth function on Rn, we only consider the case Ω = Rn. However, we will still
deal with a generic open set Ω in this section because the method below still works
in such a case.

For each compact set K ⊂ Ω, we denote by τK the topology on DK as described
in Section 6.2. We know that (DK , τK) is a locally convex TVS.

Proposition 6.10. Let B̃ be the collection of all balanced convex sets W ⊂ D(Ω)
such that DK ∩W ∈ τK for every compact set K ⊂ Ω. Let τ be the collection of
all unions of sets of the form φ+W where φ ∈ D(Ω) and W ∈ B̃. Then we have
the following statements.

(i) τ is a topology on D(Ω).

(ii) Every neighborhood of φ ∈ D(Ω) contains an open neighborhood φ + W for
some W ∈ B̃.

(iii) (D(Ω), τ) is a locally convex TVS, and B̃ is a local base consisting of balanced
convex open sets.

According to [Rud73, Remark 6.9, p.141], D(Ω) is not metrizable. Conse-
quently, the topology on D(Ω) defined in Proposition 6.10 is different from the
topology which D(Ω) inherits from C∞(Rn).

Proof of Proposition 6.10. (i) It is clear that ∅,D(Ω) ∈ τ and that τ is closed
under unions. Now we will show that τ is closed under finite intersections. To do
so, we take φ1, φ2 ∈ D(Ω) and W1,W2 ∈ B̃ arbitrarily and show that (φ1 +W1)∩
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(φ2 + W2) ∈ τ . Take any φ ∈ (φ1 + W1) ∩ (φ2 + W2). We will find a set W ∈ B̃
such that φ+W ⊂ (φ1 +W1) ∩ (φ2 +W2). Put

K0 = (suppφ) ∪ (suppφ1) ∪ (suppφ2).

Then K0 is a compact subset of Ω. Because φ− φ1 ∈ W1 and supp(φ− φ1) ⊂ K0,
we have φ− φ1 ∈ W1 ∩DK0 which is a balanced convex open subset of (DK0 , τK0).
Thus, there exists a number δ1 ∈ (0, 1) such that φ−φ1 ∈ (1− δ1)(W1∩DK0). We
write

φ− φ1 = (1− δ1)ψ1,

for some ψ1 ∈ W1. Similarly, there exists δ2 ∈ (0, 1) and ψ2 ∈ W2 such that
φ − φ2 = (1 − δ2)ψ2. Put W = (δ1W1) ∩ (δ2W2). Then W is a convex balanced
subset of D(Ω) because it is the intersection of two convex balanced subsets of
D(Ω). For each compact set K ⊂ Ω,

DK ∩W = (DK ∩ δ1W1) ∩ (DK ∩ δ2W2)

= [δ1(DK ∩W1︸ ︷︷ ︸
∈τK

)] ∩ [δ2(DK ∩W2︸ ︷︷ ︸
∈τK

)]

∈ τK .

Therefore, W ∈ B̃. We will show that φ+W ⊂ (φ1 +W1) ∩ (φ2 +W2). For each
ψ ∈ W , we will show that φ+ ψ ∈ (φ1 +W1)∩ (φ2 +W2). Write ψ = δ1ψ3 = δ2ψ4

for some ψ3 ∈ W1 and ψ4 ∈ W2. Then

φ+ ψ − φ1 = (1− δ1)ψ1 + δ1ψ3 ∈ W1 (since W1 is convex),
φ+ ψ − φ2 = (1− δ2)ψ2 + δ2ψ4 ∈ W2 (since W2 is convex).

Thus, φ+ψ ∈ φ1 +W1 and φ+ψ ∈ φ2 +W2. We have proved that τ is a topology
on D(Ω).

(ii) Take φ ∈ D(Ω) arbitrarily. By the definition of the topology τ on D(Ω),
every neighborhood of φ in D(Ω) contains an open neighborhood of the form
φ0 + W0 for some φ0 ∈ D(Ω) and W0 ∈ B̃. Put φ1 = φ, φ2 = φ, W1 = W0 and
W2 = W0. Then φ ∈ (φ1 + W1) ∩ (φ2 + W2). In the proof of Part (i), we showed
that there exists W ∈ B̃ such that φ+W ⊂ (φ1 +W1) ∩ (φ2 +W2). Thus,

φ+W ⊂ (φ+W0) ∩ (φ0 +W0) ⊂ φ0 +W0.

Therefore, every neighborhood of φ in D(Ω) contains an open neighborhood of the
form φ+W for some W ∈ B̃.

(iii) Each element in B̃ is balanced and convex. By part (ii), B̃ is a basis of
open neighborhood of 0. We will show that (D , τ) is a TVS. First, we will show
that (D , τ) is a T1 space. For φ1, φ2 ∈ , φ1 6= φ2, we put

W =
{
φ ∈ D(Ω) : max

Ω
|φ| < max

Ω
|φ2 − φ1|

}
.

Then φ1 ∈ φ1 + W but φ2 6∈ φ1 + W . It remains to show that W ∈ B̃. For each
s ∈ [−1, 1] and φ ∈ W ,

max
Ω
|sφ| = |s|max

Ω
|φ| ≤ max

Ω
|φ| < max

Ω
|φ2 − φ1|.

59



Thus, sφ ∈ W . This implies that W is balanced in D(Ω). For ψ1, ψ2 ∈ W ,
s ∈ [0, 1] and x ∈ Ω, we have

|sψ1(x) + (1− s)ψ2(x)| ≤ s|ψ1(x)|+ (1− s)|ψ2(x)|
≤ smax

Ω
|φ1|+ (1− s) max

Ω
|φ2|

< smax
Ω
|φ2 − φ1|+ (1− s) max

Ω
|φ2 − φ1|

= max
Ω
|φ2 − φ1|.

Thus, sψ1 + (1− s)ψ2 ∈ W . This implies that W is a convex subset of D(Ω). For
every compact set K ⊂ Ω, we will show that DK ∩W ∈ τK . We have

DK ∩W =
{
φ ∈ DK : max

Ω
|φ| < max

Ω
|φ2 − φ1|

}
.

We know from Section 6.2 that (DK , τK) is a metric space with

d(f, g) =
∞∑
n=1

2−npn(f − g)

1 + pn(f − g)
∀f, g ∈ DK ,

where pn(h) = max{|Dαh(x)| : |α| ≤ n, x ∈ Kn} and (Kn) is a sequence of
compact subsets of Ω such that each Kn is contained in the interior of Kn+1 and
Ω =

∑∞
n=1 Kn. Take any φ ∈ DK ∩W . Choose a number ε ∈ (0, 2) such that

ε

2− ε
< max

Ω
|φ2 − φ1| −max

K
|φ|.

There exists m ∈ N such that K ⊂ Km. We will show that the set

O =
{
ψ ∈ DK : d(ψ, φ) < ε2−m−1

}
is contained in DK ∩W . For each ψ ∈ O,

2−mpm(ψ, φ)

1 + pm(ψ, φ)
≤ d(ψ, φ) < ε2−m−1.

Thus,
pm(ψ, φ)

1 + pm(ψ, φ)
<
ε

2
,

which implies

pm(ψ, φ) <
ε

2− ε
< max

Ω
|φ2 − φ1| −max

K
|φ|.

Thus,

max
K
|ψ − φ| ≤ max

Km
|ψ − φ| ≤ pm(ψ, φ) < max

Ω
|φ1 − φ2| −max

K
|φ|.

Thus,
max
K
|ψ| ≤ max

K
|ψ − φ|+ max

K
|φ| < max

Ω
|φ1 − φ2|.
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This implies ψ ∈ W . Therefore, φ ∈ O ⊂ D ∩W . Note that O is an open subset
in DK depending on the choice of φ in DK ∩W . If we denote this dependence by
writing Oφ instead of O, then

DK ∩W =
⋃

φ∈DK∩W
Oφ.

Thus, DK ∩W is open in DK . We have proved that W ∈ B̃.
Next, we will show that the addition map on D(Ω) is continuous. Take any

φ1, φ2 ∈ D(Ω) and put φ3 = φ1 + φ2. We will show that the addition map is
continuous at (φ1, φ2). By Part (ii), every neighborhood of φ3 contains an open
neighborhood of the form φ3 + W for some W ∈ B̃. Because W is balanced and
convex, so is the set 1

2
W . For every compact set K ⊂ Ω,

DK ∩
(

1

2
W

)
=

1

2
(DK ∩W︸ ︷︷ ︸

∈τK

) ∈ τK .

Thus, 1
2
W ∈ B̃. We will show that(

φ1 +
1

2
W

)
+

(
φ2 +

1

2
W

)
⊂ φ3 +W. (6.2)

For ψ1, ψ2 ∈ W , we have(
φ1 +

1

2
W

)
+

(
φ2 +

1

2
W

)
= (φ1 + φ2) +

(
1

2
ψ1 +

1

2
ψ2

)
= φ3 +

(
1

2
ψ1 +

1

2
ψ2

)
.

Since W is convex, 1
2
ψ1 + 1

2
ψ2 ∈ W . Therefore, φ3 +

(
1
2
ψ1 + 1

2
ψ2

)
∈ φ3 +W . Thus,

we have proved (6.2).
Next, we will show that the scalar multiplication map R × D(Ω) → D(Ω),

(λ, f) 7→ λf is continuous. Take any λ ∈ R and φ ∈ D(Ω). We will show that the
scalar multiplication map is continuous at (λ, φ). By Part (ii), every neighborhood
of λφ contains an open neighborhood of the form λφ+W for some W ∈ B̃. Since
φ ∈ D(Ω), φ ∈ DK where K = suppφ. Because W ∈ B̃,DK ∩W is open in DK .

Thus, there exists a number ε ∈
(

0, 1
2(|λ|+1)

)
such that 2εφ ∈ (DK ∩W ). Note that

εW ∈ B̃. We will show that

(λ− ε, λ+ ε)(φ+ εW ) ⊂ λφ+W. (6.3)

For any t ∈ (−ε, ε) and ψ ∈ W , we have

(λ+ t)(φ+ εψ)− λφ = tφ+ ε(λ+ t)ψ

=
1

2
(2t)φ+

1

2
(2ε(λ+ t))ψ. (6.4)

Because |t|
ε
≤ 1, 2tφ = |t|

ε
(2εφ), 2εφ ∈ W , and W is balanced, we conclude that

2tφ ∈ W . Because

|2ε(λ+ t)| ≤ 2ε(|λ|+ ε) < 2ε(|λ|+ 1) < 1,
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ψ ∈ W , and W is balanced, we conclude that 2ε(λ+ t)ψ ∈ W . Because 2tφ ∈ W ,
2ε(λ+ t)ψ ∈ W and W is convex, we conclude that

1

2
(2t)φ+

1

2
(2ε(λ+ t))ψ ∈ W.

Then (6.4) implies that (λ+ t)(φ+ εψ)− λφ ∈ W . Thus,

(λ+ t)(φ+ εψ) ∈ λφ ∀t ∈ (−ε, ε), ∀ψ ∈ W.

Thus, (6.3) is proved.

Proposition 6.11. Denote by (D(Ω), τ) the TVS as defined in Proposition 6.10.
For each compact set K ⊂ Ω, we denote by τK the topology which DK inherits
from C∞(Ω). Then

τK = {D(Ω) ∩W : W ∈ τ}.

In other words, τK coincides with the topology that DK inherits from (D(Ω), τ).

Proof. First, we will show that {D(Ω) ∩W : W ∈ τ} ⊂ τK . Take any W ∈ τ .
We want to show that D(Ω) ∩ W ∈ τK . Take any φ ∈ D(Ω) ∩ W . By the
definition of τ in Proposition 6.10, there exist φ0 ∈ D(Ω) and W0 ∈ B̃ such that
φ ∈ DK ∩ (φ0 + W0). Thus, 0 ∈ DK ∩ (φ0 − φ + W0). Thus, φ0 − φ + W0 is a
neighborhood of 0 in D(Ω). Because B̃ is a local base of τ , there exists W1 ∈ B̃
such that W1 ⊂ φ0 − φ+W0. Thus,

DK ∩W1 ⊂ DK ∩ (φ0 − φ+W0).

We have
φ+ (DK ∩W1) ⊂ DK ∩ (φ0 +W0) ⊂ DK ∩W.

Since W1 ∈ B̃, DK ∩W1 ∈ τK . Thus, φ+ (DK ∩W1) is an open neighborhood of
φ in (DK , τK) that is contained in DK ∩W . Because φ was chosen arbitrarily in
DK ∩W , we conclude that DK ∩W ∈ τK .

Next, we will show that τK ⊂ {D(Ω) ∩W : W ∈ τ}. We know that τK is the
topology which DK inherits from the metric space (C∞(Ω), d),

d(f, g) =
∞∑
n=1

2−npn(f − g)

1 + pn(f − g)
∀f, g ∈ C∞(Ω),

where pn : C∞(Ω)→ R, pn(f) = max{|Dαf(x)| : |α| ≤ n, x ∈ Kn} and (Kn) is a
sequence of compact subsets of Ω such that each Kn is contained in the interior of
Kn+1 and

⋃∞
n=1 Kn = Ω. Take any O ∈ τK . We will show that there exists V ∈ τ

such that O = DK ∩V . Take any φ ∈ O. Because (DK , d) is a metric space, there
exists r > 0 such that φ+Br ⊂ O where

Br = {ψ ∈ DK : d(ψ, 0) < r} =

{
ψ ∈ DK :

∞∑
n=1

2−npn(ψ)

1 + pn(ψ)
< r

}
.
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Because K is compact and (Kn) is an increasing sequence with
⋃∞
n=1Kn = Ω,

there exists N ∈ N such that K ⊂ KN . We can assume
∑∞

n=N+1 2−n < r/2. Put
W = {ψ ∈ D(Ω) : pN(ψ) < r/2}. For every ψ ∈ W , we have

0 ≤ p1(ψ) ≤ p2(ψ) ≤ . . . ≤ pN(ψ) <
r

2
.

Thus,

d(ψ, 0) =
N∑
n=1

2−npn(ψ)

1 + pn(ψ)
+

∞∑
n=N+1

2−npn(ψ)

1 + pn(ψ)
≤

N∑
n=1

2−n pn(ψ)︸ ︷︷ ︸
<r/2

+
∞∑

n=N+1

2−n︸ ︷︷ ︸
<r/2

<
r

2
+
r

2
= r.

Thus, W ⊂ {ψ ∈ D(Ω) : d(ψ, 0) < r}. Thus,

DK ∩W ⊂ {ψ ∈ DK : d(ψ, 0) < r} = Br.

Hence,
DK ∩ (φ+W ) = φ+ (DK ∩W ) ⊂ φ+Br ⊂ O. (6.5)

Because pN is a seminorm on D(Ω), W is a balanced and convex subset of D(Ω).
For every compact set L ⊂ Ω, we have

DL ∩W =
{
ψ ∈ DL : pN(ψ) <

r

2

}
= DL ∩ U,

with U = {ψ ∈ C∞(Ω) : pN(ψ) < r/2}. By Proposition 6.5, the map pN : C∞(Ω)→
R is continuous. Thus, the set U = p−1

N ((−∞, r/2)) is open in C∞(Ω). Hence,
DL ∩ U is open in DL. This means DL ∩W is open in DL. Thus, W ∈ B̃. Then
the set Wφ = φ + W is an open neighborhood of φ in D(Ω). By (6.5), we have
φ ∈ DK ∩Wφ ⊂ O. Therefore,

O =
⋃
φ∈O

(Wφ ∩DK) =

(⋃
φ∈O

Wφ

)
∩DK = V ∩DK ,

where V =
⋃
φ∈O Wφ is an open subset of D(Ω).

Proposition 6.12. A set E is topologically bounded in D(Ω) if and only if there
exists a compact set K ⊂ Ω such that E ⊂ DK and E is topologically bounded in
DK.

Proof. (⇐) Suppose that there exists a compact set K ⊂ Ω such that E ⊂ DK

and E is topologically bounded in DK . For each neighborhood V of 0 in D(Ω), we
find s > 0 such that E ⊂ tV for all t > s. By Proposition 6.11, the V ∩ DK is a
neighborhood of 0 in DK . Because E is topologically bounded in DK , there exists
s > 0 such that E ⊂ t(V ∩DK) for all t > s. Thus, E ⊂ tV for all t > s.

(⇒) Consider a topologically bounded subset E of D(Ω). Suppose by contra-
diction that there is no compact set K ⊂ Ω such that E ⊂ DK . Let (Kn) be a
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sequence of compact subsets of Ω such that each Kn is contained in the interior
of Kn+1 and Ω =

∑∞
n=1 Kn. Because E 6⊂ DKn , there exists φn ∈ E\DKn . Thus

there is xn ∈ Ω\Kn such that φn(xn) 6= 0. We claim that the sequence (xn) has
no accumulation point in Ω. Suppose otherwise. Then there exists a subsequence
(xnk) of (xn) and x0 ∈ Ω such that xnk → x0. Since x0 ∈ Ω =

∑∞
n=1Kn, there

exists N ∈ N such that x0 ∈ KN . Because KN is contained in the interior of KN+1,
there exists k0 ∈ N such that xnk ∈ KN+1 for all k > k0. For m > max{N, k0}, we
have

xnm ∈ Ω\Knm ⊂ Ω\Km ⊂ Ω\KN+1.

This is a contradiction. Therefore, our claim is proved. Put

W =

{
φ ∈ D(Ω) : |φ(xn)| < 1

n
|φn(xn)| ∀n ∈ N

}
.

It is clear that W is a balanced convex subset of D(Ω). We will show that W ∈ B̃,
where B̃ is the local base of D(Ω) as defined in Proposition 6.10. For each compact
set L ⊂ Ω, we will show that DL ∩W is open in DL. Because the sequence (xn)
has no limit accumulation point in L and L is compact, there are only finitely
many terms of the sequence (xn) lying in L. Let us call them xn1 , xn2 , . . . , xnm for
m ≥ 0. Then

DL ∩W =

{
φ ∈ DL : |φ(xni)| <

1

ni
|φni(xni)| ∀1 ≤ i ≤ m

}
.

For each 1 ≤ i ≤ m, we put

αi =
1

ni
|φni(xni)| > 0

and define a map Ji : DL → R, Ji(f) = f(xni). Since L is compact, there
exists N ∈ N such that L ⊂ KN . By Part (ii) of Proposition 6.5, the map
pN : C∞(Ω)→ R is continuous. For every sequence (fj) in DL which converges to
some f ∈ DL, we have

|Ji(fj)− Ji(f)| = |fj(xni)− f(xni)| ≤ |pN(fj)− pN(f)| → 0 as j →∞.

Hence, Ji is continuous. We have

DL ∩W = {φ ∈ DL : |Ji(φ)| < αj ∀1 ≤ i ≤ m} =
m⋃
i=1

J−1
i ((−αi, αi)),

which is an open subset of DL. We have proved that W ∈ B̃. Therefore, W is
an open neighborhood of the origin in D(Ω). Because E is topologically bounded
in D(Ω), there exists s > 0 such that E ⊂ tW for all t > s. In particular,
φn ∈ (s+ 1)W for all n ∈ N. Thus,

1

s+ 1
φn ∈ W ∀n ∈ N.
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This means
1

s+ 1
|φn(xn)| < 1

n
|φn(xn)| ∀n ∈ N.

Since |φn(xn)| > 0, the above inequality is equivalent to n < s + 1 for all n ∈ N.
This is a contradiction.

Proposition 6.13. Denote by (D(Ω), τ) the TVS as defined in Proposition 6.10.
Let (φn) be a sequence in (D(Ω), τ). Then (φn) converges to 0 if and only if there
is a compact set K ⊂ Ω such that φn ∈ DK for all n ∈ N and Dαφn → 0 uniformly
on K for every multi-index α.

Proof. (⇐) Suppose that there is a compact set K ⊂ Ω such that φn ∈ DK for all
n ∈ N and Dαφn → 0 uniformly on K for every multi-index α. By Proposition 6.8,
the sequence (φn) converges to 0 in C∞(Ω). Thus, (φn) converges to 0 in the
topology (DK , τK). By Proposition 6.11, τK is also the topology that DK inherits
from (D(Ω), τ). We conclude that (φn) converges to 0 in (D(Ω), τ).

(⇒) Consider a sequence (φn) in (D(Ω), τ) which converges to 0. By Part (ii)
of Proposition 6.2, (φn) is topologically bounded. Then by Proposition 6.12, there
exists a compact set K ⊂ Ω such that φn ∈ DK for all n ∈ N. Because φn → 0 in
(D(Ω), τ), φn → 0 in (DK , τK). Thus, φn → 0 in C∞(Ω). By Proposition 6.8, for
every multi-index α and for every compact subset L of Ω, Dαφn → 0 uniformly on
L as n→∞. Taking L = K, we have proved the claim.

Proposition 6.14. Denote by (D(Ω), τ) the TVS as defined in Proposition 6.10.
Let Y be a locally convex TVS and Λ : D(Ω) → Y be a linear map. Then Λ is
continuous if and only if for every sequence (φn) converging to 0 in D(Ω), the
sequence (Λφn) converges to 0 in Y .

Proof. (⇒) Suppose that Λ is continuous. Let (φn) be a sequence converging to 0
in D(Ω) and V be a neighborhood of 0 in Y . Because Λ is continuous, there exists
a neighborhood U of 0 in D(Ω) such that Λ(U) ⊂ V . Since φn → 0 in D(Ω), there
exists N ∈ N such that φn ∈ U for all n > N . Thus, Λ(φn) ∈ Λ(U) ⊂ V for all
n > N . Hence, Λ(φn)→ 0 in Y .

(⇐) For each compact set K ⊂ Ω, we know from Section 6.2 that DK is
metrizable. Every sequence (φn) in DK that converges to 0 also converges to 0
as a sequence in D(Ω). Then we have Λ(φn) → 0. Thus, the restriction of Λ on
DK is continuous. Now we will show that Λ is continuous on D(Ω). Because Y is
locally convex, it has a balanced convex local base consisting of open sets, namely
B1, according to Part (ii) of Proposition 6.1. Take any V ∈ B1. We will show
that Λ−1(V ) ⊂ U is open in D(Ω). Since V is balanced and convex, so is U . For
each compact set K ⊂ Ω, we have

DK ∩ U = DK ∩ Λ−1(V ) = (Λ|DK )−1(V ),

which is open in DK because Λ|DK is continuous. Thus, U ∈ B̃, the local base of
D(Ω) as defined in Proposition 6.10. Therefore, U is open in D(Ω).
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6.4 The distribution spaces D ′(Ω) and E ′(Ω)

Let Ω be a nonempty open subset of a Euclidean space. The test-function space
D(Ω) is a TVS as defined in Proposition 6.10. For each φ ∈ D(Ω) and N ∈ N, we
denote ||φ||N = max{|Dαφ(x)| : |α| ≤ N, x ∈ Ω}. A map Λ : D(Ω)→ R is called
a distribution in Ω if Λ is linear and continuous. The set of all distributions in Ω
is denoted by D ′(Ω). This is clearly a vector space (over R).

Proposition 6.15. Let Λ : D(Ω) → R be a linear map. Then Λ ∈ D ′(Ω) if and
only if for every compact set K ⊂ Ω, there exist a nonnegative integer N = N(K)
and a number C = C(K) > 0 such that

|Λφ| ≤ C||φ||N ∀φ ∈ DK .

Proof. (⇒) Suppose that Λ ∈ D ′(Ω). Take any compact set K ⊂ Ω. The map
Λ|DK : DK → R is linear and continuous. By Proposition 6.3, Λ|DK is a bounded
map. Let (Kn) be a sequence of compact subset of Ω such that Kn lies in the
interior of Kn+1 and

⋃∞
n=1Kn = Ω. Then we have a family of seminorms {pn : n ∈

N} with pn : C∞(Ω) → R, pn(f) = max{|Dαf(x)| : |α| ≤ n, x ∈ Kn}. By Part
(iii) of Proposition 6.5, a set E is topologically bounded in C∞(Ω) if and only if
pn(E) is bounded in R for every n ∈ N.

Because K is compact, there exists N ∈ N such that K ⊂ KN . Put E = {φ ∈
DK : pN(φ) = 1}. We will show that E is topologically bounded in DK . Because
DK is a topological subspace of C∞(Ω), it suffices to show that E is topologically
bounded in C∞(Ω). We have

0 ≤ p1(f) ≤ p2(f) ≤ . . . ≤ pN(f) = pN+1(f) = . . . = 1 ∀f ∈ E.

Therefore, pn(E) ⊂ [0, 1] for all n ∈ N. Thus, E is topologically bounded in
C∞(Ω).

Because Λ|DK is a bounded map, Λ(E) is bounded in R. Thus, there exists
C ∈ R such that |Λ(φ)| ≤ C for all φ ∈ E. For every ψ ∈ D\{0}, we put

φ =
ψ

||ψ||N
∈ E.

Then |Λ(ψ)| = ||ψ||N |Λ(φ)| ≤ C||ψ||N .
(⇐) Suppose that for every compact set K ⊂ Ω, there exists a nonnegative

integer N = N(K) and a number C = C(K) > 0 such that |Λ(φ)| ≤ C||φ||N for all
φ ∈ DK . We will show that for every compact set K ⊂ Ω, the map Λ|DK : DK → R
is continuous. For such a set K, there exists N0 ∈ N such that K ⊂ KN0 . We
know that DK is a topological subspace of C∞(Ω). Consider a sequence (φm) in DK

which converges to 0 ∈ DK . Then φm → 0 in C∞(Ω). Put N1 = max{N(K), N0}.
Then

||φm||N ≤ pN1(φm)→ 0 as m→∞.

Since |Λ(φm)| ≤ ||φm||N , Λ(φm) → 0 as m → ∞. Because the topology on DK is
metrizable, the map Λ|DK is continuous according to Proposition 6.3.
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We have showed that the map Λ|DK : DK → R is continuous for every compact
set K ⊂ Ω. Now we show that Λ : D(Ω) → R is continuous. It suffices to show
that Λ is continuous at 0. Consider an open neighborhood of 0 in R of the form
(−ε, ε), ε > 0. We need to show that the set V = Λ−1((−ε, ε)) is open in D(Ω).
By the linearity of Λ, V is balanced and convex. We will show that V ∈ B̃, where
B̃ is the local base of D(Ω) as defined in Proposition 6.10. To do so, it remains
to show that DK ∩ V is open in DK for every compact set K ⊂ Ω. We have

DK ∩ V = DK ∩ Λ−1((−ε, ε)) = (Λ|DK )−1((−ε, ε)).

This is an open set in DK because the map Λ|DK is continuous.

Let Λ ∈ D ′(Ω). If ω is an open subset of Ω such that Λφ = 0 for all φ ∈ D(ω),
we say that Λ vanishes in ω. Let W be the union of all open sets ω ⊂ Ω in which
Λ vanishes. Then Ω\W is called the support of Λ, denoted by suppΛ. The set
of all distributions whose supports are compact subsets of Ω is denoted by E ′(Ω).
This is clearly a vector subspace of D ′(Ω).

Proposition 6.16. Let u ∈ L1
loc(Ω). Define a map Λu : D → R,

Λu(φ) =

∫
Ω

uφdx.

Then Λu ∈ D ′(Ω). For this reason, we usually view a locally integrable function as
a distribution by identifying u with Λu.

Proof. It is clear from the definition of Λu that Λu is a linear map. For any compact
set K ⊂ Ω, we put

C = C(K) =

∫
K

|u|dx <∞.

Then for every φ ∈ DK ,

|Λu(φ)| =

∣∣∣∣∣∣
∫
Ω

uφdx

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
K

uφdx

∣∣∣∣∣∣ ≤
∫
K

|u||φ|dx ≤ C max {|φ(x)| : x ∈ K} = C||φ||0.

By Proposition 6.15, Λu ∈ D ′(Ω).

Proposition 6.17. Let Λ ∈ D ′(Ω). Then we have the following statements.

(i) If φ ∈ D(Ω) and suppφ ∩ suppΛ = ∅, then Λφ = 0.

(ii) If Λ ∈ E ′(Ω) then there are a number C > 0 and a nonnegative integer N
such that

|Λφ| ≤ C||φ||N ∀φ ∈ D(Ω).

Furthermore, Λ extends in a unique way to a linear continuous functional on
C∞(Ω).
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Proof. (i) Let φ ∈ D(Ω). Suppose that suppφ ∩ suppΛ = ∅. Then suppφ ⊂
Ω\suppΛ. Denote by S the family of all open subsets ω in Ω in which Λ vanishes.
Put W =

⋃
ω∈S ω. Then suppΛ = Ω\W by the definition of supports. Thus,

suppφ ⊂ W . For each x ∈ suppφ, x ∈ W . Thus, there exists ωx ∈ S such
that x ∈ ωx. Thus, the family {ωx : x ∈ suppφ} is an open cover of suppφ.
Because suppφ is compact, we can extract a finite subcover and rename it as
{U1, U2, . . . , Um}.

Put U = Ω\suppφ. Then {U,U1, . . . , Um} is an open cover of Ω. Consider a
smooth partition of unity subordinate to this cover, namely {ψ, ψ1, . . . , ψm}. We
have suppψ ⊂ U and suppψi ⊂ Ui for all 1 ≤ i ≤ m. Then φ = φψ+φψ1+. . .+φψm.
Since suppψ ⊂ U = Ω\suppφ, φψ = 0 in Ω. Put φi = φψi ∈ D(Ui). Then
φ = φ1 +φ2 + . . .+φm. Because Λ is linear, Λφ = Λφ1 + Λφ2 + . . .+ Λφm. Because
Ui ∈ S and φi ∈ D(Ui), we have Λψi = 0 for all 1 ≤ i ≤ m. Therefore, Λφ = 0.

(ii) Consider a distribution Λ ∈ D ′(Ω) whose support is a compact subset of
Ω. Then there exists a umber ε > 0 such that dist(suppΛ,Ωc) > ε. Put

K1 = {x ∈ Ω : dist(x, suppΛ) ≤ ε/2} ,
K2 = {x ∈ Ω : dist(x, suppΛ) ≤ ε} .

Then K1 and K2 are compact subsets of Ω. Moreover, suppΛ is contained in the
interior of K1. Aslo, K1 is contained in the interior of K2 and suppΛ ⊂ K1 ⊂
K2 ⊂ Ω. Let χ be a function in D(Ω) such that χ = 1 in K1 and χ = 0 in Ω\K2.
Because Λ ∈ D ′(Ω), by Proposition 6.15 there exists a nonnegative number N and
a number C0 > 0 such that

|Λ(φ)| ≤ C0||φ||N ∀φ ∈ DK2 .

Consider any function ψ ∈ D(Ω). Then ψχ ∈ DK2 and ψ − ψχ = 0 in K1. Thus,
supp(ψ − ψχ) ⊂ Ω\suppΛ. Thus,

supp(ψ − ψχ) ∩ suppΛ = ∅.

By Part (i), Λ(ψ − ψχ) = 0. Hence, Λ(ψ) = Λ(ψχ). Therefore,

|Λ(ψ)| = |Λ(ψχ)| ≤ C0||ψχ||N . (6.6)

By (3.5), we have

Dα(ψχ) =
∑

{β: β≤α}

(
α
β

)
(Dβψ)(Dα−βχ).

For each |α| ≤ N , we have

|Dα(ψχ)(x)| ≤M ||ψ||N ∀x ∈ Ω,

where

M = max

 ∑
{β: β≤α}

(
α
β

)
|Dα−βχ(x)| : |α| ≤ N, x ∈ Ω

 .
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Thus, ||ψχ||N ≤M ||ψ||N . Then (6.6) implies

|Λψ| ≤ C0||ψχ||N ≤ C0M ||ψ||N ∀ψ ∈ D(Ω).

Therefore, we can choose C = C0M > 0.
Next, we show that Λ extends in a unique way to a linear and continuous

functional on C∞(Ω). Suppose that Λ̃ : C∞(Ω)→ R is such an extension. For each
function f ∈ C∞(Ω), we have fχ ∈ DK2 and f = fχ in K1. Thus, supp(f−fχ) ⊂
Ω\suppΛ. Thus,

supp(f − fχ) ∩ suppΛ = ∅.

By Part (i), Λ(f − fχ) = 0. Thus,

Λ̃(f) = Λ̃(fχ) + Λ̃(f − fχ) = Λ(fχ) + Λ(f − fχ) = Λ(fχ).

This means Λ̃ is uniquely determined. Now we show that the functional Λ̃ :
C∞(Ω) → R, Λ̃(f) = Λ(fχ) is actually a linear continuous extension of Λ. If
f ∈ D(Ω) then

Λ̃(f) = Λ(fχ) = Λ(f)− Λ(f − fχ) = Λ(f).

Thus, Λ̃ = Λ on D(Ω). By the definition of Λ̃, it is clear that Λ̃ is linear. Let (fn)
be a sequence in C∞(Ω) which converges to f ∈ C∞(Ω). By Proposition 6.8, for
each multi-index α, Dαfn → Dαf uniformly on every compact subset of Ω. By
(3.5), we have

Dα(fnχ) =
∑
{β:β≤α}

(
α
β

)
(Dβfn)(Dα−βχ),

which converges to ∑
{β:β≤α}

(
α
β

)
(Dβf)(Dα−βχ) = Dα(fχ)

on every compact subset of Ω. Note that (fnχ) is a sequence in DK2 . Thus,
fnχ→ fχ in D(Ω) according to Proposition 6.13. Since Λ is continuous on D(Ω),
Λ(fnχ)→ Λ(fχ). Thus, Λ̃(fn)→ Λ̃(f). Therefore, Λ̃ is continuous on C∞(Ω).

Proposition 6.18. For each multi-index α and Λ ∈ D ′(Ω), we define a map
DαΛ : D(Ω)→ R,

(DαΛ)(φ) = (−1)αΛ(Dαφ) ∀φ ∈ D(Ω).

Then DαΛ ∈ D ′(Ω).

Proof. It is clear that DαΛ is a linear map. Because Λ ∈ D ′(Ω), for any compact
set K ⊂ Ω, according to Proposition 6.15 there exists a nonnegative integer N =
N(K) and a number C = C(K) > 0 such that

|Λ(φ)| ≤ C||φ||N ∀φ ∈ DK .
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For every φ ∈ DK , we have Dαφ ∈ DK . Thus,

|(DαΛ)(φ)| = |Λ(Dαφ)| ≤ C||Dαφ||N ≤ C||φ||N+|α|.

Therefore, DαΛ ∈ D ′(Ω) according to Proposition 6.15.

Proposition 6.19. Let Λ ∈ D ′(Ω) and α, β be two multi-indices. Then

(DαDβΛ)(φ) = (Dα+βΛ)(φ) = (DβDαΛ)(φ) ∀φ ∈ D(Ω).

Proof. By the definition of partial derivatives of a distribution, we have

(DαDβΛ)(φ) = (−1)|α|(DβΛ)(Dαφ)

= (−1)|α|(−1)|β|Λ(DβDαφ)

= (−1)|α|+|β|Λ(Dα+βφ)

= (Dα+βΛ)(φ)

Switching α with β, we get (DβDαΛ)(φ) = (Dβ+αΛ)(φ). Because α + β = β + α,
we obtain (DβDαΛ)(φ) = (DαDβΛ)(φ).

If we have a map v : Rn → R and x ∈ Rn then τxv and v̌ are the functions on
Rn defined by

(τxv)(y) = v(y − x), v̌(y) = v(−y).

If u ∈ D ′(Rn) and φ ∈ D(Rn) then their convolution u∗φ is defined as the function

(u ∗ φ)(x) = u(τxφ̌) ∀x ∈ Rn. (6.7)

By Part (ii) of Proposition 6.17, each u ∈ E ′(Rn) can extend in a unique way to a
linear continuous functional on C∞(Rn). This allows us to define the convolution
u ∗ φ for u ∈ E ′(Rn) and φ ∈ C∞(Rn) as follows.

(u ∗ φ)(x) = u(τxφ̌) ∀x ∈ Rn. (6.8)

Of course, the definitions (6.7) and (6.8) agree whenever two ways of defining u∗φ
are possible. When u ∈ L1

loc(Rn), u can be viewed as a distribution in Rn by
Proposition 6.16. Then

(u ∗ φ)(x) = u(τxφ̌) =

∫
Rn
u(y)τxφ̌(y)dy =

∫
Rn
u(y)φ(x− y)dy,

which coincides with the usual convolution of two functions in Rn.

Proposition 6.20. Let u ∈ D ′(Rn) and φ ∈ D(Rn). Then u ∗ φ ∈ C∞(Rn) and
Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ) for every multi-index α.
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Proof. Note that Dαu ∈ D ′(Rn) according to Proposition 6.18. Thus, the convo-
lution (Dαu) ∗ φ is well-defined. First, we show that (Dαu) ∗ φ = u ∗ (Dαφ). For
each x ∈ Rn, we have

((Dαu) ∗ φ)(x) = (Dαu)(τxφ̌) = (−1)|α|u(Dα(τxφ̌)). (6.9)

For each y ∈ Rn, τxφ̌(y) = φ̌(y−x) = φ(x−y). Thus, Dα(τxφ̌) = (−1)|α|Dαφ(x−y).
Then (6.9) becomes

((Dαu) ∗ φ)(x) = (−1)|α|u((−1)|α|Dαφ(x− y))

= (−1)|α|(−1)|α|u((Dαφ)(x− y))

= u((Dαφ)(x− y)) = u((Dαφ)̌(y − x))

= u(τx((D
αφ)̌)) = (u ∗ (Dαφ))(x).

Therefore, (Dαu) ∗ φ = u ∗ (Dαφ).
Next, we show that Dα(u∗φ) = u∗(Dαφ) for every multi-index α. By induction

on the length |α|, it suffices for us to show that Da(u ∗ φ) = u ∗ (Daφ) for every
unit vector a ∈ Rn, where Da denotes the directional derivative in a-direction. For
x ∈ Rn and h ∈ (−1, 1)\{0}, we have

(u ∗ φ)(x+ ha)− (u ∗ φ)(x)

h
=
u(τx+haφ̌)− u(τxφ̌)

h

= u

(
τx+haφ̌− τxφ̌

h

)
= u

(
τx

(
τhaφ̌− φ̌

h

))
.

Also, (u ∗ (Dαφ))(x) = u(τx((D
αφ)̌)). Thus, showing that

lim
h→0

(u ∗ φ)(x+ ha)− (u ∗ φ)(x)

h
= (u ∗ (Daφ))(x)

is equivalent to showing that

lim
h→0

u

(
τx

(
τhaφ̌− φ̌

h

))
= u(τx((Daφ)̌)).

Because u is continuous from D(Rn) to Rn, it suffices to show that

lim
h→0

τx

(
τhaφ̌− φ̌

h

)
= τx((Daφ)̌).

By the definition of the operator τx, this will be proved if we can show that

lim
h→0

τhaφ̌− φ̌
h

= (Daφ)̌. (convergence in D(Rn))

More explicitly, we want to show that(
y 7→ φ(ha− y)− φ(−y)

h

)
→ (y 7→ Daφ(−y))
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in D(Rn) as h→∞. Applying the check operator on both sides, we are supposed
to show that (

y 7→ φ(ha+ y)− φ(y)

h

)
→ (y 7→ Daφ(y))

in D(Rn) as h→∞. Thus, we want to show that

lim
h→0

τ−haφ− φ
h

= Daφ. (6.10)

For each ψ ∈ D(Rn), we have

(τ−haψ)(y)− ψ(y)

h
−Daψ(y) =

ψ(y + ha)− ψ(y)

h
−Daψ(y)

= Daψ(y + θha)−Daψ(y) (where |θh| < |h|)
= θh(DaDa)ψ(y + θ̃ha) (where |θ̃h| ≤ |θh| < |h|).

Put M = max{|DaDaψ(x)| : x ∈ Rn}. Then for every y ∈ Rn,∣∣∣∣(τ−haψ)(y)− ψ(y)

h
−Daψ(y)

∣∣∣∣ ≤ |θh|M ≤ |h|M.

Thus, τ−haψ−ψ
h

converges to Daψ uniformly in Rn as h → 0. Applying this result
for ψ = Dβφ, where β is any multi-index, we conclude that

Dβ

(
τ−haφ− φ

h

)
=
τ−ha(D

βφ)−Dβφ

h

converges to Da(D
βφ) = Dβ(Daφ) uniformly in Rn as h→ 0. Put K = B̄1+suppφ,

where B̄1 is the closed unit ball in Rn. Then τ−haφ−φ
h

∈ DK for all h ∈ (−1, 1)\{0}.
By Proposition 6.8, τ−haφ−φ

h
converges to Daφ in DK . Therefore, we obtain the

convergence in D(Rn) according to Proposition 6.13.

Proposition 6.21. Let u ∈ E ′(Rn) and φ ∈ C∞(Rn). We have the following
statements.

(i) u ∗ φ ∈ C∞(Rn) and Dα(u ∗ φ) = (Dαu) ∗ φ = u ∗ (Dαφ).

(ii) If φ ∈ D(Rn) then u ∗ φ ∈ D(Rn) and supp(u ∗ φ) ⊂ (suppu) + (suppφ).

Proof. (i) The proof of this part is almost a repetition of that of Proposition 6.20
with D(Rn) being replaced by C∞(Rn). We only need to adjust the proof of (6.10),

namely to show that τ−haφ−φ
h

converges to Daφ in C∞(Rn) as h → 0. Consider
h ∈ (−1, 1)\{0}. For any ψ ∈ C∞(Rn),

(τ−haψ)(y)− ψ(y)

h
−Daψ(y) =

ψ(y + ha)− ψ(y)

h
−Daψ(y)

= Daψ(y + θha)−Daψ(y) (where |θh| < |h|)
= θh(DaDa)ψ(y + θ̃ha) (where |θ̃h| ≤ |θh| < |h|).
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For every compact set K ⊂ Rn, we put

MK = max
{
|DaDaψ(x)| : x ∈ K + B̄1

}
,

where B̄1 is the closed unit ball in Rn. For y ∈ K, we have y + θ̃ha ∈ K + B̄1

because |θ̃h| ≤ |θh| ≤ |h| < 1. Thus,∣∣∣∣(τ−haψ)(y)− ψ(y)

h
−Daψ(y)

∣∣∣∣ ≤ |h|MK ∀h ∈ (−1, 1)\{0}, ∀y ∈ K.

This implies that τ−haψ−ψ
h

converges to Daψ uniformly on every compact subset of
Rn as h → 0. Applying this result for ψ = Dβφ, where β is any multi-index, we
get

Dβ

(
τ−haφ− φ

h

)
→ Dβ(Daφ)

uniformly on every compact subset of Rn as h → 0. By Proposition 6.8, τ−haφ−φ
h

converges to Daφ in C∞(Rn) as h→ 0.
(ii) Put A = (suppu) + (suppφ). Then A is a compact subset of Rn. We need

to show that supp(u ∗ φ) ⊂ A. Take any x ∈ Rn\A. We show that (u ∗ φ)(x) = 0.
Because τxφ̌(y) = φ(x− y), we have supp(τxφ̌) = x− suppφ. Since x 6∈ (suppu +
suppφ), (x − suppφ) ∩ suppu = ∅. Thus, supp(τxφ̌) ∩ suppφ = ∅. By Part (i) of
Proposition 6.17, u(τxφ̌) = 0. Thus, (u ∗ φ)(x) = 0.

From now on, the same notation 〈·, ·〉 is used to denote either the pairing
between D ′(Rn) and D(Rn), or the paring between E ′(Rn) and C∞(Rn).

Proposition 6.22 (Dirac measure). Define a map δ0 : D(Rn)→ R, δ0(φ) = φ(0)
for all φ ∈ D(Rn). We have the following statements.

(i) δ0 ∈ E ′(Rn) with suppδ0 = {0}.

(ii) δ ∗ φ = φ for all φ ∈ D(Rn).

Proof. (i) Let W be the union of all open sets ω in Rn in which δ0 vanishes.
Then suppδ0 = Rn\W by definition. We want to show that W = Rn\{0}. Take
any x ∈ W . There is a neighborhood ω ∈ W of x such that δ0(φ) = 0 for all
φ ∈ D(ω). Thus, φ(0) = 0 for all φ ∈ D(ω). If 0 ∈ ω then we can choose a bump
function ψ supported in a small ball centered at 0 such that ψ(0) = 1. This is
a contradiction. Thus, 0 6∈ ω. Thus, ω ⊂ Rn\{0}. Hence, W ⊂ Rn\{0}. Take
any open set ω ⊂ Rn\{0} and φ ∈ D(ω). Then δ0(φ) = φ(0) = 0. This means δ0

vanishes in ω. Thus, ω ⊂ W . Thus, Rn\{0} ⊂ W . Therefore, W = Rn\{0}.
(ii) For each x ∈ Rn, (δ0 ∗ φ)(x) = δ0(τxφ̌) = τxφ̌(0) = φ(x). Hence, δ0 ∗ φ =

φ.

Define a function η : Rn → R,

η(x) =

 exp

(
1

|x|2 − 1

)
|x| < 1,

0 |x| ≥ 1.
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For each ε > 0, we put ηε(x) = ε−nη(ε−1x) for all x ∈ Rn. Then η ∈ D(Rn) and
suppη=B̄1, the closed unit ball in Rn. Also, ηε ∈ D(Rn) and suppηε=B̄ε. We refer
to the family {ηε}ε>0 as an approximate identity on Rn.

For each function φ ∈ Rn, we know that φ ∗ ηε ∈ D(Rn) and supp(φ ∗ ηε) ⊂
(suppφ)+B̄ε for all ε > 0. For every multi-index α, we have Dα(φ∗ηε) = (Dαφ)∗ηε
which converges to Dαφ uniformly in Rn as ε → 0 (see [Adm75, p.29]). Thus
φ ∗ ηε → φ in D(Rn) as ε→ 0.

Proposition 6.23. Let u ∈ D ′(Rn) and {ηε}ε>0 be the approximate identity on
Rn as defined above. Then for every φ ∈ D(Rn),

〈u ∗ ηε, φ〉 → 〈u, φ〉 as ε→ 0.

Proof. First, we show that 〈u ∗ ηε, φ〉 = 〈u, φ ∗ ηε〉. For every m ∈ N, we partition
the space Rn into cubes of side 1

m
. One way of partitioning yields cubes of the

form [
i1
m
,
i1 + 1

m

]
×
[
i2
m
,
i2 + 1

m

]
× . . .×

[
in
m
,
in + 1

m

]
for i1, i2, . . . , in ∈ Z. We number those cubes in an arbitrary way asQ1,m, Q2,m, Q3,m, . . .
Then

diamQi,m =

√(
1

m

)2

+ . . .+

(
1

m

)2

=

√
n

m
, |Qi,m| =

1

mn
.

Let xi,m be the center of the cube Qi,m. For each multi-index β, we put

Mε,β = max
{
|DxD

β
y (ηε(y − x)φ(x))| : x, y ∈ Rn

}
where Dx denotes the gradient with respect to x = (x1, . . . , xn) and Dβ

y denotes
the β’th partial derivative with respect to y = (y1, . . . , yn). For each m ∈ N, we
put

fm(y) =
∞∑
i=1

ηε(y − xi,m)φ(xi,m)|Qi,m| ∀y ∈ Rn.

Note that only finitely many terms in this series can be nonzero because suppφ
is bounded. More specifically, if suppφ ⊂ [0, N ]n then there are at most (Nm)n

nonzero terms. We have fm ∈ D(Rn) and suppfm ⊂ (suppηε) + (suppφ) for all
m ∈ N. For each multi-index β,

Dβfm(y) =
∞∑
i=1

Dβηε(y − xi,m)φ(xi,m)|Qi,m| ∀y ∈ Rn.

Thus,

Dβfm(y)−((Dβηε)∗φ)(y) =
∞∑
i=1

Dβηε(y − xi,m)φ(xi,m)|Qi,m| −
∫

Qi,m

Dβηε(y − x)φ(x)dx

.
(6.11)
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By Mean Value Theorem, there exists x∗i,m,y ∈ Qi,m such that∫
Qi,m

Dβηε(y − x)φ(x)dx = Dβηε(y − x∗i,m,y)φ(x∗i,m,y)|Qi,m|.

Then (6.11) becomes

Dβfm(y)− ((Dβηε) ∗ φ)(y) =

=
∞∑
i=1

Qi,m⊂[0,N ]n

Dβηε(y − xi,m)φ(xi,m)−Dβηε(y − x∗i,m,y)φ(x∗i,m,y)︸ ︷︷ ︸
{1}

 |Qi,m|.

(6.12)
We have

|{1}| ≤
(

max
x∈Rn
|Dβηε(y − x)φ(x)|

)
|xi,m − x∗i,m,y| ≤Mε,βdiam(Qi,m) =

√
n

m
Mε,β.

Then from (6.12) we get

∣∣Dβfm(y)− ((Dβηε) ∗ φ)(y)
∣∣ ≤ ∞∑

i=1
Qi,m⊂[0,N ]n

√
n

m
Mε,β|Qi,m|

≤ (Nm)n
√
n

m
Mε,β

1

mn

=
Nn
√
n

m
Mε,β ∀y ∈ Rn.

Thus, Dβfm → (Dβηε) ∗ φ = Dβ(ηε ∗ φ) uniformly in Rn as m → ∞. This
is true for every multi-index β. Hence, fm → ηε ∗ φ in C∞(Rn) according to
Proposition 6.8. Moreover, fm ∈ DK for all m ∈ N where K = (suppηε)+(suppφ).
By Proposition 6.13, fm → ηε ∗ φ as m→∞.

Since u ∈ D ′(Rn), we have

〈u, ηε ∗ φ〉 = lim
m→∞

〈u, fm〉 . (6.13)

We have

fm(y) =
∞∑
i=1

ηε(y − xi,m)φ(xi,m)|Qi,m|

=
∞∑
i=1

τxi,m(η̌ε(y))φ(xi,m)|Qi,m|.

Thus,

〈u, fm〉 =
∞∑
i=1

〈
u, τxi,m(η̂ε)

〉
φ(xi,m)|Qi,m|.
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Hence,

lim
m→∞

〈u, fm〉 =

∫
Rn

〈u, τx(η̂ε)〉φ(x)dx =

∫
Rn

(u ∗ ηε)(x)φ(x)dx = 〈u ∗ ηε, φ〉 . (6.14)

By (6.13) and (6.14), we get 〈u ∗ ηε, φ〉 = 〈u, φ ∗ ηε〉. By the remark before Proposi-
tion 6.23, we have φ∗ηε → φ in D(Rn). Therefore, lim

ε→0
〈u ∗ ηε, φ〉 = lim

ε→0
〈u, φ ∗ ηε〉 =

〈u, φ〉.

Proposition 6.24. Let u ∈ E ′(Rn) and {ηε}ε>0 be the approximate identity on
Rn as defined on Page 73. Put vε = v ∗ ηε for each ε > 0. We have the following
statements.

(i) suppvε ⊂ (suppv) + B̄ε for all ε > 0.

(ii) For each δ > 0, there exists λ > 0 such that suppv ⊂ (suppvε) + B̄δ for all
0 < ε < λ.

Proof. (i) By Part (i) of Proposition 6.21, suppvε ⊂ (suppv) + (suppηε). Because
suppηε = B̄ε, we get suppvε ⊂ (suppv) + B̄ε.

(ii) Suppose otherwise. Then there exist δ > 0 and a decreasing sequence
(εm) which converges to 0 such that suppv 6⊂ suppvεm + B̄δ for all m ∈ N. Thus,
there exists xm ∈ suppv\(suppvεm + B̄δ). Because suppv is compact, there exists a
convergent subsequence (xmk). By replacing the sequence (xn) by the subsequence
(xmk), we can assume xm → x0 ∈ suppv. We have

dist(x0, suppvεm) ≥ dist(xm, suppvεm)− |xm − x0|
> δ − |xm − x0|. (6.15)

There exists m0 ∈ N such that |xm−x0| < δ/2 for all m > m0. Then (6.15) implies

dist(x0, suppvεm) > δ − δ

2
=
δ

2
∀m > m0.

For every y ∈ Bδ/4(x0) and m > m0, we have

dist(y, suppvεm) > dist(x0, suppvεm)− |x0 − y| >
δ

2
− δ

4
=
δ

4
.

Thus, y ∈ Rn\suppvεm . Thus, vεm(y) = 0. Hence, vεm = 0 in Bδ/4(x0). For each
φ ∈ D(Bδ/4(x0)), we have

〈vεm , φ〉 =

∫
Bδ/4

vεmφdx = 0 ∀m > m0. (6.16)

By Proposition 6.23,
〈v, φ〉 = lim

m→∞
〈vεm , φ〉 . (6.17)

From (6.16) and (6.17), we conclude that 〈v, φ〉 = 0 for all φ ∈ D(Bδ/4(x0)). Thus,
v vanishes in Bδ/4(x0). This is a contradiction because x0 ∈ suppv.
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[Hor58] L. Hörmander: On the division of distributions by polynomials. Ark. Mat.
3 (1958) 555-568.
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équations à coefficients constants. (French) Bull. Math. Soc. Sci. Math. Phys.
R. P. Roumaine (N.S.) 3 (51) 1959 433-440.
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