Math 8583: Theory of Partial Differential Equations: Fall 2013

Homework \#1 (due on Friday, September 27, till 4:30 pm)
50 points are distributed between 5 problems, 10 points each.

1. Show that Laplace's equation is invariant with respect to orthogonal transformations: if $u \in C^{2}(\Omega)$ satisfies $\Delta u(x) \equiv 0$ in Ω, then $v(y):=u(A y)$ satisfies $\Delta v(y) \equiv 0$ in the domain $\left\{y \in \mathbb{R}^{n}: A y \in \Omega\right\}$. Here A is any orthogonal matrix, i.e. its transposed matrix $A^{T}=A^{-1}$.
2. Let $f=f(x)$ be a continuous function on $[-1,1]$. Show that the problem

$$
\begin{equation*}
u^{\prime \prime}+f=0 \quad \text { in } \quad(-1,1), \quad u(\pm 1)=0, \tag{1}
\end{equation*}
$$

has a unique solution $u \in C^{2}([-1,1])$, which has the form

$$
u(x)=\int_{-1}^{1} G(x, y) f(y) d y, \quad-1 \leq x \leq 1,
$$

where the function $G(x, y)$ (Green's function for this problem) does not depend on f. Find the explicit expression of $G(x, y)$ for $-1 \leq x, y \leq 1$.
3. For a given function $f \in C([-1,1])$, let $u \in C^{2}([-1,1])$ be a solution to the problem (1). Show that for arbitrary constant $\gamma \in(0,1)$, there exists a constant N depending only on γ, such that

$$
\sup _{(-1,1)} d^{-\gamma}|u| \leq N \cdot \sup _{(-1,1)} d^{2-\gamma}|f|, \quad \text { where } \quad d=d(x):=1-|x| \text {. }
$$

Show that the above estimate fails for $\gamma=0$.
Hint. One can either use the previous problem, or the comparison function

$$
v=A_{1} d^{\gamma} \zeta+A_{2}\left(1-x^{2}\right)
$$

with some positive constants A_{1}, A_{2} and a smooth function ζ satisfying

$$
0 \leq \zeta \leq 1 \quad \text { on } \quad \mathbb{R}^{1}, \quad \zeta(x) \equiv 0 \quad \text { for } \quad|x| \leq \frac{1}{3}, \quad \zeta(x) \equiv 1 \quad \text { for } \quad|x| \geq \frac{2}{3}
$$

4. Let $K=$ const ≥ 0. Show that the problem

$$
U^{\prime \prime}+K\left|U^{\prime}\right|+1=0 \quad \text { in } \quad(-1,1), \quad U(\pm 1)=0
$$

has a unique solution $U \in C^{2}([-1,1])$. Moreover, show that any solution $u \in C^{2}([-1,1])$ to the problem

$$
u^{\prime \prime}+p u^{\prime}+1=0 \quad \text { in } \quad(-1,1), \quad u(\pm 1)=0, \quad \text { where } \quad|p(x)| \leq K
$$

satisfies the estimate $0 \leq u \leq U$ in $(-1,1)$.
5. Let $u=u(t, x)$ be a bounded smooth solution to the Cauchy problem

$$
u_{t}=u_{x x} \quad \text { for } \quad t>0, \quad u(0, x) \equiv \exp \left(-x^{4}\right) .
$$

Show that $u(t, 0)$ is not an analytic function at the point $t=0$.

