Math 8583: Theory of Partial Differential Equations: Fall 2013
Homework \#2 (due on Wednesday, October 9, till 11:15 am)
50 points are distributed between 5 problems, 10 points each.

1. Let Ω be an open connected set in \mathbb{R}^{n} with the boundary $\partial \Omega$ of class C^{2}. Let $u \in C_{\text {loc }}^{2}(\Omega) \cap C^{1}(\bar{\Omega})$ be a harmonic function in Ω, such that

$$
u=\frac{\partial u}{\partial \nu}=0 \quad \text { on } \quad(\partial \Omega) \cap B_{r}\left(x_{0}\right)
$$

for some $x_{0} \in \partial \Omega$ and $r>0$, where ν is the exterior unit normal to $\partial \Omega$. Show that $u \equiv 0$ in Ω.
2. Let u be a harmonic function in the unit ball

$$
B_{1}\left(x_{0}\right):=\left\{x \in \mathbb{R}^{n}:\left|x-x_{0}\right|<1\right\} .
$$

Prove the bound for the gradient

$$
\left|\nabla u\left(x_{0}\right)\right| \leq n \cdot\left[\sup _{B_{1}} u-u\left(x_{0}\right)\right]
$$

3. Show that there are no functions $u \in C_{l o c}^{2}\left(\mathbb{R}_{+}^{2}\right) \cap C_{l o c}\left(\overline{\mathbb{R}_{+}^{2}}\right)$ satisfying the properties

$$
u \geq 0, \quad \Delta u=0 \quad \text { in } \quad \mathbb{R}_{+}^{2}:=\left\{x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2}>0\right\}, \quad u\left(x_{1}, 0\right) \equiv x_{1}^{2}
$$

4. Let $u \in C_{\text {loc }}^{2}(\Omega) \cap C\left(\bar{\Omega}^{1}\right)$ be a solution to the problem

$$
\Delta u=-1 \quad \text { in } \quad \Omega:=(-1,1) \times(-1,1) \subset \mathbb{R}^{2}, \quad u=0 \quad \text { on } \quad \partial \Omega .
$$

(i) Show that u cannot belong to $C^{2}(\bar{\Omega})$.
(ii) Show that

$$
\sup _{\Omega} u=u(0) .
$$

5. Show that for any $p \in[1, n)$, there exist constants $\alpha \in(0,1), \nu \in(0,1]$, and a real symmetric $n \times n$ matrix function $a(x)=\left[a_{i j}(x)\right]$ satisfying the uniform ellipticity condition

$$
\nu|\xi|^{2} \leq(a(x) \xi, \xi)=\sum_{i, j=1}^{n} a_{i j}(x) \xi_{i} \xi_{j} \leq \nu^{-1}|\xi|^{2} \quad \text { for all } \quad \xi \in \mathbb{R}^{n} \quad \text { and } \quad x \in \mathbb{R}^{n}
$$

and such that the function $u(x):=1-|x|^{\alpha}$ satisfies

$$
L u:=\sum_{i, j=1}^{n} a_{i j} D_{i j} u=0 \quad \text { a.e. in } \quad B_{1}:=\left\{x \in \mathbb{R}^{n}:|x|<1\right\},
$$

and its derivatives $D_{i j} u \in L^{p}\left(B_{1}\right)$.
Remark. This example shows that the maximum principle does not hold in general for uniformly elliptic equation with discontinuous coefficients in the Sobolev class $W^{2, p}$ when $p<n$.

Hints

1. Use the fact that a function $v \in C(\Omega)$ is harmonic if and only if

$$
\int v \Delta \phi d x=0 \quad \text { for any function } \quad \phi \in C_{0}^{\infty}(\Omega) .
$$

Apply this fact to the function $v \in C\left(B_{r}\left(x_{0}\right)\right)$, which is defined as follows

$$
v \equiv u \quad \text { in } \quad \Omega \cap B_{r}\left(x_{0}\right), \quad v \equiv 0 \quad \text { on } \quad B_{r}\left(x_{0}\right) \backslash \Omega .
$$

2. Note that all the derivatives $D_{i} u$ are harmonic in $B_{1}:=B_{1}\left(x_{0}\right)$, so that by the mean value and divergence theorems,

$$
D_{i} u\left(x_{0}\right)=\frac{1}{\left|B_{1}\right|} \int_{B_{1}} D_{i} u d x=\frac{1}{\left|B_{1}\right|} \int_{\partial B_{1}} u \nu_{i} d S_{x} .
$$

where ν_{i} is the i-th component of the unit outward normal ν to ∂B_{1}. Obviously, for $x \in \partial B_{1}$, we have $\nu(x)=x-x_{0}$.
3. Suppose there exists such a function u. For arbitrary $R>0$, compare u with the solution $v \in C_{l o c}^{2}\left(\mathbb{R}_{+}^{2}\right) \cap C\left(\overline{\mathbb{R}_{+}^{2}}\right)$ to the problem

$$
\Delta v=0 \quad \text { in } \quad \mathbb{R}_{+}^{2}, \quad v\left(x_{1}, 0\right) \equiv x_{1}^{2} \zeta\left(x_{1}\right),
$$

where

$$
\zeta \in C_{0}^{\infty}(-2 R, 2 R), \quad 0 \leq \zeta \leq 1, \quad \text { and } \quad \zeta \equiv 1 \quad \text { on } \quad[-R, R] .
$$

For any function $g \in C\left(\mathbb{R}^{n-1}\right)$, $n \geq 2$, the solution $v \in C_{\text {loc }}^{2}\left(\mathbb{R}_{+}^{n}\right) \cap C\left(\overline{\mathbb{R}_{+}^{n}}\right)$ to the problem

$$
\Delta v=0 \quad \text { in } \quad \mathbb{R}_{+}^{n}=\left\{x=\left(x^{\prime}, x_{n}\right) \in \mathbb{R}^{n}: x_{n}>0\right\}, \quad v\left(x^{\prime}, 0\right) \equiv g\left(x^{\prime}\right)
$$

is given by the formula

$$
v(x)=v\left(x^{\prime}, x_{n}\right)=\int_{\mathbb{R}^{n-1}} \frac{2 g\left(x^{\prime}-x_{n} y^{\prime}\right)}{\sigma_{n}\left(1+\left|y^{\prime}\right|^{2}\right)^{n / 2}} d y^{\prime}, \quad x^{\prime} \in \mathbb{R}^{n-1}, x_{n} \geq 0
$$

where $\sigma_{n}=\left|\partial B_{1}\right|=2 \pi^{n / 2} / \Gamma(n / 2)$.
4. By uniqueness, $u\left(x_{1}, x_{2}\right)$ must be an even function with respect to each of variables x_{1} and x_{2}. Then consider the functions $v_{k}=D_{k} u$ for $k=1$ and 2 .

