Theory of Partial Differential Equations - Math 8583

Take-home final exam

1) Let u be a harmonic function in an open set $\Omega \subset \mathbb{R}^{n}$, with $n \geq 1$. Define $\Omega^{*}=\left\{x \in \mathbb{R}^{n}:|x|^{-2} x \in \Omega\right\}$ and $u^{*}: \Omega^{*} \rightarrow \mathbb{R}, u^{*}(X)=|x|^{2-n} u\left(|x|^{-2} x\right)$. Show that u^{*} is harmonic in Ω^{*}.
2) Denote $B_{1}=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$. Show that the problem

$$
\left\{\begin{array}{c}
\Delta u=u^{2} \text { in } B_{1}, \\
u(x) \rightarrow \infty \text { as } x \rightarrow 1^{-},
\end{array}\right.
$$

has a unique nonnegative solution $u \in C^{2}\left(B_{1}\right)$.
3) Let $u \in C^{2}(\mathbb{R})$ be a 1 -periodic function.
(a) Show that

$$
\int_{0}^{1}\left(u-u_{0}\right)^{2} d x \leq \int_{0}^{1} u_{x}^{2} d x
$$

where

$$
u_{0}=\int_{0}^{1} u(t) d t
$$

(b) Show that

$$
\int_{0}^{1} u_{x}^{2} d x \leq \int_{0}^{1} u_{x x}^{2} d x
$$

4) Let $u \in C^{2}(\mathbb{R} \times[0, \infty)), a \in C^{1}(\mathbb{R})$ be such that

$$
\begin{gathered}
u_{t}=a(x) u_{x x} \text { in } \mathbb{R} \times(0, \infty), \\
u(x+1, t)=u(x, t) \text { in } \mathbb{R} \times(0, \infty), \\
a(x+1)=a(x) \text { in } \mathbb{R}, \\
\nu \leq a(x) \leq \nu^{-1} \text { in } \mathbb{R},
\end{gathered}
$$

for some constant $\nu \in(0,1]$. Show that there exists $\mu=\mu(\nu)>0$ such that

$$
\int_{0}^{1} u_{x}^{2}(x, t) d x \leq e^{-\mu t} \int_{0}^{1} u_{x}^{2}(x, 0) d x \quad \forall t>0
$$

5) Denote $\mathbb{R}_{+}^{n}=\left\{\left(x_{1}, \ldots, x_{n-1}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}$. Let $\alpha \in(0,1)$.
(a) Show that there exists $c=c(n, \alpha)>0$ such that the function $v(x)=|x|^{\alpha}+c x_{n}^{\alpha}$ satisfies $\Delta v \leq 0$ in \mathbb{R}_{+}^{n}.
(b) Let $\Omega \subset \mathbb{R}^{n}$ be an open bounded convex subset. Let $u \in C^{2}(\Omega) \cap C(\bar{\Omega})$ be a solution to the problem

$$
\left\{\begin{array}{l}
\Delta u=0 \text { in } \Omega, \\
u=g \text { on } \partial \Omega,
\end{array}\right.
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfies $|g(x)-g(y)| \leq|x-y|^{\alpha}$. Show that there exists $K=K(n, \alpha)>0$ such that $|u(x)-u(y)| \leq K|x-y|^{\alpha}$.

