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1 Introduction

The paper is an investigation of the solvability of linear partial differential equa-
tions with constant coefficients in the whole space R™. The work was motivated
by the Poisson’s equation

Au=f inR", (1.1)

where f is a given smooth function. Here the smoothness can be continuity, Lips-
chitz continuity, O, C?...Its meaning will be made clear when needed. A natural
question is whether Problem (1.1) has a solution in C?*(R"). For n = 1, it certainly



has a classical solution obtained by taking antiderivatives of both sides twice. In
this case, f only needs to be continuous. For n > 2, however, the question is non-
trivial. One reason is that the continuity of f no longer guarantees the existence
of w in C%*(R?). Indeed, consider n = 2: put u(zi,zs) = x122(—log|z|) x (21, T2)
where v € (0,1) and x is some smooth cutoff function supported in the unit disk;
define f(x1,72) = Au(xy,z3) € C(R?); then v ¢ C*(R?) and Au = f in R
any function v € C?*(R?) such that Av = f would satisfy A(v — u) = 0, which
would imply v — u € C?*(IR?); this is a contradiction. Another reason is that the
Newtonian potential does not always exist unless f has certain decay at infinity.

The paper does not attempt to give a criterion on the smoothness of f so
that Problem (1.1) is solvable. We simply assume that f is as smooth as we
want. Instead, without any assumption on the decay of f at infinity, we show the
existence of a classical solution to Problem (1.1). Our method is similar to the
method of Mittag-LefHler for constructing a meromorphic function with infinitely
many prescribed poles. It is done in Proposition 2.2 of Section 2. In the same
section, some properties of the solutions are discussed, for example the lack of an
a priori estimate (Proposition 2.3) and the order of growth of the solutions at
infinity (Proposition 2.4). A consequence is that every smooth vector field in R3
has a Helmholtz decomposition (Proposition 2.5).

It is then natural to ask if the existence result is still true for the heat equation,
wave equation or even a general linear partial differential equation with constant
coefficients

P(D)u= f in R", (1.2)

where P is a nonzero polynomial of n variables and f is a given smooth function.
Specifically, given a function f € C*°(R™), does there exist u € C*(R") such
that P(D)u = f? The answer is yes and was proved quite early by L. Ehrenpreis
[Ehr54, Theorem 10] and B. Malgrange [Mal56, Theorem 3, p.294]. Interestingly,
these are also the papers in which the authors independently proved a famous result
saying that every linear partial differential equation with constant coefficients has
a fundamental solution. It was later known as the Malgrange-Ehrenpreis theorem.
J.P. Rosay [Ros91] gave an elementary proof of this theorem without using Fourier
transform or any complex functions. The proof is based on Hérmander’s inequality,
the Riesz representation theorem for L?, and little background in the space of
distributions. Section 3 of this paper is a detail exposition for Rosay’s paper.

Following the theorem on the existence of a fundamental solution, Ehrenpreis
and Malgrange established several general theorems which imply the following
identities.

1°. P(D)(Z'(R")) = 2'(R")  [Ehr56, Theorem 3].
2°. P(D)(C*(R"™)) = C>*(R™) [Ehrb4, Theorem 10], [Mal56, Theorem 3].
3. P(D)(CHR™) > C* 1 (R")  [Mal56, Remark of Theorem 3.

Later, Hérmander [Hor58| showed that



4. P(D)(S'(R")) = 7' (R"),

where ./(R") is the space of tempered distributions in R™. The theory of linear
partial differential operators was largely developed during the 1950s and 1960s.
For example, 2° and 3° are still true when R"™ is replaced by a convex open subset
Q) [Mal56]; with the same replacement, 1° is still true [Mal59]; Hormander [Hor62]
introduced the notion of strong P(D)-convexity and showed that P(D)(Z2'(Q2)) =
2'(Q2) if and only if the open set € is strongly P(D)-convex; Agranovich [Agr61,
Theorem 5] gave a constructive proof of 2°: an explicit solution of Problem (1.2)
was given as a contour integral in C", called Hérmander’s steps. Treves [Tre67,
p.61] pointed out that there was no need to restrict our consideration of 2° to R"
or its open subsets: the existence result extends trivially to C'*°-manifolds. Much
of the literature on linear partial differential operators during the 1950s and 1960s
is systematized in the book [Tre66]. There the author showed 1°, 2°, 3°, 4° and
other identities for C*°-manifolds that satisfy the countability at infinity, P(D)-
convexity and some other conditions. It is interesting to note that the identity

5°. P(D)(H) = H,

where H is the space of all real analytic functions in R", is false in general. E. De
Giorgi and L. Cattabriga [GC71] showed that 5° is true for n = 2. L. Piccinini
[Pic73] showed that 5° is false if » > 3. One of his counterexamples is the heat
operator P(x) = x, —2? — ... — 22_,. Hormander [Hor73] gave a necessary and
sufficient condition for the polynomial P(x) in order to get 5°. Particularly, if
P(0) =0 and P(x) > 0 for all x # 0 then 5° is true.

Our concern in this paper is completely restricted to proving the identity 2°.
Malgrange [Mal56] proved the existence of solutions to Problem (1.2) by a method
analogous to the method we use for the Poisson’s equation in Section 2. The
key step is to show that a function v satisfying P(D)v = 0 in an open bounded
subset © of R™ is the limit of a sequence (v,,) satistying P(D)v,, = 0 in R™.
If P(D) is the Laplacian, this result is known as Walsh’s theorem [Gar95, p.§|
(quoted in Proposition 2.1). For a general operator P(D), Malgrange [Mal56,
Theorem 2, p.292] showed that v is the limit of a sequence of linear combinations
of exponential polynomials. After this step, one can construct a solution in C*°(R")
to Problem (1.2) by the Mittag-Leffler approximation procedure. Tréves [Tre66]
gave a different method to achieve the first step without resorting the exponential
polynomials. His method requires some background in the topology of the dual
space of C*°(R").

Section 4 of the paper is an exposition for [Tre66, Chapter 1]. Much sim-
plification is made because we are considering Problem (1.2) in R™ instead of a
C*°-manifold. However, as mentioned earlier, we do not lose any key ideas due to
this restriction. Section 5 consists of two simple applications of 2°: the solvabil-
ity of a system of linear differential equations and the solvability of linear Stokes
equations without the initial condition. Section 6 is a collection of basic properties
of topological vector spaces (TVS), test-functions and distributions in R" that are
used in this paper.



2 Poisson’s equation in R"

Let us recall the following definitions.

In [GT98, p.52], a function f defined on an open subset 2 of R" is said to be
locally Hélder continuous with exponent a € (0, 1] if it is Holder continuous with
that exponent in every compact subset of €2, i.e. the quantity

[f] p = sup |f(l’) — f(y>|
“ %;JED |z —y|

is finite for every compact subset D of ). By this definition, it is clear that every
function in C*(R™) is locally Holder continuous with exponent o = 1.

Next, the function I' : R"\{0} — R,

1
2—log|z|, n=2
P =49 7 1

—2z]*™", n>3
n(2 —n)|B1|| |

where |Bj| denotes the volume of the unit ball in R", is called the fundamental
solution of Laplace’s equation.

Given a function f defined on an open bounded subset €2 of R". Suppose that
f is bounded in 2. Then the function

oe) = [Tla=) Sy voeo

Q

is well-defined and called the Newtonian potential of f on (2.

Proposition 2.1. Letn e N, n>2 and 0 <a <b < ¢ < c0. Denote Ap. = {z €
R":b < |z| <c} and B, = {x € R" : |z| < r} for every r > 0. Then for every
€ > 0 and for every function f : R™ — R that is locally Holder continuous with
exponent o € (0,1] in R™ and supported in Ay, there exists a function u. € C*(R™)
such that Au, = f in R™ and |uc(z)| < € in Ba,.

Proof. Let v : R" — R be the Newtonian potential of f, namely

v(z) = / D(x—y)f(y)dy Ve eR".

Rn

Then v € C*(R") and Av = f in R™ by Lemma 2.6. We have Av = 0 in B,
because f (x)_ = 0 in By. Thus v is a harmonic function in By, which is an open set

containing B,. We know that the complement of B, in R” is connected. Walsh’s
theorem in [Gar95, p.8] states that:

Let K be a compact subset of R" n > 2, such that R"\ K is con-
nected. Then for each function u which is harmonic on an open set
containing K and for each positive number €, there exists a harmonic
polynomial w such that |w —u| < € in K.
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For n = 2, this is known as Runge’s theorem [GKO06, p.363]. Applying Walsh’s
theorem for K = B, and u = v, we conclude that for every e > 0, there exists a
harmonic polynomial v, such that |v. — v| < € in B,. Define

ue(z) = v(r) —ve(r) VoeR"

Then u, € C*(R") and Au, = Av — Av, = f in R*. Moreover, |uc(z)| = [v(z) —
ve(x)| <€ for all x € B,. O

Proposition 2.2. Let f : R" — R be a locally Holder continuous with exponent
a € (0,1] in R™ where n > 2. Then there exists a function u € C*(R") such that
Au = f in R™.

Proof. Denote

Ay = {zeR":|z| <2},
A, = {weR":k<|z|<k+2) VkeN.

Then {A; : K =0,1,2...} is an open cover of R". Let {¢ : £ =0,1,2...} be a
smooth partition of unity subordinate to this cover. Put fy(z) = f(z)¢x(z) for all
r € R"and k£ = 0,1,2,... Because f and ¢, are locally Holder continuous with
exponents < 1 in R", we conclude that f; is also locally Holder continuous with
exponent < 1 in R"™ by Lemma 2.7. Morever, each f; is supported in A;. Let
up : R™ — R be the Newtonian potential of fy, namely

wol() = / Dz — ) foly)dy VreR".

Rn

Then uy € C*(R™) and Aug = fy in R by Lemma 2.6.

For each k € N, we have suppf C Ay C A it2, which is the closed annulus
whose inner and outer radii are k and k£ + 2 respectively. Then by Proposition 2.1,
there exists a function u; € C%(R™) such that

Auk = fk in Rn,
lur(z)| < 3z in By_1,

where B, denotes the open ball of radius r centered at the origin.
For each compact subset A of R", there exists a number ky € N such that
A C By, Thus A C B, _; for all k > ko. Hence,

1
|uk(a:)|§ﬁ Vo € By_1,Vk > k.

2
This implies that the series Y, uy(z) converges uniformly on A. We thus con-
clude that the series Y, ug(x) converges uniformly on every compact subset of
R™ to a (continuous) function u : R™ — R.

We have Auy, = fr, = 0 in By. Thus uy, is a harmonic function in By. Theorem

2.10 in [GT98, p.23] states that:



Let u be harmonic in Q [which is an open subset of R"| and let
be any compact subset of ). Then for any multi-index o we have

|l
sup| D] < (M) suplu,
o d Q

where d = dist(€', 092).

Applying this theorem for wuy, Bk*%’ Bj_1 in place of u, ), ' respectively, we get

|af
sup |D%uy| < (%) sup |ug| Vk > 2.

By B,
For 1 < |a| <2, we have
4 2

sup | D%u| < (2n]a))® sup |ug| < ( T;) VEk > 2.

Bk—l Bk,% k
Therefore,

o (4n)”

| D%y, ()] < Vo € Bi_1, V1 < |a| <2, Vk > 2.

k2

This implies that the series > -, D®uy(z) converges uniformly on every compact
subset of R™ for all multi-indicies 1 < || < 2. Thus u € C*(R") and

o0

D%u(x) = o D%uy(x) VxeR" V1<|al <2.
In particular,
Au(x) = Aup(z) = fulz) = f(z) Yz eR"
k=0 k=0

]

Proposition 2.3. Denote Ajp ={z €R?*: 1< |2| <2} and B, = {x € R?: |z| <
r} for any r > 0. There exists a function f € C*°(R?) such that suppf C Aj
and that there is no function u € C*(R?) satisfying simultaneously the following
conditions.

(i) Au = f in R?
(11) uw =0 in B for some 0 < e < 1.

Such a counterexample shows that it is impossible to find an estimate of the
form

sup lug| < C(r)sup |f| Vr >0, Vf e Cy(R"),
B B
where uy is a classical solution to the problem Au = f in R"™.
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Proof of Proposition 2.3. Let n: R — R be a smooth function such that

n(t) =0, |t > 1
n(®)=1. <
0 <n(t) <1, otherwise.

Then the function ¢ — 7(2t—3) is supported in [1,2] and (2t —3) = 1if ¢t € [2, I].
Define a function f : R? — R,

=, cos kb
k=1
where 1 = rcosf, o = rsinf, r > 0, § € R. For each m = 0,1,2,... the series

m .
S ore, 2t converges. Thus the function

o(0) = Z 0082(50)

k=1

o

belongs to C*°(R) and

d™g = k™ cos (kf + ZF)
de_m = £ ok Vm € N.

Equation (2.1) is the representation of f in polar coordinates. Such a representa-
tion in general may have a singularity at » = 0, but it is not the case here because
n(2r —3)=0for all 0 <r < 1. Thus, f € C*(R?) and suppf C Aj 5.

Suppose by contradiction that there exists a function v € C?*(R?) satisfying
the conditions (i) and (ii) mentioned above. Put

ow) = [Ty = [ Tlw=)f)dy, where T(2)= 5~ loglsl.

R2 A1

Then v € C*(R?) and Av = f in R? by Lemma 2.6. Put w = v —u. Then Aw =0
in R?. Consequently, w is real analytic in R%. Thus, the restriction of w to the
real line, namely w(-,0), is given by a power series

w(t,0) = ap+ art +agt* +... VtER. (2.2)

The radius of convergence of this series is equal to infinity, so

lim sup v/ |ax| = 0. (2.3)

k—o0

In addition, w = v in B, because u = 0 in B.. For each k£ € N, we define

cos (k@)

fi(@) = fi(z1,22) = n(2r — 3) o




where 21 = rcosf, xo = rsinf, r > 0, § € R. Then f, € C*(R?) and suppfp C
ALQ. Put
wle) = [T =)ty = [ T =) flo)dy.
R2 A2
Then v, € C*(R?) and Av, = f; in R? by Lemma 2.6. Note that |fy(z)] < 5.
Thus, the series > fi(x) converges to f(z) uniformly in R?. Because I' € L}, (R?),
k=1

the series

converges to v(x) uniformly on every compact subset of R?.

Next, we compute vy in B,. Take z = (x1,25) = (pcos ¢, psin ¢) where 0 < p <
€ < 1. For each y € A; 5, we write y = (y1,y2) = (rcosé,rsinf) where 1 <r < 2.
Then |z — y|*> = p? + r* — 2pr cos(f — ¢). We have

0
ve(z) = / U(z —y) fi(y)dy = i / log(|z — y|*)n(2r — 3) Cosg(f Lay
A1z A1,2
ko
= [ roa( 42— 2preos(o — opnter 91

Az 3

1

2 2
= I /1 [/o log(p* + 1% — 2prcos(f — ¢)) cos(k@)d&] rn(2r — 3)dr.

For ¢ = 0, we have = = (p,0) and

2 2
vr(p, 0) = 1o / {/ log(p* + r* — 2prcos6) cos(k:@)d@} rn(2r — 3)dr (2.4)
1 Lo
m
We have

2 2
{1} = / [log(rz) + log ((B) +1— 2% cos 0)} cos(kd)do
0 r T
2 2T
= / log(r?) cos(k6)db + / log(t* 4+ 1 — 2t cos 0) cos(k@)dd
0 0

where t = p/r € (0,1). The first integral is equal to zero. The second integral is
equal to —%tk by Lemma 2.9 below. Thus,

=2 (2



Then (2.4) becomes

1 Y N ok 2n(2r —3)
= _Z22(E o0 - _ '
ol 0) = o /1 7 (5) otz = 3ydr =5 /1 e

Put ) ( )
1 n(2r —3
ap = _2k+1k- [ Tk—l dr < 0. (25)
We get vi(p, 0) = ap® for all 0 < p < €. Hence,
O) :ka(p70> :Zakpk vpe (076)'
k=1 k=1
Because w = v in B,, we have
w(p,0) =v(p,0 Zakp Vp € (0,¢). (2.6)

Thus, the equality (2.3) must be satisfied. By (2.5) we have

1 2p2r —
lax| = /77(7“ 3)d7’
1

2k:+1k Tk_l

7/4 §2_k_ ZQ—kJ
L L

> -
— 2k+1k 5/4 Tk_l 2k+1k k—2

There exists a number kg > 3 such that (7/4)% < £(5/4)>7* for all k > ky. Then
for k > ky we have

6 R 16 N (3*.

o] 2 5 k—2 = 64k(k —2)\4
Then
25 5\ ' 4
li > 1 - = - )
12r1_>soljp V| al 1msup 61k —9) (4) 5> 0
This is a contradiction. O

Proposition 2.4. If f is smooth and bounded in R? then there may NOT exist
any function u whose Laplacian is f and which grows at most at quadratic order
at infinity.

Proof. Define the map : R — R,

t2
- <1
o= Lo (551) H=<t
0 it > 1.



Then n € C*®(R) with 0 < n(t) <1 for all t € R and n(0) = 1. Put g : R* - R,
1—
g(x,y) = Z(T) where r = /22 + 12
r

First we show that g € C*(R?). It is clear that g € C*(R*\{0}). Thus it
suffices to show that g is smooth in B/, which is the disk of radius 1/2 centered

1— €xXp (zil)

at the origin. The complex function z is holomorphic in By,
z

because the numerator is holomorphic in By, and vanishes at z = 0. This implies

that the restriction of that function to the real segment (—%, %) is real analytic,

i.e. the map h : (—%, %) — R,

_ 1 —exp (é)

h(t) t

is real analytic. Thus, h € C*((—3,1)). For (z,y) € By)s, we have

g(z,y) = = —= = h(r®) = h(z® + ),
which is in COO(Bl/Q)

Next, we define a function f : R? — R,

1 —n(r)

r2

flzy) = (x> — y?).

By the first step, f € C*°(R?). Moreover, f is bounded because

) 2 92
Sl I el il R

[f(z,y)] < (1 =n(r)) TS ErE S

We claim that there exists a function w € C?*(R?) such that Aw = f in R? and

1 1
gR2 log(R) < [|w||pe(5y) < 532 log(R) (2.7)

for all R sufficiently large, where Br denotes the disk of radius R centered at the
origin.

With x = rcosf and y = rsinf, we can write f(x,y) in polar coordinates

Py = 1 2 g2y = (1) cos(26) = elr) cos(20)

where ¢(r) = 1 —n(r). By the first step, ¢(r)/r € C*(R). Put

wi(t) = /1 els) va(t) = — /0 tic(s)s‘gds.

4 s
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Then v; and vy are smooth. Define v(t) = vy (£)t? + vo(¢)t~2. Because

. o ow(t) o wl(t) 1 ﬁ_
e =l = =l =iz =0

we conclude that v € C(R). It is clear that v € C?(R*\{0}). By direct computa-

tion, we get
1 4
V'(r)+ =0 (r) — so(r) =c(r) VYr>0
r

2
For r > 0 and 6 € R, we define w(r,0) = v(r) cos(20). Then @ € C*(R, x R) and
0 10w 1 0% 1, 4
52 + - 5 + SR (v (r)+ =v'(r) — —v(r)) cos(26) = c(r) cos(20)

T 72

Since v(r) — 0 as r — 0, there is € > 0 such that |v(r)] < 1 for all 0 < r < e.
Thus |@(r,0)] < |v(r)] < 1forall 0 <r <e¢ 6 € R. Then by Lemma 2.8 below,
w € C?*(R?) and Aw = f in R%. We see that 0 < ¢(s) < 1 for all s > 0 and
c(s) =1 for all s > 1. Hence, for r > 1,

vy (1) _/1 iC(s_) S_/l }léds_logll(r).

Also,

We have
v(r) = v (r)r? + ve(r)r~2 = r?log(r) + vy(r)r 2 (2.8)

Then

1
r?log(r) + " <2y

1 1
< 2 2 <
[o(r)] < Jr*1og(r) + [ua(r)lr < = < 51 log(r)

provided that r > exp(1/4). Also, (2.8) implies that

v(r) > i?ﬂ log(r) — |vg(r)|r—2 > 17“ log(r) —

W

provided that r > exp(1/2). Therefore,

S log(r) < Jo(r)] < 3 log(r) ¥r > exp(1/2)

and thus ]
lw(r,0)| < 57“2 log(r) Vr >exp(1/2), V0 € R. (2.9)

Then 1
([l () < 5R*log(R) VR > exp(1/2).

11



On the other hand,
[[wl] By = [w(R,0)] = [w(R,0)] = [v(R)] = %Rz log(R) VR > exp(1/2).
Thus the claim (2.7) is proved. Note that it is important that we have
(R, 0)] > %RQ log(R) VR > exp(1/2). (2.10)

Now suppose by contradiction that there exists a function v € C*(R?) such that
Au = f in R? and that u(z) grows at most at quadratic order as z go to infinity.
There exists Ry > 0 such that

lu(z)| < |x|2 V|z| > Ry.

We can assume Ry > exp(2). By (2.9),
()| < gleflogle] Vil > Ry,
Put ug = w — u. Then uy € C?*(R?), Auy = 0 in R? and
[uo(2)| < [u(@)] + [w(@)] < [a]* + %|17\210g|5’3| < |z[*log|z| Vl|z[ > Ro.

We now show that ug is a polynomial of degree at most 2. Because u is harmonic
in R?, it is the real part of a complex function ¢(z) which is holomorphic in C.
For any R > 0 we have the Poisson’s formula

1 27 ) 10
6(2) = —/ uo(Re)Re (%) do V2| < R.
0

2m e’ —z
For each |z| > Ry, we choose R = 2|z|. Then we get the estimation

2m 0
o)l < 5 [ lualRe] [ 555
0

s Re' — 2

L[ R+ |7|
b < — | R}ogR
S 9p ), HlesR)p—r

= 3R%log R = 12|2|*log(2|2]).

do

Thus,
|6(2)] < 12[2]*log(2]2]) V|2 > Ro. (2.11)
Since ¢(z) is holomorphic in C, it has a Taylor expansion ¢(z) = ag+ai2+az2>+. . .,
where .
L[,
A1 gm—i—l
v

and + is any circle centered at the origin. We can choose 7 to be a circle of radius
r > Ry. By (2.11) we have the estimation

(9] 1272 log(2r)

onl < 3= [ 1emrlde] < g(ean =T 28R < 12t mhogn) (212

Y
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If m > 3 then a,, = 0 because RHS(2.12) goes to 0 as r goes to infinity. Hence
(2) = ap + a1z + azz®. Because ug(z) = Re(¢(z)), ug is a polynomial (of degree
at most 2) in two real variables. Thus there exists Ry > 0 such that

lup(r) < |z|* Vx| > Ry,

Then
w(@)] < [u(@)] + [uo(@)| < 2Jaf? Y]z > max{Ro, R }.

In particular,

lw(R,0)| <2R* VR > max{Ry, R}
This contradicts (2.10). O

Proposition 2.5 (Helmholtz decomposition). Let F : R? — R3 be a locally Hélder
continuous map with exponent o € (0,1]. Then there exist ¢ € C'(R3) and A €
CY(R3,R?) such that F = —V¢ + V x A.

Proof. By Proposition 2.2, there exists a vector field G € C2(R3,R3) such that
AG = —F. Using the identity V x (V x G) = V(V - G) — AG, we get

F=-AG=-V(V-G)+Vx(VxGq).
Therefore, we can choose ¢ =V -G € C*(R3) and A =V x G € CY(R* R?). O

Lemma 2.6. Let f be a locally Hélder continuous function with exponent o € (0, 1]
in R™ where n > 2. Suppose that f is also compactly supported in R™. Then the
Newtonian potential of f, namely

oa) = [ T =)Wy
RTL
belongs to C*(R™) and Av = f in R".
Proof. There exists a number o > 0 such that suppf C B,,. Then
v(z) = /F(:r —y)f(y)dy
B,
for all r > o and z € R". Lemma 4.2 in [GT98, p.55| states that:

If f is bounded and locally Holder continuous with exponent o < 1
in Q [which is an open bounded set], and let w be the Newtonian
potential of f [on Q. Then w € C?*(Q) and Aw = f in Q.

Applying this result for Q = B, and w = v|g,, we get v|g, € C?*(B,) and Av = f
in B,. Because r can be chosen arbitrarily large, we conclude that v € C?*(R")
and Av = f in R™. O]
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Lemma 2.7. Suppose that f and g are locally Holder continuous functions with
exponents < 1 in R™. Then so is the product fg.

Proof. Let K be any compact subset of R". We want to show that the product
function fg is Holder continuous on K. Because f and ¢ are continuous in R”,
they are bounded in K. Thus there exists a number M = M (K) > 0 such that
|f(z)], |g(x)| < M for all z € K. Because f and g are locally Holder continuous
in R™, there exist oy, as € (0,1] and C1(K), C2(K) > 0 such that

/() = f(y)]

Cl V%yGKax?éya
|z =yl

lg(z) =gyl _ Cy Va,ye K,z #y.
|z — ylo2

Denote a@ = min(ay, az) and d = diam(K) < oo. For any z,y € K, x # y, we have

f(x)g(ﬂﬁ)_— fiy)g(y) _ f(x)g@)_— g((xy) 4 o) f(x)_— fiy)
|z —y| |z —y| |z =y
_ 9@ =) eea o @) ) aia
- f( ) \x—y\‘m | y| +g( ) ’Qf—y’al | y|
Hence,
|f(x)g(x)—f(y)g(y)| < |f($)||g(x>_g(y)“x_y‘agfa_’_‘g(x)“f(x)_f(y)“x_y‘alfa
|z =yl B |z =yl |z =yl

< MCyd™™* + MCyd™ ™.

This means fg is Holder continuous with exponent o € (0,1] in every compact
subset K of R™. O

Lemma 2.8. Denote Ry = {t e R:t > 0}. Let f € C*(R?) and define

f(r,0) = f(rcosf,rsinf) VreR,, 0cR.
Suppose that there is a function u € C*(R, x R) satisfying
(1) a(r,0 +27) =a(r,0) VYreR,, 6€R,
(1) there exist M,e > 0 such that |u(r,0)| < M VY0<r<e, 0€cR,
(iii) &%+ 198 4 L84 — f(r 0) VreR,, §€R.

Define a function u : R*\{0} — R by u(r cos6,rsinf) = u(r,0) for (r,0) € Ry xR.
Then v € C?*(R?) and Au = f in R

14



Proof. Note that u is well-defined because u is periodic in 6 with period 27. For
each (x,y) € R*\{0}, we have

(T m(2). oo
x
u<\/m 7 + arctan (g)) r<0
U(l’,y) = m \/m, g — arctan f Yy > 0
Y
i \/m,g—arctan g , ¥y <0
\

Since @ € C*(R; x R), we have u € C?(R*\{0}). By the chain rule, we have

Pu  O*u _ 0% 1@ 1 0% -

AU(ZL’,y) = o2 + ayg - Or2 + ;87‘ +ﬁw = f(r70) = f(x,y),

for all (z,y) € R*\{0}, z = rcosf, y = rsinf, r > 0, § € R. For (z,y) €
B(0,¢)\{0}, we have |u(x,y)| = |a(r,0)| < M. Thus, u is bounded in B(0,€)\{0}.

Put g = ulgp, € C(0B;y) where By is the unit disk centered at the origin. Then
the problem
{ Av=f in By,

v=g on 0B

has a solution v € C?(B;) N C(B;) which is given via a Green function [GT98,
p.56, Theorem 4.3]. Put w = u —v. Then w € C*(B;\{0}) N C(B;\{0}) and is
bounded in B;. Moreover,

Aw =0 in B;\{0},
w=0 on 0B;.

By the theorem of removable singularity of harmonic functions [ABR0O, p.32,
Theorem 2.3], w is a harmonic function in By. Then w = 0 in By by the maximum
principle. Thus u = v, which is in C?(By). Therefore, u € C?*(R?) and Au = f in
R2. O

Lemma 2.9. For 0 <t <1 and k € N, we have

27 2
/ log(t* 4+ 1 — 2t cos 0) cos(k0)df = —%tk
0

Proof. Denote
2
J(t) = / log(#* + 1 — 2t cos 6) cos(kf)db.
0

Then J(t) is continuously differentiable on [0,1). We denote
2
It)y=Jt) = / % [log(t* + 1 — 2t cos 0) ] cos(k8)do
0

27 2 _ 2
- / t—2cosd cos(k0)do.
o t?+1—2tcosh
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On the complex plane, we consider the unit circle z = €. Then

24z 1< 1)
cosf = =—|z+-1,

2 2 z
k sk 1 1
cos(kf) = © ;—Z :E(zk—l—;),
@ = —i
z
Therefore,
—1 22k 41 22 =2tz +1
I =— dz. 2.13
2 2L (224 1) — (2 4+ 1)z y (2.13)
|z|=1 N ~~ 4
f(2)
We have o )
z4+1 z¢—2tz+1
f(z) =

2 (tz = 1)(z —t)’

which is a meromorphic function in C. The poles of f(z) are at z = 1/t, z =t
(both with multiplicity one), and z = 0 (with multiplicity &£ + 1). Only ¢ and 0
are the poles enclosed in the unit circle. Thus,

/ f(2)dz = 2mi (Res,—of (%) + Res.— f(2)) .
|z|=1
Substituting this equality into (2.13) we get
I(t) = mi (Res,—of(2) + Res,—.f(2)) . (2.14)

Compute the residue of f(z) at z =t.
Because z =t is a simple pole,

P12 =22 4+1 P41

RGSZ:tf(Z) = ELI% f(Z> (Z - t) = IZILI% Skl tr —1 - tht1 (2]‘5)
Compute the residue of f(z) at z = 0.
Denote t; =t and ty = 1/t. Then t1to =1, 0 <t; < 1, t3 > 1. Then
£(2) 221 22 =22+ 1
s =
t12k+1 (Z — tg)(Z — t1>
_ 1 24122 -224+1 2R 122—-2t241 (2.16)
N tl(tg — tl) N Zk+1 z — tz N Z]H_l zZ — tl ’
£12) £2(2)
When z is near 0,
22— 212+ 1 ty —t

= — 1o —2(t1 —t2) —
Z—tg * 2 (1 2) ]_—tlZ

= 22—ty —2(t; —ty) — (ta —t)) (L +t1z + 22+ ...)
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Thus,

= (g R [z —ty—2(t1 —t2) — (ta — t1) Zt{zj

The coefficient of 27! in the Laurent series of f1(2) is equal to the coefficient of 2*

in the square bracket. That is,

1—(ta—t)t, k=1
ReSZ:()fl(Z) = { —(f;2<—2 tl)tllf) ' k> 9 (2‘17)
When z is near 0,
22—z +1 ty —t 22
L - (-t (142 4.
Z—tl 1-5 tl t

Thus,

2k 2
f2<2) = sz—i_ll[z—tl—(tg—tl)(l‘f’tl‘i‘t + .. >:|

= (ZF 4R )[z—tl (ty — t1) Ztl P

1 k

The coefficient of 27" in the Laurent series of fo(2) is equal to the coefficient of z
in the square bracket. That is,

[ 1=(ta—t)t]!, k=1
Res.—of2(2) = { bt k> 9 (2.18)

By (2.17) and (2.18), we have Res,—of1(2) — Res,—ofo(2) = —(ta — t1)(tF — t7%).
Replacing this identity into (2.16), we get

1
Res,—of(2) = ————<(Res.—of1(z) — Res,—of2(2))
ti(ta —t1)
e th—tF t?F —1
- _ = — = — 2.19
tl t th+1 ( )
Now substituting (2.15) and (2.19) into (2.14), we get
R +1 k-1 1
It)y=m (— G g ) = —2mt" .
Recall that I(t) = J'(t). Since J(0) = fozﬂ log(1) cos(k8)df = 0, we get
2m
J(t) = —=—t*.
)= -2
0

17



3 A proof of the Malgrange-Ehrenpreis theorem

This section gives a detail proof for the Malgrange-Ehrenpreis theorem accord-
ing to the method in [Ros91]. This is an elementary proof which requires little
background in the space of distributions. The necessary background is collected
in Section 6.4. Throughout the section, P always denotes a non-identically-zero
polynomial in n real variables, where n € N. Write

P(zx) = Z [ Z CaT1™ .. 1y

la|<N lo|<N

If the set {c, : |a] = N} has at least one nonzero element, we say that P has
degree N and each nonzero element of that set is called a highest coefficient of P.
Define the differential operators P(D) and P(—D) as follows.

P(D) = > D= > cD{*... D",

la]<N lo|l<N
P(-D) = Y (-1)"e,D* = 3" (-1)"e,D§" ... Dg.
la]<N la|<N

P(—D) is called the conjugate differential operator of P(D). By the integration-
by-part formula, we have

(P(D)u, Q(D)¢) = (Q(=D)u, P(=D)¢) Vu,¢ € Z(R"), (3.1)
where the brackets (-, -) denotes the usual inner product in L?(R"). Consequently,
1P(D)¢l|r2@ny = [IP(=D)¢l[ 2@y Vo € Z(R"). (3.2)

Below is the outline of the proof of the Malgrange-Ehrenpreis theorem.

Step 1. Hormander’s inequality: for each open bounded set €2 C R”, there exists
a number C' = C(P, N) > 0 such that

|P(D)¢||r2) = Cll9|]12() Vo € 2(2).

Step 2. If 2 is an open bounded subset of R" and g € L?*(f2), then there exists
u € L*(Q2) such that P(D)u = g in sense of 2'().

Step 3. For each ¢ € Z(R"), [suppP(D)¢] = [supps]. Here [K] denotes the convex
hull of a set K C R™ in R™.

Step 4. For each u € &'(R"), [suppP(D)u] = [suppu].’

Step 5. Suppose we have 0 < s < r < R and v € L?(B,) such that P(D)v =0 in
sense of 2'(B,). Then there exists a sequence (v;,) in L?(Bg) such that
P(D)vy = 0 in sense of 2'(Bg) and ||vy — v||12p,) — 0 as k — oo.

See the definition of the space &’ (R™) in the remark preceding Proposition 6.16.
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Step 6. For each g € L (R"), there exists u € L{ .(R™) such that P(D)u = ¢ in
sense of Z'(R™).

Step 7. Consider the Heaviside function H : R" — R,

B 1 ifxl,...,$n>07
H(zy,. .. x,) = { 0 otherwise.

Then Q(D)H = dy, where Q(z) = x1x5...2, and Jy is the Dirac measure
defined in Proposition 6.22.

Step 8. There exists F € 2'(R") such that P(D)E = .

Proposition 3.1 (Hérmander’s Inequality). Let Q be a nonempty open bounded
subset of R", and P € Rlxy,...,2,)\{0}. Then there exists a number C' > 0
depending only on ), the degree of P and the highest coefficients of P such that

1P(D)oll2@) = Clidll2) Vo € 2(Q). (3.3)

Proof. Put r = sup{|z|: = € Q}. First, we show by induction in m =0, 1,2,...
that
|1P(D)(x;¢) — x;P(D)¢l|r2() < 2mr||P(D)¢|| 120 (3.4)

forall 1 <j<n, ¢ € 2(Q) and P e R[zy,...,x,), degP =m.

For m = 0, P is a constant ¢. Then (3.4) is true because the left hand side
is zero. Suppose that (3.4) is true for all m = 0,1,..., N — 1 where N > 1. Let
je{l,2,....n}, ¢ € 2(Q) and P € Rlzy,...,x,], degP = N. Write P(D) =
Z\al <n CaD®. Recall the generalized Leibniz formula

D“(uv) = nga} ( g ) (D> Pu)(DP). (3.5)

Here o = (o, ..., ) and B = (B4, ..., 52) are multi-indices. We write § < « if
BG; < for all 1 < i <n. Also, we define

(5)=(a) () (%)

Hence, P(D)(z;¢) = x;P(D)¢ + P;(D)¢ where

PO =Y, oo S ((§ ) D@0 G0

181>1

We have _
DP(a;) = { 1 if g = ¢,

0 otherwise,

where e; is the j'th vector of the standard basis of R". By the definition of P;,
degP; < N. If P; # 0 then by the induction hypothesis,

1P5(D)(2;0) — ;P (D)o r2@) < 2r deg(F))[|P5(D)¢l| 12«
< 2r(N = DI|P (D)cbIILm)
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By the triangle inequality,
1P(D)(@d)l[2 ) < i Pi(D)¢llrz) + [|P5(D)(2;0) — 23 (D)ol 2@
< rIB(D)oll 20y + 2r(N = DIIP(D)¢l] 20
r(2N = D[|P;(D)¢l|r2(q)-

Thus,

1B (D)(2;0)]| 12(0) < 72N = DI[F;(D)9] | 2(0)- (3.7)
Note that (3.7) is also true when P; = 0. Taking the inner product of both sides
of the identity P(D)(x;¢) — x;P(D)¢ = P;(D)¢ with P;(D)¢, we get

(P(D)(x;0), P;(D)¢) — <1?jP(D)9@ P;(D)¢) = [|1F;(D)¢l|12(q)-

-

g

{1} {2}
Hence,
|1P(D)¢l 220y < HLH + [{2}]. (3.8)
By (3.1), {1} = (F;(=D)(z;¢), P(—=D)¢), Thus,

{1 < B (-D) @) IP(~D)éllixey  (Schwarz)
= IB(D)(@;6) |z IPD)l 2y (by (3.1))
< (2N = D||B(D)é]l ey [IP(D)éll ey (by (3.7))

Also we have

{2} |2 P(D)¢l| 2 [1F5(D)¢l] 20y (Schwarz)

<
< 1[P(D)¢llez@) ||F5(D)ollr2()-
With the estimation of {1} and {2} above, (3.8) implies

1P (D)gll720y < (2N — D||P(D)o|r2() |[P(D)¢ll 20
+ 7l[P(D)dl|r2@) [|Pi(D)d]] 120
= 2N7||[P;(D)¢l|2 () [IP(D)o|| L2

Thus, ||P;(D)¢||r2) < 2N7||P(D)é||r2(q). Thus, we have proved (3.4) for m =
N. Thus (3.4) is true for all m = 0,1,2,... We rewrite (3.4) as follows.

1Q;(D)(z;¢) — 2;Q;(D)oll12() < 27 deg(Q)[|Q(D)0] 12 (3.9)

forall 1 <j<n,¢e 2(Q) and Q € Rlzy,...,x,]. Now return to the problem.
We prove (3.3) by induction in m = degP. If degP=0 then P is a constant c.
Then (3.3) is true by taking C' = ¢. Suppose that (3.3) is true if degP = N — 1,
for some N > 1. Consider a polynomial P € Rxy,...,z,| with degP = N. Write
P(D) =3, j<n caD®. Then cq, # 0 for some multi-index ag with [ap| = N. Write
agp = (oq,...,a,). Then a; > 1 for some 1 < j < n. We define a polynomial P;
as in (3.6). Then degP; = N — 1 and

P(D)(z;¢) —x;P(D)¢ = P;(D)¢ V¢ € Z(Q).
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Applying (3.9) for Q = P, we get
1P (D)¢l[r2(0) < 2NT||[P(D)¢|12¢0) Vo € Z(Q). (3.10)

The highest coefficients of P; correspond to f = e; and |a] = N. Thus, these
coefficients are in the set

A:{ca(;f): ]a|:N,B:e]}.

By the induction hypothesis, there exists a number C; > 0 depending only on €2,
degP; = N — 1 and the elements of A such that

||P;(D)o||2(0) = Chl|d]|r20) Vo € 2(9). (3.11)

Choose C' = (2N7)~*C}. Then C depends only on ), degP = N and the elements
of the set {c, : |a| = N}. From (3.10) and (3.11) we get

1P(D)g| 20y = (2N7) " Cul[@]]12(0) = Cllollr2i0) Vo € 2().
This means (3.3) is true for the case degP = N. O

Proposition 3.2. Let P € Rz, ...,x,]\{0} and Q be a nonempty open bounded
subset of R™. Then for each g € L*(Q), there existsu € L*(Y) such that P(D)u = g
in sense of 2'(2). Moreover, there is a number C' > 0 depending only on €, the
degree of P, and the highest coefficients of P such that ||g||r2) = C|lul|r2) -

Proof. The identity P(D)u = g in sense of 2'()) means

(u, P(~D)¢) = (9,6) Vo € F(Q). (3.12)

Define a map 71 : 2(Q) — 2(Q), T1(¢) = P(—D)¢. This is a linear map. Thus,
the range of T}, denoted by F, is a vector subspace of Z(f2). Hence, E is also a
vector subspace of L?*(Q2). Because P(x) # 0, P(—x) # 0. By Proposition 3.1,
there exists a number C' > 0 depending only on €2, deg P and the highest coefficients
of P such that

|1P(=D)dl|r2(0) = Cl|9ll12(0) Vo € 2(Q).
This means ||T1¢|[r2(0) = C||®||r2). Thus, T} is injective. Given a function
g € L*(Q), we define a map Tp : E — R, Tyt) = (g,T7 '¢). Then T is linear.
Also, for every ¢ € E,

Tyl = | (9. 77 ") | < gz |17 Wl 2 ) < C Mgl 2@l 2o

Thus, T5 is a linear continuous functional on (E, ||.||12(q)) and ||T5|| < C7[g]|r2(q)-
By Hahn-Banach theorem, 75 can extend to a linear continuous functional 75 on

L*(Q) with ||T3|| < C7Y|g|lz2(. By Riesz representation theorem, there exists
u € L*(2) such that

To(y) = (u,p) Wy € LX(Q),
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and ||ul|z2) = ||T2]| < C7Y|gllz2(). Thus, (9, T ") = (u,) for all ¥ € E.
Write T, 4 = ¢. Then

{9,0) = (u,T1¢) = (u, P(=D)¢) V¢ € Z().
Therefore, (3.12) is proved. O

For each subset K of R", we denote by [K] the conver hull of K in R", i.e. the
smallest convex subset of R™ containing K.

Proposition 3.3. Let P € R[zy,...,z,)\{0} and ¢ € Z(R™). Then [suppP(D)¢] =
[suppg].

Proof. Take any x € R™\supp¢. Then ¢ = 0 in a neighborhood U of z. Then
P(D)p = 0 in U. Thus, x € R™"\suppP(D)¢. This means R™\supp¢ is con-
tained in R™\suppP(D)¢. Hence, suppP(D)¢ C supp¢ and [suppP(D)¢| C
[suppe]. Suppose by contradiction that [suppP(D)¢| # [supp¢]. Then there
exists a point a € supp¢\[suppP(D)¢]. Since supp¢ is closed, we can assume
a € {x € R": ¢(x) # 0}. Then there exists a hyperplane (H) separating a and
suppP(D)¢. We choose a new Cartesian coordinate system y = (yi,...,yn) by
translating and rotating the old one, i.e. y = Ax + b where A and b are a matrix
and a vector of real constant coefficients. They are chosen so that (H) = {y; = 0},
a € {y; > 0} and suppP(D)¢ C {1 < 0}.

Under this change of variables, the differential operator P(D) = P ( o .. i)

Oz’ ) Oxp

becomes a differential operator Q(D) = Q <8iyl’ e %

coefficients. The function ¢(x) becomes ¥ (y) with ¥(a) # 0. Therefore, all hy-
potheses in the problem still hold after the change of variables. Thus, we could
have assumed from the beginning that (H) = {z; = 0}, a € {z; > 0} and
suppP(D)¢ C {x; < 0}.

Write a = (aq, . ..,a,) with a; > 0. Since suppP(D)¢ is compact, there exists
¢ > 0 such that suppP(D)¢ C {z1 < —¢}. Let 2 be an open bounded subset of R”
that contains supp¢. Since ¢(a) # 0 and a € supp¢p C 2, there exists a number
r € (0,%) such that B,(a) C Q and

W@N>E%m-vxeBA@. (3.13)

> which also has constant

For every = € B,(a),

a1 3a
1 € (ay —rya +71) C (—1 —1>

27 2
Thus,
x> % Vo € B.(a). (3.14)
For each ¢ € Z(R") and s € R, s > 0, we define
Qu(D) = €% P(D) (75 ) (3.15)



It is important to note that Q4 (D) is also a differential operator with constant
coefficients. Put N = degP > 0 and write

P(D) = Z@:N caD* + ZWN oD
Then by the definition of Q¢(D), we have

Q(D) = ZM:N co D + ZWN oD
where ¢, are numbers that may depend on s. In other words, the degree and
the highest coefficients of (), are the same as those of P. In particular, they are

independent of s. Put -
bo(z) = e T p(x) € 2(9). (3.16)

By Proposition 3.1, there exists a number C' > 0 depending only on 2, N and the
highest coefficients of P such that

1Qs(D)Ys||r2) > Cllvs]|r2@) Vs > 0.

Taking the square of both sides, we get

/ |Qs(D)ts|*dx > 02/ s |?dz Vs > 0. (3.17)
Q Q

Replacing (3.15) and (3.16) into (3.17) we get

/ e (P(D)¢) dx > C? / e ¢*dr Vs > 0.
Q

Q

Thus,

/Q e e < O / e (P(D)¢)’dw < C2 / e (P(D)¢) d = C % / (P(D)¢)*dz.

Thus,
lim [ e*1¢*dx = 0. (3.18)

S§—00 QO

On the other hand,
/ esz1¢2dl, 2 / e5T1 ¢2d5(]
Q By (a)
2
> / 57 (@) dz  (by (3.13) and (3.14))
Br(a) 2
2
= 57 (¢(a)) |B.(a)] — o0 as s = 0.
This contradicts (3.18). O
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Proposition 3.4. Let P € R[zy,...,2,]\{0} andu € &' (R™). Then [suppP(D)u] =
[suppu.

Proof. Let {n}c>o be the approximate identity defined on Page 73. Put u, = ux1..
Then u. € Z(R") by Part (ii) of Proposition 6.21. Then by Proposition 3.3,

[suppP(D)u.| = [suppu.] Ve > 0. (3.19)

Put v = P(D)u. Then v € &'(R"™) and suppv C suppu. Then [suppv] C [suppul.
Now we want to show that [suppu| C [suppv]. For each € > 0, we put v, = v * 7,.
Then

P(D)u. = P(D)(ux*n.)
= (P(D)u) *n. (by Proposition 6.20)
= V1 =, (3.20)
Take any 6 > 0. By Part (ii) of Proposition 6.24, there exists A > 0 such that
suppu C (suppuc) + Bs V0 < e < \. (3.21)

Since [suppu] + Bs is a convex set containing (suppue) + Bjs, it also contains the
convex hull of (suppu.) + Bs. Then (3.20) and (3.21) imply

[suppu] C [(suppu.) + Bs] C [suppuc] + Bs
= [suppP(D)uc] + B,
= [suppv] + Bs V0 <e <A (3.22)

By Part (i) of Proposition 6.24, suppv. C (suppv)—i—Be._Thu_s, [suppv.] C [suppv]+
Be.. Together with (3.22) we have [suppu] C [suppv]|+ B.+ B; for 0 < € < . Thus,

[suppu] C ﬂ ([suppv] + B. + Bs) = [suppv] + Bs.
0<e<A

Because this is true for all § > 0, we have

[suppu] € () ([suppv] + Bs) = [suppu].
>0

]

For each » > 0, we denote by B, the open ball in R" centered at the origin
with radius 7. We know that L?*(B,) is a Hilbert space with the inner product

(ur,u) g —/ urugdr  Vuy,uy € L*(B,).

The induced norm on L?*(B,) is

1/2
l|lullg, = (/ u2dx) .
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Proposition 3.5. Let 0 < s <r < R, P € R[zy,...,x,]\{0} and v € L*(B,) such
that P(D)v = 0 in sense of 2'(B,). Then there exists a sequence (vy) in L*(Bg)
such that P(D)vg =0 in sense of 2'(Bg) and ||vx, — v||p, — 0 as k — oo.

Proof. Define a set
E = {u € L*(B,) : Jextension @ € L*(Bg) such that P(D)% = 0 in sense of 9'(Bg)}.

Note that FE is a vector subspace of (L?(Bs), ||.||5.). We need to show v|p, € E.
To do so, we take any linear continuous functional T : L?*(B,) — R such that
T(E) = {0} and show that T'v = 0. By Riesz representation theorem, there exists
a function g € L*(B;) such that

T(u) = (g,u) g, = / gu dr Yu € L*(B,).
We have
(g,u)g, =0 VYueFE. (3.23)

We want to show that (g,v)p, = 0. First, we show that there exists w € L*(Bg)
such that

(9,0)p, = (w, P(D)P) g, Vo€ Z(R"). (3.24)

Consider the map 17 : Z(Bgry1) = Z(Bry1), 1T1(¢) = P(D)¢ for all ¢ € Z(Bpri1).
By Proposition 3.1, T; is injective. Put F = T1(2(Bgry1)). We can regard F'
as a vector subspace of (L*(Bgr),||||s,). Define a map Ty : F — R, Ty(¢)) =
(9, T (1)), for all € F.

For each ¢ € F, there exists ¢ € Z(Bgry1) such that v = T1(¢) = P(D)¢.
By Proposition 3.2, there exists uy € L*(Bg) such that P(D)uy = 1 in sense of
92'(Br). Moreover, there exists a number C' > 0 depending only on the domain
Bpr and the polynomial P such that

Clluol|z2Br) < 1¥]]L2(BR)- (3.25)

We have P(D)ug = ¢ = P(D)¢ in sense of 2'(Bg). Thus, P(D)(ug — ¢) = 0 in
sense of 2'(Bg). By (3.23), we have (g,uy — ¢)p, = 0. Thus, (g, uo)s, = (g, ) 5.
Thus,

|T2(¢)|:|<97T1_1(¢)>BS|: |<gv¢>BS = |<g7u0>BS|
< gllz2olluoll 254
< C7Ylgllzzso ¥l L2 (by (3.25)).

Because this estimation is true for all ¢» € F', T, is a linear continuous functional
on (F,|].||r2(y))- By Hahn-Banach theorem, 75 can extend to a linear continuous

functional Ty on L?*(Bg). By Riesz representation theorem, there exists w €
L?(Bg) such that

B(¢) = (w,)p, Vo € L*(Bg).
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Thus, (g, Ty ' (), = (w,¥)p, for all ¥ € F. Thus,

(9,0)p, = (w, P(D)§) g, Yo € D(Brs1). (3.26)

Now take any ¢ € Z(R"). Let x be a function in Z(Bg,1) such that xy = 1 in Bg.
Then ¢x € Z(Bgr+1) and ¥x =1 in Bg. Applying (3.26) for ¢ = ¢y, we have

(w, P(D)(¥x)) g, = (9, VX0 g, (3.27)

Because ¢y = v in Bg, LHS(3.27)=(w, P(D)v) 5, and RHS(3.27)=(g, %) 5,. Thus,
(3.27) implies
(w, P(D)) g, = (g:¢)p, Vb € DR").

We have proved (3.24). Next, we define two functions g, : R — R,

i(z) = { g(x) if z € By,

0 otherwise.

B(z) = w(zx) if © € Bp,
W= 0 otherwise.

Then (3.24) implies (g, ) 5, = (w0, P(D)¢) g, for all p € Z(R"). Consequently, if g
and w are viewed as distributions on R", then § = P(—D)w. By the definition of §
and @, we have g, € &' (R"), suppg C B, and suppw C Bg. By Proposition 3.4,
[suppw] = [suppP(—D)w)]. Thus, [suppw] = [suppg] C Bs. Thus, suppw C B.

Extend v by zero outside of B,. Let {n.}c~0 be the approximate identity on R"
as defined on Page 73. For 0 < ¢ < min{R — r,r — s}, we put v. = v * 1. Then
ve € P(Bgr) and lim._, ||ve — v||g, = 0 according to [Adm75, Lemma 2.18]. For
each ¢ € Zp,, we have

<P(D)U67 ¢>BT =

e,

(%

—~

(=D)¢) = (vxne, P(=D)P)
(v 1) (2) (P(=D)¢) (w)dx

)

’ T

r

v(y)ne(z — y)(P(=D)o)(z)dydx

n

/R o(y)nely — 2)(P(~D)6) (x)drdy

n

r

n

v(y)(ne * (P(=D)o))(y)dy

n

U, Ne * (P(_D)¢>>Br
U, P<—D)(77€ * ¢)>BT'

—— — 5

o~ o~

Thus,
(P(D)ve; §) g, = (v, P(=D)(ne * ¢))p, V¢ € D(B;). (3.28)

We have supp(¢ *1.) C (suppe) + (suppn.) C Bs+ B. C B,. Thus, ¢*n. € 2(B,).
Since P(D)v = 0 in sense of 2'(B,.), we have

(v, P(=D) (e % ¢)) g, = (v, P(=D)(ne x ¢)) ., =0 Vo € Z(By). (3.29)
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Applying (3.24) for ¢ = v,, we have
<gave>Bs = <w’P(D)U6>BR = <P(D)v67w>BR’
Because suppw C By, we have

(g, UE>BS = (P(D)ve, w) .. (3.30)

Because Z(By) is dense in L?(B,), there exists a sequence (¢,,) in Z(B;) such that
||¢n — wl||p, — 0 as n — co. By (3.29) we have (P(D)ve, ¢pn)p = 0 for all n € N.
Let n — oo, we get (P(D)v.,w)z = 0. Thus, (3.30) implies (g,vc) g = 0. This is
true for every 0 < € < min{R — r,r — s}. Therefore,

<g’ U>BS = 11_{%<g, U€>Bs =0.
O

Proposition 3.6. Let P € R[zy,...,2,)\{0} and g € L2 (R"). Then there exists
uw e L _(R™) such that P(D)u = g in sense of 2'(R").

loc

Proof. Because g € L?(By), by Proposition 3.2, there exists a function u; € L?(By)
such that P(D)u; = g in sense of Z'(By).

Suppose that uy € L?(By11) has been defined such that P(D)u;, = g in sense
of 9'(By,1). We define uy, as follows. Since g € L?(By,2), by Proposition 3.2,
there exists a function w € L?(Bj,2) such that P(D)w = g in sense of Z'(Bj.2).
Put v = w — v, € L*(By;1). By Proposition 3.5, there exists a sequence (vy)
in L?(Byy2) such that P(D)v, = 0 in sense of 2'(By,2) and ||v, — v||p, — 0 as
k — o0o. Thus, there exists kg € N such that

ok, — vllp, < 27"
Define uy11 = w—wvy,. Then uy,; € L*(Byya). Moreover, because P(D)w = g and

P(D)vg, = 0 in sense of 2'(By2), we have P(D)ug; = P(D)w — P(D)vg, = g in
sense of 2'(By12). Also, we have

i1 — welp, = [|(w —vry) = wellp, = [|v = vk |5, <27%.
This induction process defines a sequence of functions (uy) satisfying
U € LZ(Bk—i-l)v
P(D)uy, = g in sense of Z'(Byy1),

||tpg1 — UkHBk <27k

Extend each function uy by zero outside By, so that it is defined in R™. Put

F@) = |upa(x) — up(x)| Vo eR™
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Put A={z € R": f(x) = co}. We show that A is of measure zero in R". For
each m € N, we have u;, € L*(B,,) for all k € N. Thus, |uy,; — ux| € L*(B,,) for
all £ € N. Then

(Lebesgue’s monotone convergence)

||f||L2(Bm) = hm 1 — U

L2(Bm)

< A}l_f)ﬂ()o ; w1 — vkl p2(p,,) (triangle inequality)

= Z [ UkHL?(Bm)- (3.31)
k=1

For k > m, By, C Bi. Thus, |Jugs1 — wkl|z2(8,) < |Jwesr — wkl|r2(s,) < 27%. This
means the series at (3.31) converges. Thus, ||f||z2(s,,) < co. This implies that the
set AN B, ={z € B,,: f(z) =00} is of measure zero. Because

a=anr =an (S Ba) = (AnB,),

A is also of measure zero. Thus, the series > ;- (upt1(x) — ug(x)) converges
absolutely for almost every = € R™. This allows us to define a function

= uy () + Z (urt1(7) — ug(z))
almost everywhere in R". We have

ullz2s,) < Nuillr2sa) + 1 fll2B,,) < oo Vm e N

Thus, u € L% _(R"). For almost every x € R", we have
. k-1
(@) = wi(x) + lim Y (g (@) = w(@) = lim ().

For each m € N and for every z € R",

lug(@)] < fui(z |+Z i () — wi (@)

< Ju (e |+Z w1 (z) — w(x)]
= |w (@) +[f(z )| vk € N.

Because |u1|+ | f| € L*(B,,), by Lebesgue’s Dominated Convergence Theorem, we
have ||uy — ul|r2(p,,) — 0 as k — oo.
Take any ¢ € Z(R™). There exists m € N such that ¢ € Z(B,,,). Then

(1, P(~D)8)g = {u, P(~D)) 5, = lim (uy, P(~D)d)

m

(3.32)

Since P(D)uy = g in sense of 2'(By), we have P(D)u, = g in sense of 2'(B,,)
whenever k > m. Thus, (u, P(=D)¢)p = (g,¢)p for all & > m. Then (3.32)
gives

(u, P(=D)¢)p. = lim (g,0) 5 = (9,:0)p, = (9, )pn-

k—o0

Therefore, P(D)u = g in sense of Z'(R"). O
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Proposition 3.7. Consider the Heaviside function H : R — R,

H(l"l,--.,xn):{ 1 iftxy,..., 2, >0,

0 otherwise.
Then Q(D)H = by, where Q(z) = x125 . .. Tp.

Proof. We need to show that (H, Q(—D)¢) = ¢(0) for all $ € Z(R"). By the defi-
nition of the conjugate differential operator on Page 18, Q(—D) = (—=1)"D1Ds ... D,,.
Therefore, we want to show that

H(z)(DyDs ... D)o(x)dz = (—1)"(0) Vo € 2(R™). (3.33)

Rn

For convenience, we denote the set of all points x € R™ whose all coordinates are
positive by {z1,...,x, > 0}. Showing (3.33) is equivalent to showing that

/{ | (PiDs Do = (-1)'6(0) Vo € IR (3.34)

.....

We prove (3.34) by induction in n € N. For n = 1, (3.34) becomes
/ & (2)dz = —6(0) Yo € D(R). (3.35)
{z>0}

For each ¢ € Z(R), there exists a number M > 0 such that ¢(z) = 0 for all
x > M. Thus,

LHS(3.35) = /0 & (z)dz = $(M) — $(0) = —¢(0) = RHS(3.35).

Thus, (3.35) is proved.

Suppose that (3.34) is true for n = N — 1. Take ¢ € 2(RY) arbitrarily. We
show that

(D1D; ... Dy)¢(x)dz = (—1)"¢(0).
{z1,...,en>0}

Since supp¢ is bounded, there exists a number M > 0 such that max{|zy|,...,|z.|} <
M for all z € suppg. Put Q = (0, M), which is a Lipschitz domain. According
to [Nec67, p.117], the Green formula is still valid for the domain 2. Namely,

/ledx = fnlda, (336)
Q o0

where f is a sufficiently regular function and 7 = (ng,...,ny) is the exterior
normal vector. Applying (3.36) for f = (D, ... Dy)o, we get

/ (D1Ds ... Dy)o(x)dx = / (Dy...Dy)o(x)nido. (3.37)
Q

o0N
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Note that
LHS(3.37) — / (DiDs ... Dy)é(x)da. (3.38)

{z1,....x y >0}
The boundary of Q consists of 2V faces. However, ¢ vanishes on all but (at most)
N faces, namely

Thus,
RHS(337) = 3 / (Ds... Dy )6 ()i do. (3.39)

The exterior normal vector 77 on the face o; is 7 = —e;. Thus, n; = —1 on o7 and
ny = 0 on other faces. Thus, (3.39) becomes

RHS(3.37) = — / (Dy...Dn)p(x)nydo = — / (Dy...Dy)o(x)nido.

{z1=0,z2,...,x y >0}
(3.40)
On the plane {z; = 0}, we write x = (0,y) withy = (y1,...,yn-1) = (z2,...,2n) €
RN Put 9 (y) = ¢(0,y) € Z(R™). Then (3.40) becomes

77777

RHS(3.37) = / (D: ... Dy_1 ) (y)dy
{y1,syn—1>0}
= —(=1D) '4(0) (by the induction hypothesis)
= (—1)%(0).
Then together with (3.38) we get

/{ . (DD, ... Dy)o(z)dz = (—=1)N $(0).

.....

[]

Proposition 3.8 (Malgrange-Ehrenpreis theorem). Let P € R[zy,...,x,]\{0}.
Then there ezists E € 2'(R™) such that P(D)E = §y in sense of 2'(R™).

The distribution F is called a fundamental solution of P(D).

Proof. By Proposition 3.7, Q(D)H = §, where His the Heaviside function on R"
and Q(D) = D1D,... Dy. Since H is bounded, H € L2 (R™). By Proposition 3.6
there exists a function v € L2 (R") such that P(D)u = H in sense of Z'(R"). Put
E =Q(D)u. Then E € 2'(R") by Proposition 6.18. We have

)
P(D)E = P(D)(Q(D)u)

= Q(D)(P(D )) (by Proposition 6.19)
Q(D)H =
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4 Existence of smooth solutions to P(D)u = f

Let P € Rzy,...,2,)]\{0} and f € C°°(R™). In this section, we show the existence
of u € C*(R™) satisfying P(D)u = f. We again use the idea which was used for
the Poisson problem in Proposition 2.2. Specifically, we choose an open cover of
R™ by annuli and take a smooth partition of unity subordinate to this cover. Then
the function f is decomposed into the sum of compactly supported functions f;’s.
By Malgrange-Ehrenpreis theorem, there exists a smooth function vy such that
P(D)vy = fi. In general, the series ), vy does not converge in C*°(R") because
D®vi(z) is not small as « and x are fixed and k increases.

The idea is to replace vy by ur = vy — wy where wy satisfies P(D)wy, = 0 in
R". Each function wj, has to be chosen so that for each «, the series ), D%uy
converges uniformly on every compact subset of R™. We expect that all derivatives
up to order k of u should be bounded by 1%2 in the ball Bk*%‘ If this can be done,
the function u = ), u; will be a smooth solution of P(D)u = f. This method is
inspired by the method of Mittag-Leffler for constructing a meromorphic function
with infinitely many prescribed poles. Note that we only prove the ‘pure’ existence

of the functions wy, instead of constructing them. To do so, we need some properties
of the dual space of C*(R™).

4.1 Some topological properties of the dual of a TVS

First we recall the definition of weak* topology. Let X be a TVS' and E be
either the dual of X, i.e. the set of all linear continuous maps from X to R,
or the algebraic dual of X, i.e. the set of all linear maps from X to R. For
each x € X, we define a map p, : F — R, p.(9) = |{g,z)| for all g € E.
Then p, is a seminorm* on E. For g € E\{0}, there exists + € X such that
(g,2) # 0. Thus, p,(g) # 0. This means that {p,}.cx is a separating family of
seminorms on E. By Part (i) of Proposition 6.5, this family gives rise to a locally
convex TVS structure on E. Moreover, F has a local base consisting of open sets
{Uc(z1,...,xm) 0 €>0,2q,...,2, € X}, where

U(i,...,on) ={g € E: [{g,2;)] <eV1I <i<m}.

We call this topology the weak* topology on E and denote it by o(E, X). By this
definition, for each z € X, the map g € (E,0(E, X)) — (g,x) € R is linear and
continuous.

Next, we define another topology on the dual of X. Let E be the dual of X, i.e.
the set of all linear continuous maps from X to R. For each compact, balanced?,
convex subset A of X, we define a map py : £ — R,

palg) = gleajd (g,z)| Vg€ E.

fSee the definition of a topological vector space on Page 46.
See the definition of a seminorm on Page 47.
§See the definition of a balanced set on Page 47.
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Then p, is a seminorm on E. For each g € E\{0}, there exists z € X such that
(g,2) #0. Put A={tr: — 1<t <1}. Then A is a compact, balanced and
convex subset of X. We have

palg) = max|(g,y) | > |{g, )| > 0.
yeA
Thus, the family {ps : A is a compact, balanced, convex subset of X} is a sep-
arating family of seminorms on E. By Part (i) of Proposition 6.5, this family
gives rise to a locally convex TVS structure on E. Moreover, F has a local base
consisting of open subsets

i) = {5 € B max] .0 < e}

where € > 0 and A varies over the family of all compact, balanced and convex
subsets of X. This topology is called the topology of compact convergence on E,
and is denoted by vy(E, X). Because U (A) = U;(e"*A), we can say that v(E, X)
has a local base consisting of the open sets

Uy(A) = {QEEimg}HgﬂCH < 1},

where A varies over the family of all compact, balanced and convex subsets of X.

In conclusion, given a topological vector space X, the algebraic dual of X has
one locally convex TVS structure, namely o(F, X)), the weak™ topology, while the
dual of X two locally convex TVS structures, namely o(E, X), the weak™ topology,
and y(FE, X), the topology of compact convergence. It is clear from the definitions
that v(F, X) is finer than o(E, X).

Proposition 4.1. Let X be a TVS and E be the dual of X, i.e. the set of all linear
continuous maps from X to R. Let F be the algebraic dual of E, i.e. the set of all
linear maps from E to R. Equip E with the weak™ topology o(FE,X) and F with
the weak* topology o(F, E). Then the map J : X — (F,0(F,E)), J.(9) = (g,2)
for all g € E, is linear and continuous.

Proof. We know that (F,o(F, E)) has a local base consisting of the open sets
Vi(gr, -y gm) ={veEF: [{v,g)| <e V1I<i<m},

where € > 0 and the set {g1, ..., gn} varies over the family of all finite subsets of
E. For a fixed set V.(g1, ..., gm), we put U = (", g; ' ((—¢,€)).
Since g; € E, the set g; '((—¢,¢€)) is open in X. Thus, U is open in X. For

each x € U, we have |(J;,¢:)| = |{gi,z)| < e for all 1 < i < m. Thus, J, €
Ve(g1s -+ gm). This means J(U) C Vi(g1,...,9m). Therefore, J is continuous
from X to (F,o(F,E)). O
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Proposition 4.2. Let E be a vector space and F' be the algebraic dual of F, i.e.
the set of all linear maps from E to R. Equip F with the weak™ topology o(F, E).
Let A : (F,o(F,E)) — R be a linear continuous map. Then there exists g € E
such that

(A,h) =(h,g) YhEF.

Proof. By the definition of the weak* topology, F' has a local base consisting of
the sets
Uy,...,xm) ={h € F:|{(hyx;)| <e V1I<i<m},

where € > 0 and the set {xy,...,x,,} varies over the family of all finite subsets of
E. Because A is continuous, there exist € > 0 and z1,...,z,, € E such that

AUd(z1, ... 2m)) C (=1,1).

If h € F satisfies (h,x1) = ...(h,z,) = 0, then h € Uc(xy,...,2,); and thus
|(A, h)| < 1. Consider a linear map T : F — R™ "1

T(h) = (A, h), (h,z1) ..., {(h,2)) VheF.

The point (1,0,...,0) does not belong to T'(F’). Let Sy be the orthogonal component
of T(F) in R™™! with respect to the usual inner product.

Put Sy = {(0,y1,...,ym) : ¥ € R} C R™"L. Suppose by contradiction that
S; C Sy. Then Sy C Si. Thus, {(v0,0,...,0) : yo € R} C T(F). This implies
(1,0,...,0) € T(F), which is a contradiction. Therefore, S; ¢ Ss. This means
there exists a vector a = (g, ..., ay) € S; with ag # 0. By replacing o by a; e,
we can assume o = (1,aq,...,q,). We have aLT(F). Thus, a-T'(h) = 0 for all
h € F. Hence,

(A,h) +ay (hyz) + ...+ ap (h,zy,) =0 Vh EF.

Put g = —ayx1 — ... — apx, € E. We have (A, h) — (h,g) = 0 for all h € F.
Therefore, (A, h) = (h,g) for all h € F. O

Proposition 4.3. Let X be a TVS, E be its dual, i.e. the set of all linear contin-
wous maps from X to R, and f : E — R be a linear map. Then f is continuous
on (E,v(E, X)) if and only if it is continuous on (E,o(E, X)).

Proof. We know that (E,~v(F, X)) is finer than (F,o(E, X)). Thus, if f is contin-
uous on (F,o(FE, X)), it is also continuous on (E,v(E, X)). Now suppose that f
is continuous on (F,y(E, X)). We show that it is continuous on (E, o(F, X)). Let
F be the algebraic dual of F, i.e. the set of all linear maps from E to R. Equip
F with the weak* topology o(F, E). By Proposition 4.1, the map J : X — F,
J:(g9) = (g, x) for all g € E, is linear continuous from X to (F,o(F, X)).

Since f : F — R is linear, f € F'. We know that (E,~v(F, X)) has a local base
consisting of the open sets

Ui(A)={geFE: |(g,z)| <1 VxeA},
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where A varies over the family of all compact, balanced, convex subsets of X.
Because f is continuous on (F,~v(E, X)), there exists a compact balanced convex
subset A of X such that

f(UL(A)) C (—1,1). (4.1)
Put K = J(A) C F. Since A is compact and J is continuous, K is also compact.
Because A is balanced convex and J is linear, K is also balanced convex. We want
to show f € K. Suppose by contradiction that f € F\K. Applying Lemma 4.6
with xy therein being replaced by f, we conclude that there is a linear continuous
map A : (F,o(F,E)) — R such that (A, f) =1 and |[(A,h)| <1 for all h € K. By
Proposition 4.2, there exists g € E such that (A, h) = (h, g) for all h € F. Thus,
(A, f) ={(f,g) and (A, h) = (h, g) for all h € K. Therefore,

N5 = (]9, (4.2)
I(h,g)] < 1 VYheK=J(A).

For every x € A, we have

(g 2) | = [{Je, 9) | < 1.

Thus, g € Ui(A). By (4.1), (f,g9) < 1. This contradicts (4.2). Therefore, f €
J(A). Then there exists x € A such that f = J,. Thus, (f,g) = (g,) for
all ¢ € E. Then it is straightforward from the definition of the weak™® topology
(E,0(F, X)) that f is continuous on (F,o(F, X)). O

Proposition 4.4. Let X be a TVS, E be its dual, i.e. the set of all linear con-
tinuous maps from X to R, and S be a convex subset of E. Then S is closed in
(E,0(F, X)) if and only if it is closed in (E,v(E, X)).

Proof. (<) Suppose that S is closed in (F,v(E, X)). Because v(E, X) is finer
than o(F, X), S is also closed in (F,o(E, X)).

(=) Suppose that S is closed in (F, o(E, X)) Take any y in the closure of S with
respect to (E,v(FE, X)). By Hahn-Banach theorem, to show that y € S, it suffices
to show that (A,y) = 0 for all linear continuous map A : (F,o(F, X)) — R which
vanishes on S. Let A be such a map. Then by Proposition 4.3, A is continuous
on (E,o(E,X)). Applying Proposition 4.2 with E therein being replaced by X
and F' therein being replaced by E, we conclude that there exists x € X such that
(A, z) = (z,x) for all z € E. Thus, (A,y) = (y,z). Put

A={te: —1<t<1}.

Then A is a compact, balanced, convex subset of X. For each ¢ > 0, we know
from the definition of the topology «v(FE, X) that the set

U(A)={g€E: |{(g,2)| <e Vze A}

is a neighborhood of 0 in (F,v(FE,X)). Thus, y + U(A) is a neighborhood of y
in (E,v(E,X)). Because y lies in the closure of S with respect to (E,v(F, X)),
there exists y. € S such that y. € y + U.(A). Thus,

[{(ye —y,2) | <€ Vze A Ve>0.
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In particular, | (y. — y,z) | < € for all e > 0. We have

(Ye: ) = (A, ye) = 0.
Thus, |(y,z)| < € for all € > 0. Therefore, (y,x) = 0 and thus (A,y) = 0. O

Let X be a TVS and E be its dual, i.e. the set of all linear continuous maps
from X to R. For each subset U of X, we put

U={geE: |[{(g7)|<1 VzeU},

which is called the polar of U. It is easy to see that U? is balanced and convex. We
know that the weak™® topology o(F, X) is the topology generated be the separating
family of seminorms {p,}.cx. Thus, each map p, is continuous on (E,o(F, X)).
Since U°® = (,ep 25 ([—1,1]), U° is closed in (E,0(F, X)).

If U is a neighborhood of 0 in X then by Banach-Alaoglu theorem [Rud73,
p.67], U° is compact in (E,o(E,X)). In the sequel, we write (U° o(E, X)) to
indicate the topology which U® inherits from (F,o(E, X)).

Proposition 4.5. Let X be a TVS and E be its dual, i.e. the set of all linear
continuous maps from X to R. Let S be a conver subset of E. Then S is closed in
(E,0(F, X)) if and only if SNU® is closed in (U°,0(E, X)) for every neighborhood
U of 0in X.

Proof. If S is closed in (E,o(E, X)) then it is obvious that S N U is closed in
(U,0(E, X)) for every subset U of E.

Now suppose that S N U is closed in (U°, o(E, X)) for every neighborhood U
of 0 in X. Since S and U are convex, so is S N U°. By Proposition 4.4, SN U°
is closed in (U, y(F, X)). We need to show that S is closed in (F,o(FE,X)). By
Proposition 4.4 again, this is equivalent to showing that S is closed in (E,y(F, X)).
Put ¢ = E\S. Then

6 NU° = (E\S)NU° = U°\(SN U,

which is open in (U°,y(F, X)) for every open neighborhood U of 0 in X. We need
to show that & is open in (E,v(E, X)).

Take any y € O, and put W = 0 — {y} = {9 —y : g € 0}. We show that
W is a neighborhood of 0 in (E,v(F,X)). Since y € E, there exists an open
neighborhood U of 0 in X such that |(y,2)] < 1 for all 2 € U. Because X is
metrizable, there exists a countable local base Uy D Uy D Uy D ... We can assume

Uy=U; =X and Uy = U. Then Uni1 C U for all m > 1. Thus,
(y,2)| <1 Vz€Ups1, ¥m > 1. (4.3)

We will show that there is a sequence of finite sets By, By, B, ... such that B,, C
U, for all m > 0 and U2, N A% C W for all m > 1, where

m—1
A, = ﬂk:O B.
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Choose By = {0}. Then A; = By = {0}. We have
UP=X°={geE: |{(g2)| <1 Vo e X}={0}.

Thus, Uy N A = {0} n A9 = {0} € W. Now suppose that for some m > 1, we
have found By, By, ..., B,,—1 such that U2, N A2, C W. We need to find a finite
set B,, C Uy, such that U2, ., N (A, U B, ) CcWw.

Suppose by contradiction that there is no such B,,. Then for every finite set
BcU, U, N(A,UB)° ¢ W. Put K,, =U,,, N (E\W) Then for every finite
set B C Uy,

Kn,N(A,UB)’=U; . N(A,UB)’N(E\W) #0.

Denote by & the family of all sets K,,, (A, U B)° where B varies over the family
of all finite subsets of U,,. Then every member of & is nonempty. If B and B are
two finite subsets of U,, then

[Km N (A UB)’ N [KmN(AnUB)’] = K,N[(A,UB)’N (A, Uf)’)"]

= KnN[(4,UB)U (A, UB)
= K,Nn(A,UB)°,

where B = B U B, which is a finite subset of U,. Thus, £ is closed under finite
intersection. Since every member of & is nonempty, & has the finite intersection
property. We have

Ky = Upp 0 (E\W)
Upi1 N (E\O) = {y}]
= UpnnN(S—{y})

= [(Uh +{yhH) NS —{y}-

Put U = Um+1, Wthh is a neighborhood of 0 in X. For every y € Uy, and
w e U, we erte w = —z for some z € U,,,11. Then

|<g+y7w>’ = —<g+y,z)\
< SHo2 1+ 5162

< S4-=1 (by (43)).

Thus, g +y € (U)°. Thus, U +1{y} C (U)°. By the hypothesis, (U)°N S is
closed in ((U)°, 0(E, X)). Thus, (U° o +{y})NSis closed in U, + {y}. Then
(Ug 1 +{y}) N S] — {y} is closed in U, . Thus, U2, N (S — {y}) is closed
in U2 . Therefore, K,, is closed in (U3, ,,0(FE, X)) According to the remark
before the statement of Proposition 4.5, U2, is compact in (£,0(E, X)). Thus,
K,, is compact in (F,0(F, X)).
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Each member of & is of the form K,, N (A4,, U B)° where B is a finite subset
of U,,. According to a remark before the statement of Proposition 4.5, (4,, U B)®
is closed in (F,o(E, X)). Thus, & is a family of closed subsets of (K,,,c(F, X))
that has the finite intersection property. Thus, the intersection of all members of
& is nonempty. In particular,

0 # ﬂzeUm [Km N (A, U{2})] = K,

U (Anu {z}>]

2€Um
K,N(A,UUp,)°

= K,NA, NnU

C (E\W)N (A2, NU2).

However, (E\W)N (A% NUZ) = () because A2, NU2, C W. This is a contradiction.
Therefore, we have finished proving the existence of the sequence of finite sets
By, By, By, ... such that B,, C U, for all m > 0 and U2 N A% C W for all m > 1.

Put - -
A= A, ={opu <Um:1 Bm> .

Then A is a countable and compact subset of X. We have A° = (~_, A°. Thus,
for each m € N, Up, N A° C Ug, N A, C W. This implies

(U un)nar=UJ._ wanaycw.

Moreover,

U = (N Un) =101 =E.

ar=pna=(J_ v)nascw

Hence,

By the definition of the topology of compact convergence v(FE, X ), the set U 1 (A) =
{g€ E:|{g,2)| <3 Vx € A} is an open neighborhood of 0 in E. Because U%(A) C
A° C W, W is an open neighborhood of 0 in (F,o(FE, X)). O

Lemma 4.6. Let F' be a locally convexr TVS, K be a closed balanced convexr subset
of F, and xq € F\K. Then there ezists a linear continuous map A : F' — R such
that (A, zo) =1 and |(A,z)| <1 for allz € K.

Proof. Because K is closed in F' and xy € F\K, there exists a neighborhood U
of 0 in F such that (o + U) N K = (). Since F is locally convex, we can assume
that U is convex. By Part (ii) of Proposition 6.1, we can even assume that U is
balanced. Put L=K —U ={x—y: z € K,y € U}. Then L is a neighborhood
of 0 in F' and xg ¢ L. Because K and U are balanced and convex, so is L. By
Proposition 6.4, the Minkowski functional uy, : F' — R is a seminorm. Since 0 € K
and zg € F\K, xg # 0. Put Fy = {\xo : A € R}, which is a vector subspace of F.
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Because the scalar multiplication on F is continuous, the family {(—¢, €)xo}eso
is a local base of Fy. Thus, the map Ag : Fy — R, Ag(Azxg) = A, is linear and
continuous on Fy. Since zo € L, ur(zo) > 1. Hence,

[A(Azo)| = |A| < [Alpr(zo) = pr(Azo) VA €R.

By Hahn-Banach theorem [Rud73, p.57], Ay has a linear continuous extension
A F — R such that [A(z)| < up(x) for all x € F. We have A(zg) = Ao(zo) = 1.
For every x € K, x lies in the interior of L. Thus, |A(z)| < pr(x) < 1. O

4.2 Some topological properties of the dual of C*(R")

In this section, we denote by X the metrizable TVS C*(R") as described in
Section 6.2. We also denote by E the dual of X, i.e. the set of all linear continuous
maps from C*°(R"™) to R. By Proposition 6.9, X is a Fréchet space.

Proposition 4.7. For each m € N and ¢ € C*(R"), we put
p(6) = max {|D°6(2)] : |a] < m,z € B},

where B,, is the closed ball in R™ which is centered at the origin and with radius
m. Let U be a neighborhood of 0 in X. Then there exists N € N such that

[Tyl <2Npn(¥) Ve X, T eU”.

An immediate consequence of Proposition 4.7 is that supp? C By for all
TeU°.

Proof of Proposition 4.7. For each m € N, we put
1 _
- {¢ € C(RY) : [D°9(a)] < - Vla| <m, V€ Bm} |

By the definition of the topology on C'*°(R™) in Section 6.2, the family {V,,}men
is a local base of C*°(R™). Thus, there exists N € N such that Vy C U. Thus, for
every T € U?,

T(¢)| <1 Vo e Vy.

For each ¢ € C*°(R") and € > 0, we put

Y

b = 2Npn(Y) + €

e C(R").

Then

o pn(P) 1
PN(@) = W < m

Thus, ¢. € Vy. Hence, |T(¢.)| < 1. Then
[ T| = (2Npy(¥) + €)|Toc| < 2Npn(9) + €.

Because this inequality is true for every € > 0, we must have |T9| < 2Npy(¢) for
all Y € O (R™), 0
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Proposition 4.8. Let Z(R") be the test-function space on R", i.e. the TVS
defined in Proposition 6.10. Then the embedding Z(R") — X is linear and con-
tinuous.

Proof. 1t is clear that the identity map Z(R") < C*°(R") is linear. Proposi-
tion 6.14 gives us a method to show that this map is continuous. Let (¢,) be
any sequence in Z(R") that converges to 0. We show that (¢,) also converges
to 0 in C*°(R™). By Proposition 6.8, we need to show that for every multi-index
a, (D%¢,) converges to 0 uniformly on every compact subset of R". By Proposi-
tion 6.13, there exists a compact set K C R"™ such that ¢, € Pk for all n € N,
and that (D“¢,) converges to 0 uniformly on K for every multi-index «. Let L
be any compact set in R”. We have ¢, |, is supported in K N L. Because (D%¢,,)
converges to 0 uniformly on K N L, it converges to 0 uniformly on L. [

Recall that &’(R"™) denotes that set of all compactly supported distributions
on R”. By Part (ii) of Proposition 6.17, an element in &’(R™) can be considered as
an element in E thanks to the unique linear continuous extension from Z(R") to
C*(R™). Now let us consider 7" € E. Thanks to Proposition 4.8, the restriction
of T on Z(R") is a distribution on R™. Since T is continuous, there exists a
neighborhood U of 0 in X such that |T(¢)| < 1 for all ¢ € U. Thus, T' € U°.
Then by Proposition 4.7, T is compactly supported. Hence, T'|y@n) € &'(R").
Therefore, E' can be identified with the set &’(R") in a natural way.

Proposition 4.9. Let P € Rlzy,...,2,)\{0}. Then the differential operator
P(D) : C®(R™) — C*(R") is linear and continuous.

Proof. 1t suffices to show that for every multi-index «, the differential operator
D> : C®(R™) — C*°(R") is continuous. Proposition 6.8 gives a necessary and
sufficient condition for the convergence of a sequence in C*(R"). Let (f,) be any
sequence in C*°(R™) that converges to f € C*°(R™). Then for every multi-index £,
the sequence (DP?D®f,) converges to D D®f uniformly on every compact subset
of R"*. Thus, (D*f,) converges to D*f in C*°(R"™). Therefore, D* is a continuous
map. 0

Proposition 4.10. Let P € R[zy,...,2,]\{0}. Define a map f: X — X, f(¢) =
P(D)¢ for all € X. Note that by Proposition 4.9, f is linear and continuous.
Let f*: E — E be the dual map of f, i.e. f*(T)=Tof foralT € E. Let U be
a neighborhood of 0 in X. Then f*(E)NU® is closed in (U°, o(E, X)).

Proof. Consider anet {T;}ier in f*(E)NU® that converges to Ty € U%in (U, o(E, X)).
We need to show that Ty € f*(F). By Proposition 4.7, there exists N € N such
that

(T, )| <2Npn(9) VT €U’ V¢ € X,

where py(¢) = max {|D%¢(z)|: |o| < N,z € By} and By is the closed ball in
R™ which is centered at the origin and with radius /N. Thus,

| (Ti,¢)| <2Npn(¢) Viel, Vo e X. (4.4)
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If ¢ € 2(R"\By) then [(T;,¢)| < 2Npn(¢) = 0. Thus, T; vanishes in R™\By.
This implies supp?; C By for all i € I. Because T; € f*(FE), there exists S; € F
such that T; = f*(S;) = S; o f. For every ¢ € X we have

Hence, T; = P(=D)S; for all i € I. Because S; € E, Si|gmrn) € &'(R™) by the
remark before Proposition 4.9. By Proposition 3.4, we have
[suppS;] = [suppTi] € By Vi€ I,

where [K] denotes the convex hull of a set K C R”. Take ¢y € C*°(R") arbitrarily.
We show that the net {(S;,10)},c; is bounded and convergent in R.
~ Let x be a function in Z(R") such that x = 1 in Byyi. Then xio = ¢ in
Bn 1, which implies supp(x%o — ¥o) C R"\ Byy1. Thus,

suppS; Nsupp(x¥o — o) € By N (R"\By11) = 0.

By Part (i) of Proposition 6.17, (S;, xto — ¥o) = 0. Hence,

(Sis x®o) = (Si, o). (4.6)
Since xg € Z(R"™), by Proposition 4.13, there exists ¢pg € X such that P(D)¢pg =
X%o. Then from (4.5) we have
(Si, xto) = (Si, P(D)tbo) = (Ti, do) -

Together with (4.6), this identity yields

(Sito) = (i, g0 Vil (47
Because the net {T}}i; converges to T in (U 0(E, X)), the net {(T}, ¢o)},c;
converges in R. Thus, the net {(S;,10)},.; converges in R. Denote by (S, ) the
limit. Then we get a linear map S : X — R such that lim (S;, ) = (S, ) for all
Y € X. By (4.4) and (4.7), we have

| {Si,%0) | < 2Npn(do) Vie L

Thus, the set {(S;,¢o) : i € I} is bounded in R. Put I' = {S; : i € I}. Then
I' is a family of linear continuous maps from X to R which is pointwise bounded.
Because X is a Fréchet space (Proposition 6.9), X is a complete metric space.
According to Banach-Steinhaus theorem (see [Rud73, p.43]), I is equicontinuous.
In other words, for each ¢ > 0, there exists a neighborhood U of 0 in X such that

| (S;,0) | <e YeU, Viel.

Thus, [(S,v¢)| < € for all ¢p € U. Thus, S is a continuous map from X to R. This
means S € E. For every ¢ € X, we have

(Ti, 0) = (S5, f(9)) = (S, f(¢)) = (So f,¢) = (f(5), ).
On the other hand, we know that (T}, ¢) — (Tp, ¢). Thus,

(f7(9),6) = (To,¢) Vo€ X.
Therefore, Ty = f*(5) € f*(E). u
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4.3 Existence of smooth solutions to P(D)u = f

With the background in the dual space of C*°(R™) discussed in the previous section,
we are now able to make concrete the ideas mentioned at the beginning of Section 4.
It is necessary to approximate (in C*-norm) a function v satisfying P(D)v = 0 in
a finite ball in R™ by functions satisfying the same equation in the whole space
R™. If P(D) is the Laplacian, this can be done by applying, first, Walsh’s theorem
(quoted in Proposition 2.1) to get an approximation for the function v itself, and,
secondly, the estimation of the derivatives of v by the function v itself (quoted
in Proposition 2.2). Proposition 4.12 is a generalization of Walsh’s theorem for a
general linear differential operator P(D).

Let us introduce some notations. For each s > 0, we denote by B, the open
ball in R™ which is centered at the origin and with radius s. Recall that for each
nonnegative integer & and nonempty open bounded set Q C R”, C*(Q) denotes
the vector space of all functions f : 2 — R such that D®f exists and is uniformly
continuous in € for all multi-indices |a| < k. It is well-known that C*(Q) is a
normed vector space with

||ullor @y = max {|Du(z)] : | <k, 2 €Q} Vue CHQ).

Proposition 4.11. Let k be a nonnegative integer and § be a nonempty open
bounded subset of R™. Suppose that L : C*(Q) — R is a linear continuous map.
Then there ezists a distribution T € &' (R™) supported in §2 such that

L(ulg) = (T,u) VYue C*(R").
Proof. Because L is continuous, there exists a constant C' > 0 such that
L] < Clldlloriey Vo € CHQ).

Define a linear map 7' : Z(R") — R, (T, ¢) = L(¢|q) for all ¢ € Z(R"). For every
¢ <€ Z2(R"),

(T, 0) | = |L(dla)] < Clidlallcre
= Cmax{|D%(z)|: z€Q, |o| <k} (4.8)
= Cmax{|D%(z)|: z € R", |a| <k}.

According to the notation in Proposition 6.15, we have
(T, 0) | < Cllglle Yo € Z(R)

and thus T € 2'(R"). By (4.8), T vanishes in R"\Q2. Thus, T € &'(R"). Define
a linear map T : C®°(R") — R, T'(u) = L(ulq) for all u € C®(R™). Let (u,,) be
any sequence in C'*°(R"™) which converges to ug € C*°(R™). By Proposition 6.8,
DPu,, — DPuy uniformly on Q as m — oo for every multi-index 3. In particular,
[ttm — uol|orq) — 0 as m — co. Because L is continuous, L(um|a) — L(uole) in

R. Then T(u,) — T(ug). Therefore, T is continuous. Because T'(u) = (T, u) =
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L(ulg) for all u € 2(R"), T is the linear continuous extension of 7' to C*°(R").
This allows us to write (T, u) = L(ulg) for all u € C*°(R"). )
Next, we show that 7" is supported in Q2. For every u € Z(R"\Q),

(T,u) = L(ulg) = L(0) = 0.
Thus, T vanishes in R™\Q2. Therefore, suppT’ C ). ]

Proposition 4.12. Let k be a nonnegative integer and 0 < s < r. Let P €
R[z1,...,2,]\{0} and v € C®(R") such that P(D)v =0 in B,. Then there exists
a sequence (vy,) in C®°(R™) such that P(D)v,, =0 in R™ and

lim H'Um — UHC’“(BS) = 0.
m—00

Proof. Denote by X the metrizable TVS C*°(R") as defined in Section 6.2, and F
its dual, i.e. the set of all linear continuous maps from X to R. Equip E with the
weak™ topology o(FE, X). Define a linear map f: X — X, f(¢) = P(D)¢ for all
¢ € X. By Proposition 4.9, f is continuous. Let f*: E — E be the dual map of
fyie. fA(T)=To fforall T € E. Put

X, = {u € C¥(B,) : Jextension & € C=(R") such that P(D)@# = 0 in R"}.

Then X is a vector subspace of X. We want to show that v|g, € X,. Let L be any
linear continuous functional on C*(B,) which vanishes on X;. We want to show
that L(v|p,) = 0. By Proposition 4.11, there exists a distribution 7" € &' (R")
supported in B, such that

L(ulg,) = (T,u) Yue C*(R"). (4.9)

By Part (ii) of Proposition 6.17, we can regard T' € E. We will show that T €
f*(E). For every ¢ € ker f, ¢ € Xy. Thus, (T,¢) = L(¢5,) = 0. This implies
that T' vanishes on ker f. First, we show that T belongs to the closure of f*(FE)
in (F,0(F,X)). Let I" be any linear continuous map from (F,o(F, X)) to R such
that

(I'yh) =0 Yhe f*(E). (4.10)
We need to show that (I'; 7') = 0. According to Proposition 4.2, where E therein
is replaced by X, F' therein is replaced by E, and A therein by I', we conclude
that there exists ¢g € X such that

(D, h) = (h, ) VheE. (4.11)
By (4.10), we have (h, ¢o) = 0 for all h € f*(E). Thus, for every S € E,

(S, f(d0)) = (S o f,d0) = (f*(5), b0) = 0.

Hence, f(¢o) = 0 by Hahn-Banach theorem. Thus, ¢g € ker f. By (4.11), (I, T') =
(T, ¢o), which is zero because T vanishes on ker f. We have proved that T lies in
the closure of f*(F) in (E,o(F, X)).
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Now we show that f*(F) is a closed set in (E,0(E, X)). Since f* is a linear
map, f*(F) is a vector subspace of E. In particular, f*(E) is convex. According
to Proposition 4.5 where S therein is replaced by f*(F), it suffices to show that
f*(E)NU°is closed in (U° o(E, X)) for every neighborhood U of 0 in X. This
was proved in Proposition 4.10. Therefore, we have proved that T' € f*(E). Write
T = f*(A) =Ao f. Then

(T, ¢) = (Ao f,¢) = (A, f(¢)) = (A, P(D)p) Vo€ X. (4.12)

Thus, (T, ¢) = (P(—D)A, ¢) for all ¢ € X. Hence, P(—D)A = T. Because A € E,
€ &'(R™) by Proposition 4.8. Then by Proposition 3.4,

Algn)
[suppA] = [suppT] C Bs.
We have suppA N supp(P(D)v) C B, N (R"\B,) = 0. By Part (i) of Proposi-
tion 6.17, (A, P(D)v) = 0. By (4.12), we get
(T,v) = (A, P(D)v) = 0.
Therefore, from (4.9) we get L(v|g,) = (T, v) = 0. O

Proposition 4.13. Let P € R[zy,...,2,]\{0} and ¢ € Z(R"™). Then there exists
u € C®(R"™) such that P(D)u = ¢ in R™.

Proof. By Proposition 3.8 (the Malgrange-Ehrenpreis theorem), the differential
operator P(D) has a fundamental solution I' € 2’'(R"). By Proposition 6.20, the
function u = I" * ¢ belongs to C*°(R™). We also have

P(D)u= P(D)(T'+ 6) = (P(D)T) 6
Thus, P(D)u = dp * ¢ = ¢ by Proposition 6.22. O
Proposition 4.14. Let P € Rlxy,...,2,)\{0} and f € C>®(R™). Then there
exists u € C*°(R") such that P(D)u = f in R".

Proof. Put
Ag={z e R": |z| < 2},
Ay ={zeR": k<|z|<k+2} VkelN

Then the collection {A; : k£ =0,1,2,...} is an open cover of R". Let {¢y : k =
0,1,...} be a smooth partition of unity subordinate to this cover. Put

fe(z) = f(z)pp(z) Vo eR", Vk>0.

Then f = > 72, fr. Because f; € Z(R"), by Proposition 4.13, there exists
e € C®°(R™) such that P(D)n, = fr. Then P(D)n, = 0 in B,. Applying
Proposition 4.12 for s = k — %, r = k and v = 1, we conclude that there exists
Mk € C°°(R™) such that P(D)n = 0 in R™ and
- 1
17k = nellcr s, ) < e
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Put uy = np — M € C°(R™). Then P(D)uy = P(D)n, — P(D)i, = P(D)ny, = fx

and
1

lunllon s, ) < 13-
For each compact set A C R", there exists ko € N such that A C Bj_y, for all
k > ko. Then

()] < uellons,_, ) < 75 Vo €A, VE > ko,

k2

Thus, the series -, u; converges uniformly on every compact set in R™. Put
o .« .

w="> - our. Then for every multi-index a, we have

1
< — Vze A Vk>max{ko,a}.

(D% u(@)] < Nlwellers, ) < 12

Hence, the series Y -, D*uy, converges uniformly on every compact subset of R".
Therefore, u € C*°(R") and D*u =Y ;- D*u;. Consequently,

P(D)u = ZZO:O P(D)uy = Z:O:O fo= 1.

5 Some applications

In this section, we present some applications of Proposition 4.14. An immediate
application is the existence of solutions of a system of linear partial differential
equations with constant coefficients. This was first pointed out in [Ehr54, Theorem
15] and [Mal56, Prop. 8, p.318].

Proposition 5.1. Consider a system of differential equations in R™ of the form
N
> Pu(Dyue = f; V1<j<N, (5.1)
k=1

where Pj, € Rlzy,...,z,) and f; € C®°(R™) are given. Suppose that the deter-
minant det(Pjy) is not the zero-polynomial. Then the system (5.1) has solutions
U, U, ..., UN € Coo(]Rn)

According to the terminology in [Ehr54], when det(Pj;) = 0, the matrix
differential operator (P;,(D)) is called degenerate. Otherwise, it is called non-
degenerate.

Proof of Proposition 5.1. Put Q = det(Pj;) € Rlzy,...,2,]\{0}. By Proposi-
tion 4.14, for each 1 < j < N, the equation Q(D)v; = f; in R™ has a solution
v; € C®(R"). For each z € R", we denote by (P7*(z)) the adjugate matrix of
(Pjr(x)). Note that P*(z) € R[xy,...,z,]. Moreover,

Z:[:I PZk(SC)PkJ(x) = det(PJk(x))(szy = Q(SU)@] Vi € Rn,
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where d;; is the Kronecker delta. For each 1 <k < N, we put

N .
Uy = Zk:l P*(D)v; € C=(R™).

Then
N N N ,
> PPy = 30 3T Pa(D)PHD)
N N ,
_ ik
-y (Zkzl Py(D)P (D)) v
N
= Y QD)(G,w)
= QD)v; = f;.
Therefore, (uy,us, ..., uy) is a solution to the system (5.1). ]

Proposition 5.2. Consider the linear Stokes equations in the whole space R3
without the initial condition.

{ Oyt — A+ Vp = f,

V.i=0. (5:2)

where
ﬁ: (Ul(I17$2,$3,t)7U2<$1,$2,$3,t),U3(I1,1’2,(L’3,t)),
p= p(x1, 2, 23, 1),
f = (f1<ZE1,.§L’2,l'3,t), fg(!ﬂl,l’g,xg,t), f3<$1,l’2,$3,t)).
Suppose that fi, fa, f3 € C®(RY). Then the system (5.2) has solutions @ €
[C=(RY)]? and p € C=(RY).
Proof. Put
ug(x1, T2, w3, 1) = p(1, T2, T3, 1),
Ty = t?
fa(z1, 20, 23,t) = 0.

Then the system (5.2) becomes a system of linear differential equations in R?,

Dyuy — Diyuy — Doguy — Daguq + Dyug = fi,
Dyuy — Diyug — Dygug — Dsgug + Douy = fo,
Dyug — Dyyus — Dygus — Dsguz + Dsuy = f3,

Diuy + Dyuy + Daug = fy.

(5.3)

These equations can be rewritten as

4
> Pu(Dyup = f; V1<j<4,

k=1

where

_ _ _ 2 2 2
P11—P22—P33—$4—$1—5152—$3>

Py =z, Py =29, P3y = 3,
Py =21, Py = 29, Py3 = 23,
Pj, =0 for other pairs (j, k).
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Thus,

Ty — a2 — 25 — 3 0 0

( 0 Ty — 23 — 13— 12 0

Pi(x1, 9,23, 14)) =
Jk\&1, L2, 43, L4 2 2 2
0 0 Ty — T] — TG — T3
I T ZT3

Then det(Pj;) = (x4 — 2 — 23 — 22)? (23 + 23 + 22), which is not a zero polynomial.
By Proposition 5.1, the system (5.3) has solutions uy, us, ug, uqg € C(R?). O

6 Some background in test functions and distri-
butions

This section collects some basic properties of topological vector spaces, test func-
tions and distributions in R™ that are needed to study the existence of smooth
solutions to the problem P(D)u = f. Most of these properties are taken from
Chapters 1 and 6 in [Rud73]. All vector spaces of our concern are over the field R.

6.1 Topological vector spaces

Below is a list of terminologies that are used in the paper.

1. A vector space X equipped with a topology 7 is called a topological vector
space, abbreviated by TVS, if it is a T3 space (i.e. every singleton is closed)
on which the addtition and scalar multiplication maps are continuous.

2. A family £ of neighborhoods of 0 in a TVS X is called a local base if every
neighborhood of 0 in X contains a member of . A local base &£ of X is
said to be balanced (respectively convezx) if every member of its is balanced
(respectively convex).

3. A TVS (X, 7) is said to be metrizable if T is induced by a metric on X. A
metric d on X is called translation-invariant if d(x + z,y + z) = d(z,y) for
all z,y,2z € X.

4. A TVS X is said to be locally convez if it has a convex local base.
5. A TVS (X, 7) is said to be a Fréchet space if

(i) (X,7) is locally convex,
(ii) (X, 7) is metrized by a translation-invariant metric d,
(iii) (X,d) is a complete metric space.
6. A subset A of a TVS X is said to be topologically bounded if for every open

neighborhood V' of 0, there exists a number s > 0 such that A C tV for all
t>s.

46

T
T2
I3

0



7. A map p: X — R is called a seminorm on a TVS X if

(i) p(x) >0 Vz e X,

(i) p(z +y) < p(z) +ply) Yo,y e X,
(iii) p(ax) = |alp(z) Ya e Rz € X.

A family &2 of seminorms on X is said to be separating if for every z €
X\{0}, there exists p € & such that p(z) # 0.

8. Let A be a subset of a TVS X. We say that A is balanced if A # () and
tA C Aforall -1 <t < 1. Wesay that A is absorbing if X = (J,.tA.

9. Let A be an absorbing subset of a TVS X. The map pa: X — R, pa(x) =
inf{t > 0:t 'z € X}, is called the Minkowski functional of A.

Proposition 6.1. Let X be a TVS and U be an neighborhood of 0 in X. We have
the following statements.

(i) There is_an open netghborhood Vi of 0 in X such that V} is balanced, Vi+V; C
U, and V;, C U.

(i1) If U is convez, it contains an open neighborhood Va of 0 in X such that V3
15 balanced and convew.

Proof. (i) Because the addition map X x X — X, (z,y) — « + y is continuous,
there exist open neighborhoods &4, 05 of 0 in X such that &) + 0, C U. Put
O3 = O) N O,. Because the scalar multiplication R x X — X, (A\,z) — Az is
continuous, there exist a number ¢ > 0 and an open neighborhood & of 0 in X
such that (—6,0) x 04 C O5. Put

Vi= U|t|<6 tO4.

Then Vj is also an open neighborhood of 0 in X. Moreover, V; is balanced and
Vi C O5. Wehave Vi + V) C O35+ 05 C Oy + O, C U. Next, we show that V; C U.
Take any = € V4. Then (x + Vi) N Vi # 0. Thus, there exists y,z € V4 such that
xr = y — z. By the definition of Vi, we have —V; = Vj. In particular, —z € V}.
Then x =y + (—2) € Vi + V4 C U. Therefore, V; C U.

(ii) Put Vo = U N (=U). Because U and —U are convex neighborhoods of 0,
Vh is also a convex neighborhood of 0. Now we show that V[ is balanced. Take
any ¢ € Vp and t € [—1,1]. By replacing z by —z if necessary, we can assume
t € [0,1]. Then tz lies on the line segment from 0 to z. This segment lies entirely
in U because U is convex. Similarly, this segment lies entirely in —U because —U
is convex. Therefore, tz € U N (=U) = V,. Let V, be the interior of V4. Then
Vo C U and V5 is an open neighborhood of 0.

We show that V5 is balanced. Take any x € V5 and ¢t € [—1,1]. If ¢t = 0
then tx = 0 € V5. Consider ther case t # 0. Because x lies in the interior of V4,
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there exists an open neighborhood & of x contained in V{. Since V; is balanced,
to C tVy C Vy. Note that t& is an open neighborhood of tz. Thus, tx € V5.

We show that V; is convex. Take any z,y € V5 and ¢t € [—1,1]. Because x
and y lie in the interior of 1}, there exist open neighborhoods &) of x and O, of
y such that 0,0y C V. Since Vj is convex, t0) + (1 — t)0y C V. Note that
tO1+(1—t) 0y is an open neighborhood of tz+(1—t)y. Thus, tx+(1—t)y € V5. 0O

Proposition 6.2. Let X be a TVS. We have the following statements.
(i) Every singleton is topologically bounded.
(i1) Every convergent sequence of X is topologically bounded.

Proof. (i) Take a € X and let V' be any neighborhood of 0 in X. Because the
scalar multiplication is continuous, there exists ¢ > 0 such that da € V for all
0<d<e Thus,a € 6V forall 0 < § < e Hence, a € tV for all t > e L.
Therefore, the singleton {a} is topologically bounded in X.

(ii) Let (x,) be a convergent sequence in X. Denote a = limz,,. Let V' be any
neighborhood of 0 in X. By Part (i) of Proposition 6.1, there exists a balanced
neighborhood W of 0 in X such that W + W C V. Because x, — a, there
exists ng € N such that x, —a € W for all n > ny. Because the singleton {a} is

topologically bounded, there exists a number s > 1 such that a € tW for all ¢t > s.
Then

T, €a+W CtW+W CtW +tW =t(W + W) CtV Vn>ng, Vt>s.

Because each singleton {z;}, 1 < i < nyg, is topologically bounded in X, there
exists sg > 0 such that x; € tV for all t > sp and 1 < ¢ < nyg. Take 51 =
max{s, so} > 1. Then z, € tV for all t > s; and n € N. Therefore, the sequence
{z,,} is topologically bounded. O

Proposition 6.3. Let X and Y be two TVS and A : X — Y be a linear map.
Consider the following statements.

(i) A is continuous.

(ii) A is bounded, i.e. A maps topologically bounded sets into topologically bounded
sets.

(111) A(z,,) — 0 if the sequence (x,,) converges to 0.
Then (i) implies (ii). If X is metrizable then (i),(ii), (iii) are equivalent.

Proof. (i)=-(ii). Suppose that A is continuous. Let A be any topologically bounded
subset of X and V' be any neighborhood of 0 in Y. We need to find s > 0 such
that A(A) C tV for all t > s. Since A is continuous, there exists a neighborhood
U of 0 in X such that A(U) C V. Since A is topologically bounded in X, there is
sp > 0 such that A C tU for all t > s5. Thus, A(A) C A(tU) =tA(U) C tV for all

t > sg. We can choose s = sg.
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(il)=(iii) (assuming that X is metrizable). Suppose by contradiction that there
exists a sequence (z,,) in X such that z,, — 0 and A(z,) 4 0. Then there exists an
open neighborhood & of 0 in Y and a subsequence (x,, ) such that A(x,, ) € O for
all £ € N. By replacing (z,) with this subsequence, we can assume that A(z,) ¢ &
for all n € N. Let d be a metric on X that is compatible with the topology on X.
Since x,, — 0 in sense of topology, we have d(z,,0) — 0. For each k € N, there
exists ny, € N such that d(z,,,0) < . Moreover, the sequence (n;) can be chosen
to be increasing in N. Then (z,, ) is a subsequence of (z,,). By replacing (z,,) with
this subsequence, we can assume that d(z,,0) < # for all n € N. Thus,

1 1 1
d(nx,,0) < d(x,,0)+...+d(z,,0) < > +...+ R
This means the sequence (nz,) converges to 0 in X. By Part (ii) of Proposition 6.2,
both (z,) and (nz,) are topologically bounded sequences in X. Because A is a
bounded map, (Az,) and (nAx,) are topologically bounded in Y. Thus, there
exists s > 0 such that nAx, € t0 for all t > s and n € N. Consider n > s and
t = n. Then nAx, € n@ for all n > s. Thus, Az, € O for all n > s. This is a
contradiction.

(iii)=(i) (assuming that X is metrizable). It suffices to show that A is contin-
uous at the origin of X. Let U be a neighborhood of 0 in Y. We need to find a
neighborhood V' of 0 in X such that A(V) C U. For each n € N, denote by By,
the open ball in X centered at 0 with radius % Suppose by contradiction that
A(Biy /) ¢ U for all n € N. Then there exists y,, € A(B1/,)\U for all n € N. Write
Yn = A(z,,) for some x,, € Byy,. Then x, — 0 in X and y, = A(x,) € U for all
n € N. This contradicts the fact that A(z,) — 0in Y. Thus, there exists ng € N
such that A(By/n,) C U. We now can choose V = By /p,. O

Proposition 6.4. Let A be a balanced, convex, absorbing subset of a TVS X.
Then the Minkowski functional j14 is a seminorm on X.

Proof. By the definition of p4, it is clear that pa(z) > 0 for all x € X. Take
x € X and a € R. We show that pus(az) = |a|pa(z). Because A is balanced,
0 € A. Thus, xa(0) = 0. This implies that our claim is true for the case av = 0.
Consider a # 0. We have pa(ax) = inf Ay and pa(z) = inf A, where

Alz{t>0:t’10m:€A}, A2:{s>0:3’1x€A}.

We want to show that inf A; = |a|inf As. It suffices to show A; = |a|As. Because
A is balanced, A; = {t > 0: t7!a|z € A}. Take t € A;. To show that ¢ € |a|As,
we will show that || 't € Ay. We have t ! |a|z € A. Thus, (t|a|™") "'z € A, which
implies t|a|™' € Ay. Therefore, A; C |a]As. Now take s € Ay. We will show that
la|s € A;. We have s™'x € A. Thus, s~ !a| !|alr € A. Thus, (s|a|) talz € A.
This implies s|a| € A;. Therefore, |a|Ay C A;.

Next, we show that pa(z +y) < pa(z) + pa(y) for all z,y € X. We have

pa(z) = inf{t>0:t"ze A},
paly) = inf{s>0:s’1y€A},
pa(z+y) = inf{r>0:r"'(z+y) € A}.
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Take any t,s > 0 such that t 'z € A and s71y € A. Since A is convex,

S
t+s

In other words, (t+s) ' (z+y) € A. Thus, t +s > pa(z+y). Because this is true
for all ¢, s > 0 satisfying t "'z, s7'y € A, we have pa(z +y) < pa(x) + paly). O

€A

+ (s7'y)

Proposition 6.5. Let X be a vector space and &2 be a separating family of semi-
norms on X. For each p € & and n € N, we put

V(p,n) = {xGX: p(a) < %}

Let & be the family of all finite intersections of these sets. Then we have the
following statements.

(i) There is a topology T on X such that (X,7) is a TVS and A is a convex
balanced local base consisting of open sets.

(i) Each p € & is continuous.

(111) A subset E of X is topologically bounded if and only if p(E) is bounded in R
forallpe &£.

Proof. (i) Define a collection
T= {U,GI (x; +U;) : x; € X,U; € B, and [ is some index set} )

We show that 7 is a topology on X. It is clear that (), X € 7, and that 7 is closed
under arbitrary union. It remains to show that 7 is closed under finite intersection.
It suffices to show that the intersection of two elements in 7 also belongs to 7. Let
Uier (i +Ui) and U, (y; +V;) be two elements of 7. The intersection is

Uiel"je{] [(2; + Ui) N (y; + V)l

Therefore, it suffices to show that each (z; + U;) N (y; + V;) belongs to 7. Because
U, € A, there are p;,,...,p;,, € & and n,,,...,n;, € N such that

1
Ui:{xEX:pik(l‘)<— Vlgkgm}.
i
Because V; € &, there are p;,,...,p; € & and nj, ...,n;, € N such that
1
Vj:{xEX:ij(x)<— Vlgsgl}.
TLjS

For each z € (z; + U;) N (y; + V),

pi(zi—2) <2 VI<k<m,
iy —2) <;- VI<s<l



There exists N, € N such that

pjs(yj—z)+NLz< L vi<s<l

Put

1 1
WZ:{wGX: pik(w)<ﬁ‘v’1§k§m, andpjs(w)<ﬁ‘v’1§s§l}.

z z

Then W, € %. We will show that z+W, C (z;+U;)N(y;+V;). Take any w € W,
we need to show z+w € (x; +U;)) N (y; +V;). Forany 1 <k <mand 1 <s </,

we need to show p;, (z; — 2 — w) < == and p;,(y; — z — w) < =—. We have
1L Js
1 1
pi (i — 2 —w) < py, (w5 — 2) + piy (W) < pi (T — 2) + N S
z nik
1 1
pi(xi — 2 —w) < pj (2 — 2) + pj.(w) <pj,(z; — 2) + N S5
z njs

Therefore, we have proved that 7 is a topology on X. Moreover, 7 is translation-
invariant in sense that a set & is open in X if and only if every translation of &
in X is also open.

Next, we will show that (X,7) is a TVS. We first show that every singleton
is closed in X. Because 7 is translation-invariant, it suffices to show that {0} is
closed in X. For each p € & and n € N, we will show that the set

7 (p,n) = {x €X: pla) > %}

is open in X. Take any # € V(p,n). We want to show that there is an open

neighborhood of z contained in V(p,n). Because p(x) > +, there exists N € N
such that p(z) — + > 1. We will show that = + V(p, N) C V(p,n). Take any
y€x+V(p,N). Theny —x € V(p,N). Thus, p(y — z) < % Then

p(y) > p(x) ~ pla —y) > p(e) — > -

Hence, y € V(p,n). Therefore,  + V(p,N) C V(p,n). We have proved that the
set V(p,n) is open in X. Thus, the set

A=) X\ ()

is closed in X. We have
1
A = {xEX:p(x)S—VpEP,VnEN}
n

= {x e X :p(x)=0}.
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Because & is a separating family of seminorms, A = {0}. Therefore, {0} is closed
in X.

Next, we will show that the addition map is continuous. Take z,y € X and
put z = z +y. We will show that the addition map X x X — X is continuous
at (x,y). Any neighborhood of z contains an open set of the form z + V' for some
V € %A. By the definition of £, there are p1,...,p, € & and ny,...,n, € N
such that

1
V—{UEX: pk(u)<n— Vlgkgm}.
k

Put N = 2max{ny,...,n,} and
1
Vl—{UEX: pk(u)<ﬁ \v’lgkgm}.

We will show that (z + V)N (y+ Vi) C (z+ V). We have
$+V1:{UEX: pk(x—v)<%V1§k§m},
y—i—Vlz{wEX: pk(y—w)<%V1§k§m},
z—I—V:{ueX: pk(z—u)<nikV1§k‘§m}.

Take v € x 4+ V; and w € y + V;. We will show that v +w € 2+ V. We have

z v w x v w x v w .
Pk Pk +y < Dk + Py N+N N =

Therefore, v+w € z + V.

Next, we show that the scalar multiplication is continuous from R x X to X.
Take A € R and x € X. Put y = Az. Every neighborhood of y in X contains
an open set of the form y + V with V € #A. We want to show that the scalar
multiplication map is continuous at (A, z). Write

V:{UGX: pk(u)<i ng:gm}.

ny,
Let N € N be any number such that

N > max{ni,...,nn} (A + 1+ max {pi(z),...,pm(x)}).

1
%:{UEX: pk(x)<NV1§k:<m}.

We will show that ) .
(A——,)\+—> (x+Va) Cy+V.

N N
We have
;E—i-ng{vEX: pk(a:—v)<%V1§k‘§m},
y+V:{u6X:pk(y—u)<nikV1§k }
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For —5 <t < + and v € z + V5, we will show that (A + ¢t)v € y + V.

(A +t)v —y) pr(A(v — ) + tv)

< pr( Mo — ) + pr(tv)
< [Alpr(v — ) + [t|pe(v)
1 1

< |)\|N+N(pk(v—$)+pk($))
< M + i i + ( )

N N\ TP
A1 ()
- N
< i Vl<k<m.

N

Thus, A+ t)vey+ V.

(ii) Take any seminorm p € &?. We will show that p : X — R is continuous.
Take z € X arbitrarily and put o = p(x) € R. For every € > 0, we will find a set
V € % such that p(r + V) C (& — €,a + €). Let n € N be any number such that
% <e PutV =V(p,n) € B Foreachy € x+V, we have y —x € V. Thus,
p(y —x) < + <e. Then

Ip(y) —al = |p(y) — p(2)| <ply — ) <e

Thus, p(y) € (« — €, + €). Therefore, p(x + V) C (a — €, + €).

(iii) Let E be a topologically bounded subset of X. We will show that p(F) is
bounded in R for every p € &. Fix p € &. Because FE is topologically bounded,
there exists a number s > 0 such that £ C sV (p,1). Then s'E C V(p,1). Thus
s7'z € V(p,1) for every z € E. Thus, p(s™'x) < 1. Thus, p(x) < s. This means
p(E) C [0, s). Therefore, p(E) is bounded in R.

Next, suppose that p(E) is bounded in R for every p € &2. We will show that
E is topologically bounded in X. Take any open neighborhood V of 0 in X. We
will find s > 0 such that £ C tV for all ¢ > s. Because V contains an element
of %, we can shrink V if necessary to be able to assume V € 4. Then there are
P1y-- -y Pm € V and ny,...,n, € N such that

1
V:{xEX: pr(r) < — Vlgkgm}.

N

Because pi(E),...,pm(F) are bounded in R, there exists a number M > 0 such
that pi(F) C [0, M] for all 1 < k < m. Choose s = (ny + ...+ n,)M > 0. For
t>s,xe k1< k<m,we have
pe(t ) =t pp(n) <tTIM < sTIM < _ < i
- ny+...+n,  Ng

Thus, ¢t 'z € V. This means x € tV. Therefore, £ C tV for all t > s. O
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Proposition 6.6. Let X be a vector space and &2 = {p, : n € N} be a separating
family of seminorms on X. Let T be the topology on X generated by & in the
manner of Proposition 6.5. Define a map d: X x X = R,

[e.9]

27"pa(z — y)
e =2 )

Then d is a translation-invariant metric on X and (X, T) is metrized by d.

Proof. First, we will show that d is a translation-invariant metric on X. It is clear
that d is a well-defined map and d(x + z,y + 2) = d(x,y) for all z,y,z € X. Also,
we have d(x,y) > 0 and d(z,y) = d(y,x) for all x,y € X. It remains to check the
triangle inequality. It suffices to show that

po(r—y) _ ol —2) Pn(z =)
L+pa(r—y) = 14pu(r—2)  1T+pa(z—y)

Put a = pp(x —y), b = pp(x — 2), ¢ = pp(z —y). Then a,b,c > 0 and a < b+ c.
We want to show that

Vn e N, Vz,y,z € X.

a b c
l4+a ™~ 1—|—b+1—|—c'
This inequality is equivalent to a(1 +b)(1+¢) < (14 a)[b(1 +¢) +c(1 +b)]. Tt is
true because RHS-LHS=abc + 2bc + b+ c—a > 0.

Next, we will show that d is compatible with 7. Let £ be the local base of 7
as in Proposition 6.5. Because d is translation-invariant, it suffices to show that
each ball B, = {x € X : d(2,0) < r} contains a member of # and each member of
P contains such a ball. First, we will find V' € £ such that V C B,. There exists
N € N such that Y7 . 27" < r/2. There exists ng € N such that = < %. Put

o

1
V:{xGX:pk(:c)<— Vlgng}.

N

For each z € V', we have

227, (x) —  27"p,(z)
d(x,0) = -y -

LT 2 )
N 0

< D 2@+ Yy 2
n=1 n=N+1

< iz”l +T<i2nr+r—r
T ny 2 =T 2 2

Thus, z € B,. Therefore, V C B,.
Next, for each V € %, we will find r > 0 such that B, C V. There are
Diys- -5 Di, € P and nq,...,n, € N such that

V:{xeX:pik(x)<i Vlgkgm}.

N
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Take any r > 0 such that

omi 1
d <~ Vi<k<m.

0< ———
1 — r2mk ng

For each x € B,, we have

2_nkpik (QJ)
1+ pi, (x)

Multiplying both sides by (-1) and then adding 27", we get

<d(z,0) <r.

2 > 27"k >0

—_— —r )

1 + Diy (ZL‘)
Hence,

1
Therefore,
r2k 1

Thus, x € V', Hence, B, C V. O

6.2 The spaces C*(Q2) and Py

Let € be a nonempty open subset of a Euclidean space. This section gives a
construction for a topology on C*°(2) which turns it into a Fréchet space. For the
purpose of studying the existence of smooth solutions to the problem P(D)u = f
where f is a given smooth function on R", we only consider the case 2 = R"™.
However, we will still deal with a generic open set €2 in this section because the
method below still works in such a case.

Let (K,) be a sequence of compact subsets of {2 such that each K, is contained
in the interior of K, and that Q = J 2, K,,. For example, we can choose

,|m|§n},

where n may start from some index. For each n € N, we define a map p, :
C*(Q2) — R,

K, = {m € Q: dist(z,Q°) >

S|

pu(f) = max {|D*f(z)| : x € Ky, |a] <n}.
This is a seminorm on C*(Q2). If f € C*>(2)\{0}, there exists z € € such that
f(zo) # 0; then for each n € N such that oy € K, we have p,(f) # 0. Thus, the
family of seminorms p,, is separating.

By Proposition 6.5, the family {p,} generates a locally convex TVS structure
on C*°(2). Moreover, C*(£2) has a local base Z consisting of open sets

V(n, k) = {f € C™(Q) :pulf) < %} Vn,k € N.
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Because V(k, k) C V(n,k) for all & > n, the family {V(k,k) : k € N} is a local
base of C*°(Q2). Moreover, by Proposition 6.6, the topology on C*°(£2) is metrized
by a translation-invariant metric

o0 9—n X .
U.9) =Y =D vrg e o) (6.1)
For a compact set K C 2, we put

Dk ={f € C®(Q):suppf C K}.

Then Pk is a vector subspace of C*(€2) and hence inherits the TVS structure for
C>*(Q).

Proposition 6.7. The topology which we have defined on C*(Q)) does not depend
on the specific choice of a sequence (K,).

n=1

Proof. Let T be the topology corresponding to a sequence (K,,) of compact subsets
of 2 such that each K, is contained in the interior of K, and that Q = |J~, K,,.
Then 7 has a local base Z consisting of the sets

1
V(n, k) = {f e C™(Q): pa(f) < E} Vn,k € N.
Let (K,) be another sequence of compact subsets of {2 such that each K, is con-
tained in the interior of K, and that Q = J,—, K,,. For each n € N, we define
a map p, : C°(Q) — R,

Po(f) = max {|D°f(@)| : = € K, [al <n.

Let 7 be the topology on C*°(Q2) generated by the sequence of seminorm (py).
Then 7 has a local base A consisting of the sets

1

V(n, k) = {f e C®(Q): pu(f) < E} Vn, k € N.
To show that 7 = 7, it suffices to show that each member of Z contains a member
of # and vice versa. To do so, it suffices to show each set V'(n, k) contains a set
V(m,1) and vice versa. . 3 .

Consider a set V(n, k). Because |J,-_; K, = Q and K; C K. .., there exists
m > n such that K,, C K,,. For each f € V(m, k), we have

1 o o

7 = Pmf) =sup{|D°f(2)] o] <m} = sup{[D*f ()] : |a] < n} = pu(f).
Km n

=~

Thus, f € V(n, k). This means Vim, k) C V(n, k).
Consider a set V(m,[). Because U, K, = Qand K| C Ks..., there exists
n > m such that K,, C K,. For each f € V(n,1), we have

% > pu(f) = sup{| D ()] |al < n} = sup{[D*f ()] : |a] < m} = pn(f).
n Km
Thus, f € V(m,1). This means V(n,1) C V(m,1). O
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Proposition 6.8. Let (f,) be a sequence in C*(Q) and f € C*(Q). Then (f,)
converges to f if and only if for every multi-index (3, the sequence (D” f,,) converges
to D f uniformly on every compact subset of .

Proof. We know that the sequential convergence in the topological space C*°((2) is
the same as that in the metric space (C*(2), d) where d is given by (6.1). Suppose
that d(f,, f) = 0 as n — oco. For m € N,

2_mpm(fn - f)

for all n sufficiently large. Thus, p,,(f., — f) — 0 as n — oco. Thus, for each
la] < m, the sequence (D®f,) converges to D®f uniformly on K,, as n — oo.
Because m can be chosen arbitrarily large, the sequence (D® f,,) converges to D f
uniformly on every compact subset of 2.

Now suppose that for every multi-index 3, the sequence (D f,) converges to
D? f uniformly on every compact subset of Q. For every ¢ > 0, there exists N € N
such that Y . 27™ < ¢/2. There exists ng € N such that for all n > n,

D8 f.(x) — DPf(2)| < % V|8 < N, Va € Ky.

Thus,
pm(fn—f)<§ V1i<m <N, Vn > ng.
For n > ng,
N o0
27mpm(fn_f) 2" pm(fn f)
dfnaf = +
( ) ﬂ;l+pm(fn_f) mzzNall"i_pm(fn_f)
N o0
< 27" m\Jn + 27"
< Z:l P fn = [) EN:I
m= <e/2 m=N+
<e/2
< E—f—i—e
2 2
Therefore, d(f,, f) — 0 as n — oc. O

Proposition 6.9. C>(Q) is a Fréchet space.

Proof. From the construction of the topology on C*°(2), C*°(£2) is a locally convex
TVS and is metrized by a translation-invariant metric d. It remains to show that
d is a complete metric. Let (f;);eny be a Cauchy sequence in (C*(£2),d). Then for

each n € N, ( )
2_npn fz - fj
d
1 +pn(.fz - f]) S

(fis £3)-
Thus,
2"d(f, 1)

Osolfi= 1) S TG 1)
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for all 4,5 € N that are sufficiently large. Put p,(f; — f;) — 0 as i,7 — oo.
Thus, for || < n, max{|D*f;(z) — D*f;(x)| : = € K,} — 0 as i,7 — oo. This
means for every multi-index a, {(D“f;)|x, } is a Cauchy sequence in C'(K,). Thus,
{(D“fi)|k, } converges to a function in C'(K,,). Because this is true for all n € N
and that K, is contained in the interior of K1, there exists a function f, € C(2)
such that (D*f)|k, — falx, in C(K,).

For || = 0, we denote f = f,. Because the sequence (D®f;) converges to
fo uniformly on every compact subset of  for all a, we have f € C*°(Q2) and
D*f = fo Thus, the sequence (D®f;) converges to Df uniformly on every
compact subset of Q. By Proposition 6.8, the sequence (f;) converges to f in
C>(Q). O

6.3 The test-function space Z((2)

Let 2 be a nonempty open subset of R". Denote by Z(f2) the set of all functions
¢ € C*(Q) which are compactly supported in 2. It is clear that Z(1Q2) is a vector
subspace of C*>°(€2). Hence, Z(f) inherits a topology from that of C*°(2) which we
defined in Section 6.2. However, in this section, we will introduce a new topology
on Z(02) in which the convergence of sequences becomes more demanding. With
the new topology, Z() is called a test-function space. For the purpose of studying
the existence of smooth solutions to the problem P(D)u = f where f is a given
smooth function on R", we only consider the case {2 = R". However, we will still
deal with a generic open set €2 in this section because the method below still works
in such a case.

For each compact set K C €2, we denote by 7x the topology on Zk as described
in Section 6.2. We know that (Zk, 1) is a locally convex TVS.

Proposition 6.10. Let 2 be the collection of all balanced convex sets W C 2(9)
such that P "W € 7 for every compact set K C ). Let T be the collection of
all unions of sets of the form ¢ + W where ¢ € P() and W € B. Then we have

the following statements.
(i) T is a topology on 2 ().

(i) Every neighborhood of ¢ € 2(Q2) contains an open neighborhood ¢ + W for
some W € A.

(i1i) (2(Q),7) is a locally convex TVS, and P is a local base consisting of balanced
convex open sets.

According to [Rud73, Remark 6.9, p.141], 2(2) is not metrizable. Conse-
quently, the topology on Z(f2) defined in Proposition 6.10 is different from the
topology which Z(£2) inherits from C*°(R").

Proof of Proposition 6.10. (i) It is clear that 0, Z(Q) € 7 and that 7 is closed
under unions. Now we will show that 7 is closed under finite intersections. To do
so, we take ¢1, 09 € Z(Q) and Wy, Wy € A arbitrarily and show that (¢; + Wip) N
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(¢ + Wh) € 7. Take any ¢ € (¢1 + W1) N (¢g + Wa). We will find a set W € 2
such that ¢ + W C (¢1 + Wi) N (¢ + Ws). Put

Ko = (supp¢) U (suppé1) U (suppez).

Then K is a compact subset of ). Because ¢ — ¢ € W; and supp(¢ — ¢1) C Ko,
we have ¢ — ¢ € W1 N Pk, which is a balanced convex open subset of (Zx,, Tk, )-
Thus, there exists a number 0; € (0, 1) such that ¢ — ¢y € (1—06;) (W1 N Pg,). We
write
¢ — 1 = (1= d1)¢n,

for some ¢y € Wj. Similarly, there exists do € (0,1) and ¢, € Wy such that
¢ — pg = (1 — 6a)hg. Put W = (5;W7) N (92W3). Then W is a convex balanced
subset of Z(£2) because it is the intersection of two convex balanced subsets of
2(92). For each compact set K C €2,

DxnNW = (DgnN&Wi)N(Dg N§Ws,)
N—— N———

ETK ETK
€ TK.

Therefore, W € %. We will show that ¢ + W C (o1 + W) N (¢ + Wa). For each
1 € W, we will show that ¢+ € (o1 + W1) N (pg + Wa). Write ¥ = 6193 = da)y
for some 13 € Wi and v, € W5. Then

¢+ —¢1 = (1 —01)Y1 + 0193 € Wy (since W is convex),
O+ 1Y — o = (1 — 02)1hy + d21hy € Wy (since Wy is convex).

Thus, o+ € ¢y + Wy and ¢+ € ¢ + Ws. We have proved that 7 is a topology
on 7(Q).

(ii) Take ¢ € 2(R2) arbitrarily. By the definition of the topology 7 on Z(1),
every neighborhood of ¢ in Z({2) contains an open neighborhood of the form
¢o + Wy for some ¢g € Z(Q2) and W € B. Put ¢, = b, ¢po = ¢, W, = Wy and
Wy = Wy. Then ¢ € (¢1 + Wi) N (¢p2 + Wa). In the proof of Part (i), we showed
that there exists W € % such that ¢ + W C (¢1 + W1) N (¢ + Wa). Thus,

¢+WC(¢+W0)ﬂ(¢O+W0)C¢0+WO.

Therefore, every neighborhood of ¢ in Z({2) contains an open neighborhood of the
form ¢ + W for some W GN%T’. )

(iii) Each element in & is balanced and convex. By part (ii), 4 is a basis of
open neighborhood of 0. We will show that (2, 1) is a TVS. First, we will show
that (2, 71) is a T} space. For ¢y, s € , ¢1 # @2, we put

W= {gb € 2(Q): mgx|¢| < mgx|gz52 —¢1|}.

Then ¢ € ¢1 + W but ¢9 € ¢ + W. It remains to show that W € A. For each
se€[—-1,1] and ¢ € W,

— < — .
max |so| = |s| max |¢] < max |¢] < max |¢s — ¢
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Thus, s¢ € W. This implies that W is balanced in 2(£2). For i,9s € W,
s €[0,1] and z € €2, we have

|51 () + (1 = s)ta ()| sl ()] + (1= s)[v2(z)|

smax 6] + (1 — ) max 6
smgx|¢2 — 1|+ (1—9) m3X|¢2 — ¢1|

mgxkbg — o1l

IAIA

A\

Thus, syn + (1 — s)1o € W. This implies that W is a convex subset of 2(€2). For
every compact set K C 2, we will show that Zx "W € 7. We have

.@KQW:{(bG.@K: mgx]gb\ <m{z;x|gz§2—¢1|}.

We know from Section 6.2 that (Zk, 7k ) is a metric space with

= 27"pa(f — 9)
d(ﬁg)—Zm Vf.9 € Yk,

n=1

where p,(h) = max{|D*h(z)| : |a| < n, 2 € K,} and (K,) is a sequence of
compact subsets of {2 such that each K, is contained in the interior of K, and
Q=>"" K,. Take any ¢ € P, NW. Choose a number ¢ € (0,2) such that

€
ﬂ < mgx|gz§2 — ¢1| —m}z{%x]gb\

There exists m € N such that K C K,,. We will show that the set
O={¢eDyx: di,¢) <e2 ™'}
is contained in Zx NW. For each ¢ € O,

27" Dy (1, @)

—-m—1
[T ol g) = 2V 9) <2

Thus,
Pn(¥,9)

€
L+ pu(d,¢) 2
which implies

€
P9, ¢) < 5— < max|dz — ¢1] — max|¢|.
Thus,

max i) — 6| < max ¥ = 6| < pu (i, @) < max |61 — 6o — max o).

Thus,
< — — .
max || < max 1) — ¢| + max |¢| < max |1 — b2
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This implies ¢ € W. Therefore, ¢ € & C 2 NW. Note that € is an open subset
in Yk depending on the choice of ¢ in Zx N W. If we denote this dependence by
writing &, instead of &, then

D NW = UqSE%mW Og.
Thus, Zx N W is open in Zx. We have proved that W € .

Next, we will show that the addition map on Z({2) is continuous. Take any
1,02 € 2(Q) and put ¢35 = @1 + ¢o. We will show that the addition map is
continuous at (¢1,¢2). By Part (ii), every neighborhood of ¢3 contains an open
neighborhood of the form ¢s + W for some W € Z. Because W is balanced and
convex, so is the set %W For every compact set K C €,

1 1
DN | =W :—(.@KQW)GTK.
2 2 ~——
ETK
Thus, %W € . We will show that
1 1
<¢1 + §W> + <¢2 + §W) C o3+ W. (6.2)

For 1,1, € W, we have

<¢>1 + %W) + ((bz + %W) = (o1 + ¢2) + (%% + %%) =¢3+ (%% + %%) :

Since W is convex, %wl + %wg € W. Therefore, ¢3+ (%wl + %wQ) € ¢p3+W. Thus,
we have proved (6.2).

Next, we will show that the scalar multiplication map R x Z(Q) — 2(Q),
(A, f) = Af is continuous. Take any A € R and ¢ € 2(2). We will show that the
scalar multiplication map is continuous at (A, ¢). By Part (ii), every neighborhood
of A\¢ contains an open neighborhood of the form A¢ + W for some W € %. Since
o€ D), ¢ € Dk where K = suppgp. Because W € B, 7 N W is open in Y.

Thus, there exists a number € € (O, 2(|/\—1|+1)> such that 2e¢ € (Zx NW). Note that
eW € %. We will show that
A=, A+ e)(d+eW) C o+ W. (6.3)

For any t € (—¢,€) and ¢ € W, we have

A+t)(p+e)) —Ap = tdp+e(N+t)Y
1

— 5(2t)¢ + %(QG(A + 1)) (6.4)

Because |—z| <1, 2tp = %(%gb), 2¢p € W, and W is balanced, we conclude that
2tp € W. Because

12e(A+1)| < 26(|A\| +€) <2e(|]A[+1) <1,
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¥ € W, and W is balanced, we conclude that 2e(A 4 t)) € W. Because 2t¢ € W,
2¢(A+t)y € W and W is convex, we conclude that

%(2t)¢ + %(26()\ L) e W,

Then (6.4) implies that (A +¢)(¢ + €) — A¢ € W. Thus,
A+t)(p+e)) € Ap V€ (—€,€), Y € W.
Thus, (6.3) is proved. O

Proposition 6.11. Denote by (2(Q2),7) the TVS as defined in Proposition 6.10.
For each compact set K C 2, we denote by Tx the topology which Pk inherits
from C*>(Q). Then

" ={2Q)NW . Wer}.

In other words, Ti coincides with the topology that Py inherits from (2(Q2), 7).

Proof. First, we will show that {Z(Q)NW : W € 7} C 7. Take any W € 7.
We want to show that Z(Q) N W € 7x. Take any ¢ € 2(Q2) N W. By the
definition of 7 in Proposition 6.10, there exist ¢y € Z(2) and W, € A such that
¢ € DN (pg+ Wy). Thus, 0 € P N (g — ¢ + Wy). Thus, ¢g — ¢ + Wy is a
neighborhood of 0 in 2(£2). Because Z is a local base of 7, there exists W, € 2
such that Wy C ¢g — ¢ + Wy. Thus,

@KQWICQKH(¢O_¢+WO)-

We have
¢+ (Zx N"W1) C D N (po + Wo) C D NW.

Since Wy € B, Zx "W, € 7i. Thus, ¢ + (Zx NW;) is an open neighborhood of
¢ in (PYk,Tk) that is contained in Zx N W. Because ¢ was chosen arbitrarily in
Pk N W, we conclude that Zx "W € 7.

Next, we will show that 7 C {Z(Q)NW : W € 7}. We know that 7 is the
topology which Z inherits from the metric space (C*(£2), d),

o0

N2 —9) o
d(f)Q)_;m Vf,g € C(Q),

where p, : C®(Q) = R, p,(f) = max{|Df(x)| : |a] <n, x € K,} and (K,,) is a
sequence of compact subsets of {2 such that each K, is contained in the interior of
K,y and |2, K, = Q. Take any & € 7. We will show that there exists V € 7
such that 0 = Zx NV. Take any ¢ € €. Because (Zk,d) is a metric space, there
exists r > 0 such that ¢ + B, C & where

[e.o]

BT:{ZZJEQKI d(w,0)<’f’}:{¢€@]{2 Z%<T}.

n=1
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Because K is compact and (K,,) is an increasing sequence with (J 2, K, = €,

there exists N € N such that K’ C Ky. We can assume »_° ., 27" < r/2. Put
W={ye2Q): py@) <r/2}. For every » € W, we have
r
0< (W) <p(¥) <... <pn(¥) < 5
Thus
N 0 N 00
27"pn(¥) 27"pa(¥) T T
et _— 2 n — —_ =
d(v,0) Z:ll+pn(¢)+ ZN: TF pu(®) Z W—/ Z <gtg =T
n= n=N+1 = <7“/2 n=N+1
—_——
<r/2
Thus, W C {¢ € 2(2) : d(1,0) < r}. Thus,
I NW C {1&6 Dk - d(iﬂ,()) <7"}:BT.
Hence,
Dk N(p+W)=0+(IxNW)C ¢+ B, CO. (6.5)

Because py is a seminorm on Z(2), W is a balanced and convex subset of Z(1).
For every compact set L C €2, we have

@LQW:{@DGQLI pN(¢)<g}:.@LﬂU,

withU = {¢ € C>*(Q) : pny(¢0) < r/2}. By Proposition 6.5, the map py : C°(Q2) —
R is continuous. Thus, the set U = py'((—o0,7/2)) is open in C*=($). Hence,
2, N U is open in &;,. This means Z;, N W is open in &;. Thus, W € %. Then
the set W, = ¢ + W is an open neighborhood of ¢ in Z(Q2). By (6.5), we have
» € Ix "W, C 0. Therefore,

o=JWyn k) = (UW¢>ﬂ@K—Vﬂ@K,

Pl 7
where V' = J,., Wy is an open subset of Z(£2). O

Proposition 6.12. A set E is topologically bounded in 2(Q) if and only if there
exists a compact set K C ) such that E C Pk and E is topologically bounded in
D .

Proof. (<) Suppose that there exists a compact set K C Q such that £ C Pk
and F is topologically bounded in Zk. For each neighborhood V of 0 in Z(Q2), we
find s > 0 such that £ C tV for all t > s. By Proposition 6.11, the V N Y is a
neighborhood of 0 in Y. Because E is topologically bounded in Y, there exists
s > 0 such that E C t(V N k) for all t > s. Thus, £ C ¢tV for all t > s.

(=) Consider a topologically bounded subset E of Z(2). Suppose by contra-
diction that there is no compact set K C 2 such that F C k. Let (K,) be a
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sequence of compact subsets of {2 such that each K, is contained in the interior
of K41 and Q = > ° | K,. Because E ¢ P, , there exists ¢, € E\Zf,. Thus
there is x, € Q\K, such that ¢,(z,) # 0. We claim that the sequence (x,) has
no accumulation point in 2. Suppose otherwise. Then there exists a subsequence
(z,,) of (z,) and zy € 2 such that x,, — x¢. Since xg € Q = > > | K, there
exists NV € N such that g € K. Because K is contained in the interior of Kx1,
there exists kg € N such that x,, € Ky, for all k > ky. For m > max{N, ko}, we
have
Ty, € N\K,, CO\K,, C UKy

This is a contradiction. Therefore, our claim is proved. Put

W= {gb € D) : |é(zn)| < %|¢n(xn)| Wn € N} .

It is clear that T is a balanced convex subset of 2(Q). We will show that W € 4,
where 4 is the local base of 2 () as defined in Proposition 6.10. For each compact
set L C ), we will show that 2, N W is open in Z;. Because the sequence (z,,)
has no limit accumulation point in L and L is compact, there are only finitely
many terms of the sequence (x,,) lying in L. Let us call them z,,, Z,,, ..., x,,, for
m > (0. Then

DrNW = {(b € D1 |p(xy,)

1
< n—|¢n(xn) Vi<i< m} :

For each 1 < i < m, we put

1

7

>0

and define a map J; : 2, — R, Ji(f) = f(z,,). Since L is compact, there
exists N € N such that L C Ky. By Part (ii) of Proposition 6.5, the map
pn 1 C(2) — R is continuous. For every sequence (f;) in 2, which converges to
some f € 9, we have

[ Ji(f3) = Ji(P)l = |fiwn,) = f(@n,)

Hence, J; is continuous. We have

<lpn(fj) —pn(f)] = 0 as j — oc.

DonNW ={¢ € Dp:|Ji(¢)] <oy VI<i<m}=]JJ " ((—ou, ),

=1

which is an open subset of Z;. We have proved that W € Z. Therefore, W is
an open neighborhood of the origin in Z(2). Because E is topologically bounded
in 2(), there exists s > 0 such that £ C ¢tW for all ¢ > s. In particular,
¢n € (s+ 1)W for all n € N. Thus,

1
s+1

o, €W VneN.

64



This means . )
— — N.
—lon(an)| < ~lbala)] V€

Since |¢y,(z,)| > 0, the above inequality is equivalent to n < s+ 1 for all n € N.
This is a contradiction. O]

Proposition 6.13. Denote by (2(2), 1) the TVS as defined in Proposition 6.10.
Let (¢y,) be a sequence in (2(Q2), 7). Then (¢,) converges to 0 if and only if there
s a compact set K C ) such that ¢, € D for alln € N and D*¢,, — 0 uniformly
on K for every multi-index .

Proof. (<) Suppose that there is a compact set K C ) such that ¢,, € P for all
n € N and D%p,, — 0 uniformly on K for every multi-index o. By Proposition 6.8,
the sequence (¢,) converges to 0 in C*°(Q2). Thus, (¢,) converges to 0 in the
topology (Zk,Tk). By Proposition 6.11, 7k is also the topology that Zx inherits
from (Z(2), 7). We conclude that (¢,) converges to 0 in (Z(Q2), 7).

(=) Consider a sequence (¢,) in (2(2), 7) which converges to 0. By Part (ii)
of Proposition 6.2, (¢,) is topologically bounded. Then by Proposition 6.12, there
exists a compact set K C () such that ¢, € Pk for all n € N. Because ¢,, — 0 in
(2(2),7), ¢ — 0in (Dk,TK). Thus, ¢, — 0 in C*(£2). By Proposition 6.8, for
every multi-index o and for every compact subset L of 2, D*¢,, — 0 uniformly on
L as n — oo. Taking L = K, we have proved the claim. O

Proposition 6.14. Denote by (2(Q2),7) the TVS as defined in Proposition 6.10.
Let Y be a locally convexr TVS and A : 2(Q2) — Y be a linear map. Then A is
continuous if and only if for every sequence (¢,) converging to 0 in P(Q2), the
sequence (A¢,,) converges to 0 in'Y .

Proof. (=) Suppose that A is continuous. Let (¢,) be a sequence converging to 0
in 2(2) and V be a neighborhood of 0 in Y. Because A is continuous, there exists
a neighborhood U of 0 in 2(£2) such that A(U) C V. Since ¢,, — 0 in Z(Q2), there
exists N € N such that ¢,, € U for all n > N. Thus, A(¢,) € A(U) C V for all
n > N. Hence, A(¢,) - 0in Y.

(<) For each compact set K C €2, we know from Section 6.2 that P is
metrizable. Every sequence (¢,) in Pk that converges to 0 also converges to 0
as a sequence in Z(Q). Then we have A(¢,) — 0. Thus, the restriction of A on
Pk is continuous. Now we will show that A is continuous on Z(f2). Because Y is
locally convex, it has a balanced convex local base consisting of open sets, namely
%, according to Part (ii) of Proposition 6.1. Take any V € %;. We will show
that A=*(V) C U is open in 2(Q). Since V is balanced and convex, so is U. For
each compact set K C €2, we have

D NU = D NAHV) = (Ao, ) (V),

which is open in Py because A|g, is continuous. Thus, U € A, the local base of
2(Q) as defined in Proposition 6.10. Therefore, U is open in 2(f2). O
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6.4 The distribution spaces 2'({2) and &"(1)

Let € be a nonempty open subset of a Euclidean space. The test-function space
2(9) is a TVS as defined in Proposition 6.10. For each ¢ € Z(Q2) and N € N, we
denote ||¢||y = max{|D*¢(z)| : |a| < N,z € Q}. Amap A: 2(Q) — R is called
a distribution in € if A is linear and continuous. The set of all distributions in €2
is denoted by 2'(€2). This is clearly a vector space (over R).

Proposition 6.15. Let A : 2(Q2) — R be a linear map. Then A € Z'(Q) if and
only if for every compact set K C €, there exist a nonnegative integer N = N(K)
and a number C = C(K) > 0 such that

[Ad| < Cllglly Vo € Dk

Proof. (=) Suppose that A € 2'(2). Take any compact set K C €. The map
Al + Pk — R is linear and continuous. By Proposition 6.3, Alg, is a bounded
map. Let (K,) be a sequence of compact subset of €2 such that K, lies in the
interior of K, and Uzozl K, = Q. Then we have a family of seminorms {p,, : n €
N} with p, : C*(Q) = R, p,(f) = max{|D*f(z)| : |a| <n, z € K,}. By Part
(iii) of Proposition 6.5, a set E is topologically bounded in C*(2) if and only if
pn(E) is bounded in R for every n € N.

Because K is compact, there exists N € N such that K C Ky. Put £ = {¢ €
Pk = pn(¢) = 1}. We will show that E is topologically bounded in Z. Because
Pk is a topological subspace of C*(£), it suffices to show that E is topologically
bounded in C*(€2). We have

0<pi(f) <po(f) <. <pn(f) =pvp(f) =... =1 VfeFE

Therefore, p,(E) C [0,1] for all n € N. Thus, E is topologically bounded in
C> ().

Because A|g, is a bounded map, A(F) is bounded in R. Thus, there exists
C € R such that |A(¢)| < C for all ¢ € E. For every ¢ € 2\{0}, we put

_ ¥
Tlly

Then [A(y)| = [[¢lIn|A(@)] < Cl¥]x-
(<) Suppose that for every compact set K C €2, there exists a nonnegative

integer N = N(K) and a number C' = C(K) > 0 such that |A(¢)| < C||¢||n for all
¢ € Dx. We will show that for every compact set K C Q, the map Aly,. : Zx — R
is continuous. For such a set K, there exists Ny € N such that K C Ky,. We
know that Zk is a topological subspace of C*°(2). Consider a sequence (¢,,,) in Pk
which converges to 0 € Zk. Then ¢, — 0 in C*(2). Put N, = max{N(K), No}.
Then

¢ E.

||l v < Py (D) — 0 as m — .

Since |A(dm)| < ||Omllns A(dm) — 0 as m — oo. Because the topology on Py is
metrizable, the map A|g, is continuous according to Proposition 6.3.
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We have showed that the map Alg, : Zx — R is continuous for every compact
set K C Q. Now we show that A : Z(2) — R is continuous. It suffices to show
that A is continuous at 0. Consider an open neighborhood of 0 in R of the form
(—¢€,€), € > 0. We need to show that the set V = A~((—¢,€)) is open in Z(1).
By the linearity of A, V is balanced and convex. We will show that V € %, where
% is the local base of 2(Q) as defined in Proposition 6.10. To do so, it remains
to show that Zx NV is open in Yk for every compact set K C 2. We have

DNV =D NA (=€ €) = (A|9K)71((—e, €)).
This is an open set in Zf because the map Ay, is continuous. O

Let A € 2'(Q2). If w is an open subset of 2 such that A¢ = 0 for all ¢ € Z(w),
we say that A vanishes in w. Let W be the union of all open sets w C €2 in which
A vanishes. Then Q\W is called the support of A, denoted by suppA. The set
of all distributions whose supports are compact subsets of 2 is denoted by &”(€2).
This is clearly a vector subspace of Z'(2).

Proposition 6.16. Let u € L .(Q). Define a map A, : 9 — R,

Au(0) = /Q uddz.

Then A, € Z'(Q2). For this reason, we usually view a locally integrable function as
a distribution by identifying u with A,.

Proof. 1t is clear from the definition of A, that A, is a linear map. For any compact

set K C (), we put
:/ luldz < .
K

Then for every ¢ € Py,

|AL(0)| = updx| = updr| < [ |ul|plde < Cmax {|p(z)| : xz € K} = C||9]]o-
o] | 1

By Proposition 6.15, A, € 2'(Q). O
Proposition 6.17. Let A € 2'(Q2). Then we have the following statements.
(1) If ¢ € 2(Q) and supp¢p NsuppA = 0, then A¢ = 0.

(i) If A € &'(QQ) then there are a number C' > 0 and a nonnegative integer N
such that
Mgl < Cllglln Vo € 2(Q).

Furthermore, A extends in a unique way to a linear continuous functional on

().
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Proof. (i) Let ¢ € 2(Q). Suppose that suppe N suppA = (). Then suppp C
Q\suppA. Denote by . the family of all open subsets w in €2 in which A vanishes.
Put W = |,y w. Then suppA = Q\W by the definition of supports. Thus,
suppp C W. For each x € suppp, v € W. Thus, there exists w, € .¥ such
that * € w,. Thus, the family {w, : = € supp¢} is an open cover of suppg.
Because supp¢ is compact, we can extract a finite subcover and rename it as
{U1,Us, ..., Un}.

Put U = Q\supp¢. Then {U,Uy,...,Uy,} is an open cover of Q. Consider a
smooth partition of unity subordinate to this cover, namely {¢, ¢y, ..., ¥, }. We
have suppy) C U and suppy; C U; forall 1 < i < m. Then ¢ = ¢pvp+o1+. . .+d1hy,.
Since suppyy C U = Q\suppo, ¢t = 0 in Q. Put ¢; = ¢p; € 2(U;). Then
O =¢1+ ¢a+...4+ ¢, Because A is linear, Ap = A¢p; +Aps+ ...+ A¢,,. Because
U, € . and ¢; € 2(U;), we have Ay; = 0 for all 1 < ¢ < m. Therefore, A¢p = 0.

(ii) Consider a distribution A € 2'(Q2) whose support is a compact subset of
Q). Then there exists a umber € > 0 such that dist(suppA, Q) > e. Put

K, = {z € Q: dist(x,suppA) < €/2},
Ky = {z € Q: dist(x,suppA) < €}.

Then K; and K5 are compact subsets of €. Moreover, suppA is contained in the
interior of K;. Aslo, K is contained in the interior of K5 and suppA C K; C
Ky C . Let x be a function in 2(€2) such that x = 1 in K; and x = 0 in Q\ K».
Because A € 2'(Q2), by Proposition 6.15 there exists a nonnegative number N and
a number Cy > 0 such that

A(@)] < Collglln Vo € Pk, .

Consider any function ¢ € Z(Q2). Then ¢x € Pk, and ¥y —x = 0 in K;. Thus,
supp() — ¥x) C Q\suppA. Thus,

supp (¢ — x) N suppA = 0.
By Part (i), A(» —¥x) = 0. Hence, A(¢)) = A(vx). Therefore,
A = [AWx)] < Colltox]|n- (6.6)
By (3.5), we have

D () = Y. (g)w%)w“—ﬂx).

{B: p<a}
For each |a| < N, we have

D (ox) ()| < M|[¢l[x Yz €Q,

where

M=maxq ( g ) |D*Px(x)|: |a| <N, z€Q
{8: B<La}
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Thus, ||vx||y < M||¢||y. Then (6.6) implies

[AY| < Collvxlly < CoM|[Y]ln - VY € 2(Q).

Therefore, we can choose C' = CoM > 0.

Next, we show that A extends in a unique way to a linear and continuous
functional on C*° (). Suppose that A : C*°(€) — R is such an extension. For each
function f € C°(Q), we have fx € Pk, and f = fx in K;. Thus, supp(f — fx) C
OQ\suppA. Thus,

supp(f — fx) N suppA = 0.
By Part (i), A(f — fx) = 0. Thus,

ACF) = AUfx) +AF = fx) = AfX) + A = fX) = AUfX).

This means A is uniquely determined. Now we show that the functional A
C>*(Q) — R, A(f) = A(fx) is actually a linear continuous extension of A. If
f e 2(Q) then

A(f) = A(fx) = Af) = A(F = fx) = A).

Thus, A = A on 2(Q). By the definition of A, it is clear that A is linear. Let (f,)
be a sequence in C'*°(€2) which converges to f € C*(2). By Proposition 6.8, for
each multi-index «, D*f, — D®f uniformly on every compact subset of {2. By
(3.5), we have

D= ¥ (§) @ wu,
{B:8<a}
which converges to

o ) (DPF)(D*Py) = D(fx)
=, (5)

on every compact subset of 2. Note that (f,x) is a sequence in Zg,. Thus,
fax = fx in 2(Q) according to Proposition 6.13. Since A is continuous on Z(£2),
A(fax) = A(fx). Thus, A(f.) — A(f). Therefore, A is continuous on C*°(Q2). O

Proposition 6.18. For each multi-index o and A € 2'(Q)), we define a map
DA : 2(Q) —» R,

(D*A)(¢) = (=1)*A(D%¢) V¢ € Z(2).
Then D*A\ € 2'(Q).

Proof. 1t is clear that D®A is a linear map. Because A € 2'(2), for any compact
set K C €1, according to Proposition 6.15 there exists a nonnegative integer N =
N(K) and a number C' = C(K) > 0 such that

IAM@) < Cldllx Vo € D
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For every ¢ € Py, we have D*¢ € Pg. Thus,
[(DA)(9)] = |A(D*)| < ClID*¢l|n < C|¢][n+1al-
Therefore, D*A € 2'(2) according to Proposition 6.15. O
Proposition 6.19. Let A € 2'(Q) and «, 5 be two multi-indices. Then
(D*DA)(¢) = (D**A)(¢) = (D’ D A)(¢) Vo € Z(Q).
Proof. By the definition of partial derivatives of a distribution, we have

(D*D°A)(¢) =

—1)ID7A) (D)

1)|a|(_1)IB\A(D5Da¢)
1>|a|+\ﬁ|A(Da+ﬁ¢)
D**PA)(9)

A~ /N A/~

Switching a with 3, we get (D D*A)(¢) = (D°**A)(¢). Because a + 3 = 3 + a,
we obtain (D?D*A)(¢) = (D*DPA)(¢). O
If we have a map v : R” — R and z € R" then 7,v and © are the functions on
R"™ defined by
(T20)(y) = vy —x), 0(y) = v(=y).
Ifue Z2'(R") and ¢ € Z(R™) then their convolution ux¢ is defined as the function

(u* ¢)(z) = u(r,¢) Ve R" (6.7)

By Part (ii) of Proposition 6.17, each u € &'(R™) can extend in a unique way to a
linear continuous functional on C'*°(R™). This allows us to define the convolution
ux ¢ for u € &'(R"™) and ¢ € C°(R"™) as follows.

(u* @) (z) = u(r,0) Vo € R™, (6.8)

Of course, the definitions (6.7) and (6.8) agree whenever two ways of defining u* ¢
are possible. When u € L{ _(R"), u can be viewed as a distribution in R" by
Proposition 6.16. Then

(ux 8)(x) = u(rad) = / w(y)red(y)dy = / u(y)d(z — y)dy.

n n

which coincides with the usual convolution of two functions in R".

Proposition 6.20. Let u € Z'(R") and ¢ € Z(R"). Then u* ¢ € C°(R™) and
D*(ux ¢) = (D) * ¢ = ux (D*®) for every multi-index .
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Proof. Note that D% € 2'(R™) according to Proposition 6.18. Thus, the convo-
lution (D%u) * ¢ is well-defined. First, we show that (D%u) % ¢ = u* (D%*¢). For
each x € R", we have

(D) * ¢)(x) = (D*u)(1:0) = (—1)*u(D(7.4)). (6.9)

For each y € R", Txé(y) = qvb(y—:c) = ¢(x—y). Thus, D“(quvb) = (—1)“"|Da¢(x—y).
Then (6.9) becomes

(D°w)x ¢)(2) = (=D)u((=1)"D%(x —y))
( DIl(=1)lu((D*¢)(x —y))
u((D¢)(z —y)) = u((D¢)(y — x))
u(r((D°9))) = (u* (D*9)) ().

Therefore, (D%u) x ¢ = u x (D).

Next, we show that D*(ux¢) = ux(D*¢) for every multi-index o. By induction
on the length |« it suffices for us to show that D,(u * ¢) = u * (D,¢) for every
unit vector a € R", where D, denotes the directional derivative in a-direction. For

x € R" and h € (—1,1)\{0}, we have

(u ¢)(z + ha) — (ux)(x) _ u(resnad) — u(7u0)
h h

—u <Tx+ha95 - Txé) —u (T (Thaé - é))
- h U\ '

Also, (u* (D*¢))(x) = u(r,((D*¢))). Thus, showing that

(ux@)(x+ hc}? — (ux9)(2) = (u* (Dq9))(x)

lim
h—0

is equivalent to showing that

i (7 (72572) ) = utwt(Pash)

Because u is continuous from Z(R") to R", it suffices to show that

lim 7, (W%) = 72((Dag))-

h—0
By the definition of the operator 7., this will be proved if we can show that

T
lim

Jimn, = = (D,¢). (convergence in Z(R"))

More explicitly, we want to show that

(y|_> ¢(ha—y2—¢(_y)> N (y'—>Da¢(—y))
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in Z(R") as h — oo. Applying the check operator on both sides, we are supposed

to show that
(y s §b(ha + %) B gb(y)) N (y s Da¢(y))

in Z(R") as h — oo. Thus, we want to show that

. T—ha¢ — Qb _
lim T E — g, (6.10)

For each ¢ € 2(R"™), we have

(T_nat)(y) — ¥(y)
h

—Dm@)—-¢@+h?_¢@%4%ww

Dath(y +610) — Dty (where (6] < [h])
= 0u(DuDu)ly + f) (where |G < [64] < [hl)

Put M = max{|D,D.,(x)| : x € R*}. Then for every y € R",

(T_nat)(y) — ¥(y)
h

—mwﬂsmWSWM

Thus, % converges to Dy uniformly in R” as h — 0. Applying this result
for ¢» = DP@, where /3 is any multi-index, we conclude that

Db T_ha® — @\ _ Tna(DPp) — DP¢
h N h

converges to D,(D?¢) = D?(D,¢) uniformly in R” as h — 0. Put K = B;+suppg,
where B; is the closed unit ball in R". Then % € Yx forall h € (—1,1)\{0}.
By Proposition 6.8, % converges to D,¢ in k. Therefore, we obtain the
convergence in Z(R™) according to Proposition 6.13. O

Proposition 6.21. Let u € &'(R™) and ¢ € C®(R"™). We have the following
statements.

(i) uxp € C®(R™) and D*(u* ¢) = (D) x ¢ = ux (D).
(ii) If o € D(R™) then ux* ¢ € Z(R™) and supp(u * ¢) C (suppu) + (suppe).

Proof. (i) The proof of this part is almost a repetition of that of Proposition 6.20
with Z(R™) being replaced by C*(R™). We only need to adjust the proof of (6.10),
namely to show that %’5 converges to D,¢ in C*°(R™) as h — 0. Consider
h € (—1,1)\{0}. For any ¢ € C*(R"),

(T-ra?)(y) — ¥(y) Uy + ha) — ¥(y)

; —DY(y) = 2 — DY(y)

= Datb(y +0ha) = Datp(y) (where |0,] < |h])
= Oh(DyDy)Y(y + Ora) (where |0,] < |0,] < |h]).
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For every compact set K C R", we put
My =max {|D,D,¢(z)| : x € K + By},

where Bl~is the closed unit ball in R". For y € K, we have y + Oha € K + By
because |05| < |0,| < |h| < 1. Thus,

(T_na?)(y) — ¥(y)
h

_ Damy)\ < WMy Vh e (—1,D\{0}, Vy € K.

This implies that % converges to D, uniformly on every compact subset of
R"™ as h — 0. Applying this result for ¢ = D?¢, where 3 is any multi-index, we
get
Db (W) SN Dﬁ(Dagb)

uniformly on every compact subset of R” as h — 0. By Proposition 6.8, T‘h“TM
converges to D,¢ in C*°(R") as h — 0.

(ii) Put A = (suppu) + (supp¢). Then A is a compact subset of R”. We need
to show that supp(u * ¢) C A. Take any z € R™\ A. We show that (u* ¢)(z) = 0.
Because 7,0(y) = ¢(z — y), we have supp(7,¢) = = — supp¢. Since z ¢ (suppu +
suppe), (z — suppep) Nsuppu = @. Thus, supp(7.¢) Nsuppp = (. By Part (i) of
Proposition 6.17, u(7,¢) = 0. Thus, (u * ¢)(x) = 0. O

From now on, the same notation (-,-) is used to denote either the pairing
between 2'(R™) and Z(R"), or the paring between & (R") and C*(R").

Proposition 6.22 (Dirac measure). Define a map oy : Z(R") — R, do(¢) = ¢(0)
for all € P(R™). We have the following statements.

(1) oo € &'(R™) with suppdy = {0}.
(ii) 0 % ¢ = ¢ for all p € Z(R™).

Proof. (i) Let W be the union of all open sets w in R™ in which ¢, vanishes.
Then suppdy = R™\W by definition. We want to show that W = R"\{0}. Take
any x € W. There is a neighborhood w € W of x such that dy(¢) = 0 for all
¢ € D(w). Thus, ¢(0) =0 for all p € Z(w). If 0 € w then we can choose a bump
function 1 supported in a small ball centered at 0 such that ¢(0) = 1. This is
a contradiction. Thus, 0 ¢ w. Thus, w C R™"\{0}. Hence, W C R™\{0}. Take
any open set w C R"\{0} and ¢ € Z(w). Then d§y(¢) = ¢(0) = 0. This means dy
vanishes in w. Thus, w C W. Thus, R"\{0} C W. Therefore, W = R™\{0}.

(ii) For each z € R™, (&g * ¢)(z) = 0o(720) = 7:0(0) = ¢(z). Hence, dy * ¢ =
b. O

Define a function n : R® — R,

1
exp | ———— x| <1,
n() = p(m?—l) i

0 |z| > 1.



For each € > 0, we put n.(z) = e "n(e'z) for all z € R". Then n € Z(R") and
suppn=D5;, the closed unit ball in R". Also, . € Z(R") and suppn.=B5.. We refer
to the family {7}c>0 as an approzimate identity on R™.

For each function ¢ € R™, we know that ¢ xn. € Z(R™) and supp(¢ * n.) C
(supp¢) + B, for all € > 0. For every multi-index «, we have D*(¢*n.) = (D%®) %1,
which converges to D%¢ uniformly in R” as ¢ — 0 (see [Adm75, p.29]). Thus
¢xne— ¢ in Z(R") as € — 0.

Proposition 6.23. Let u € Z'(R") and {n.}eso be the approzimate identity on
R™ as defined above. Then for every ¢ € Z(R™),

(uxne,d) = (u,d) as e = 0.

Proof. First, we show that (u * 7., ¢) = (u, ¢ *n.). For every m € N, we partition
the space R" into cubes of side % One way of partitioning yields cubes of the

form
[uzﬁd] F2@+1 Fn%+1
=, X . oX | —,
m m m m m m

for iy,49,...,1, € Z. We number those cubes in an arbitrary way as Q1 m, @2.m, Q3.m, - - -

Then
1) 1\? 1
m m m m

Let x;,, be the center of the cube @); ,,. For each multi-index 3, we put

M, 5 = max {|D, D} (n.(y — x)p(x))| : =,y € R"}

where D, denotes the gradient with respect to z = (z1,...,x,) and Dg denotes
the f’th partial derivative with respect to y = (y1,...,y,). For each m € N, we
put

Zne -sz xzm)‘sz| vyeRn

Note that only finitely many terms in this series can be nonzero because supp¢
is bounded. More specifically, if suppp C [0, N|™ then there are at most (Nm)"
nonzero terms. We have f,, € 2(R") and suppf,, C (suppn.) + (supp¢) for all
m € N. For each multi-index f3,

Dﬂfm Z Dﬁne — T m)gb(xz,m”Qz,m‘ vy € Rn

Thus,

o

D () =((Dn)x6) (y) = Y | D1y = i) d(s.m)| Q| — / Dy — x)p(x)da | .
=1 Qi,m

(6.11)
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By Mean Value Theorem, there exists z7,, € ()i, such that
[ Dty = 2)6(w)ds = Doy = 7y, )6(571,) Qi
Qi,m

Then (6.11) becomes

DP frn(y) — (D) * ¢)(y) =

= 2:1 DBT/E(?J - xi,m)gb(xi,m) - Dﬁne(y - x;’k,m,y)gb(xzm,y) |Qz,m|
Qi,mlc_[oyN]n {‘1’}

(6.12)
We have
vn
0= (D0 = 2160 ) i = g < Mo (@u) = YD

Then from (6.12) we get

| D7 fun(y) = (D7) = ) (y))|

IA

oo
n
> £Meﬂ|@i,m|
=1 m
Qi CIO,N]”

NIV
< ) Mo

N7
= \/ﬁMeﬁ Yy € R™.
m

Thus, D?f,, — (D) * ¢ = DP(n.  ¢) uniformly in R* as m — oo. This
is true for every multi-index 5. Hence, f,, — 7. * ¢ in C>°(R") according to
Proposition 6.8. Moreover, f,, € Pk for all m € N where K = (suppn.) + (suppo).
By Proposition 6.13, f,, — n. % ¢ as m — oo.

Since u € Z'(R™), we have

(w15 6) = Tim_(u, fn). (613
We have
fuly) = Zm — )01 Qi
me DY) O(Tim)| Qi ml -
Thus,

ufm Z<u Taim ne>¢$zm‘sz’
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Hence,

i (. f) = [ (070} 6le)de = [ (wsn)@)ole)de = (wr ). (619

m—r0o0
Rn 0
By (6.13) and (6.14), we get (u * 0., ¢) = (u, ¢ * n.). By the remark before Proposi-
tion 6.23, we have ¢pxn. — ¢ in Z(R"). Therefore, lir% (U * M, @) = hncl) (u,p xne) =
e— e—

(u, 9). 0

Proposition 6.24. Let u € &'(R™) and {ne}eso be the approximate identity on
R" as defined on Page 73. Put v. = v x 1. for each ¢ > 0. We have the following
statements.

(i) suppv. C (suppv) + B, for all € > 0.

(ii) For each & > 0, there exists X > 0 such that suppv C (suppv.) + Bs for all
0<e<A.

Proof. (i) By Part (i) of Proposition 6.21, suppv. C (suppv) + (supp7.). Because
suppn. = B, we get suppv, C (suppv) + B..

(ii) Suppose otherwise. Then there exist 6 > 0 and a decreasing sequence
(€m) which converges to 0 such that suppv ¢ suppv,,, + Bs for all m € N. Thus,
there exists x,, € suppv\ (suppv,,, + B;). Because suppv is compact, there exists a
convergent subsequence (z,,, ). By replacing the sequence (z,,) by the subsequence
(%, ), We can assume ,, — o € suppv. We have

dist(xg, suppve,,) > dist(x,, suppue,,) — |Tm — o
> 0 — |z — Tl (6.15)

There exists mo € N such that |z, — x| < §/2 for all m > mg. Then (6.15) implies

o 9
dist(xg, suppue,,) > 0 — 5=73 Ym > my.
For every y € Bs/4(xo) and m > mg, we have
) . b & 0
dist(y, suppee,, ) > dist(zo, suppee,, ) = |70 =y > 5 = 7 = 7.

Thus, y € R"\suppv,,,. Thus, v, (y) = 0. Hence, v., = 0 in Bj/s(xo). For each
¢ € D(Bsa(xo)), we have

(Vs ) = / Ve, ¢dz =0 Vm > my. (6.16)
Bs/a
By Proposition 6.23,
(v,0) = lim (v, ,®). (6.17)
m—00
From (6.16) and (6.17), we conclude that (v, ¢) = 0 for all ¢ € Z(Bs;4(0)). Thus,
v vanishes in Bs/4(0). This is a contradiction because xy € suppw. O
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