Theory of Probability and Measure Theory – Math 8651

Homework #2

Problems 7.2, 7.8. In Problem 7.14, show not what is asked there but that any Borel set is regular. Note that \mathcal{B} there is our $\mathcal{B}(\mathbb{R})$. Additional problems:

A) Prove that if \mathcal{U} is both a λ -system and a π -system then it is a σ -field.

B) Prove that if μ and ν are σ -finite measures on a measurable space $(\Omega), \mathcal{F})$, $\mathcal{F} = \sigma(\mathcal{E}), \mathcal{E}$ is a π -system, and $\mu = \nu$ on \mathcal{E} , then $\mu = \nu$ on \mathcal{F} .

In the following two problems, \mathcal{B} is a collection of subsets of Ω such that $\emptyset \in \mathcal{B}$ and f is a nonnegative function on \mathcal{B} such that $f(\emptyset) = 0$.

C) We call $A \subset \Omega$ an *f*-null set if $f^*(A) = 0$. Prove that *f*-null sets are f^* -sets.

D) Prove that if \mathcal{B} is a σ -field and f is σ -additive on \mathcal{B} then for any $A \subset \Omega$ there exists $B \in \mathcal{B}$ such that $A \subset B$ and $f^*(A) = f^*(B)$.