Math 8583: Theory of Partial Differential Equations: Fall 2013
Homework \#3 (due on Wednesday, November 13, till 11:15 am)
50 points are distributed between 4 problems.

1. (10 points). Let $u \in C^{4}\left(\overline{B_{1}}\right)$, where $B_{1}:=\left\{x \in \mathbb{R}^{n}:|x|<1\right\}$. Suppose that

$$
\Delta^{2} u:=\Delta(\Delta u)=0 \quad \text { in } \quad B_{1}, \quad u=|D u|=0 \quad \text { on } \quad \partial B_{1} .
$$

Show that $u \equiv 0$ in B_{1}.
2. (10 points). Suppose that $u \in C^{\infty}\left(B_{2}\right)$,

$$
u>0, \quad \Delta u=0 \quad \text { in } \quad B_{2}:=\left\{x \in \mathbb{R}^{n}:|x|<2\right\} .
$$

Show that $|D(\ln u)| \leq N$ in B_{1}, with a constant N depending only on n.
3. (15 points). Let functions $a_{i j}=a_{i j}(t, x)$ be defined for $i, j=1, \cdots, n ; t .0, x \in \mathbb{R}^{n}$, and satisfy the uniform parabolicity condition

$$
\begin{equation*}
a_{i j}=a_{j i}, \quad \nu|\xi|^{2} \leq \sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j} \leq \nu^{-1}|\xi|^{2} \quad \text { for all } \quad \xi \in \mathbb{R}^{n} . \tag{1}
\end{equation*}
$$

with a constant $\nu \in(0,1]$. Consider the functions

$$
K_{\alpha, \beta}(t, x):=t^{-\alpha} \exp \left\{-\frac{|x|^{2}}{\beta t}\right\} \quad \text { for } \quad t>0, x \in \mathbb{R}^{n}
$$

Show that there exist positive constants $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$, depending only on n and ν, such that

$$
L K_{\alpha_{1}, \beta_{1}}(t, x):=\left(\partial_{t}-\sum_{i, j=1}^{n} a_{i j} D_{i j}\right) K_{\alpha_{1}, \beta_{1}}(t, x) \geq 0, \quad L K_{\alpha_{2}, \beta_{2}}(t, x) \leq 0 \quad \text { for all } \quad t>0, x \in \mathbb{R}^{n}
$$

4. (15 points). Let $a_{i j}=a_{i j}(t, x)$ be functions satisfying (1) with a constant $\nu \in(0,1]$, and let $g=g(x)$ be a continuous function on \mathbb{R}^{n}. Use the previous result to show that the problem

$$
L u:=\left(\partial_{t}-\sum_{i, j=1}^{n} a_{i j} D_{i j}\right) u=0 \quad \text { in } \quad H_{T}:=(0, T) \times \mathbb{R}^{n}, \quad u(0, x) \equiv g(x)
$$

has at most one classical solution $u \in C^{1,2}\left(H_{T}\right) \cap C\left(\overline{H_{T}}\right)$ satisfying the inequality

$$
|u(t, x)| \leq N \cdot \exp \left(a|x|^{2}\right) \quad \text { in } \quad H_{T},
$$

where N and a are positive constants.
Hint. Use the comparison principle: if

$$
L u \leq L v \quad \text { in } \quad Q_{h, R}:=(0, h) \times B_{R}, \quad \text { where } \quad B_{R}:=\left\{x \in R^{n}:|x|<R\right\},
$$

and

$$
u \leq v \quad \text { on } \quad \partial_{p} Q_{h, R}:=\left(\partial Q_{h, R}\right) \backslash\left(h \times \overline{B_{R}}\right),
$$

then $u \leq v$ in $Q_{h, R}$. Take $v(t, x):=K_{\alpha, \beta}(h-t, i x)$.

