Theory of Probability and Measure Theory - Math 8651

Homework \#3

Problems 2.3, 2.6, 7.19. Additional problems:
A) Let $(\Omega, \mathcal{F}, \mu)$ be a measure space. Define $\overline{\mathcal{F}}=\overline{\mathcal{F}}^{\mu}$ as the collection of sets of the type $B \cup N$, where $B \in \mathcal{F}$ and there is $C \in \mathcal{F}$ such that $\mu(C)=0$ and $N \subset C$. Prove that $\overline{\mathcal{F}}$ is a σ-field and if we define $\mu(B \cup N=\mu(B)$ then this is a well-defined function on $\overline{\mathcal{F}}$, which is σ-additive and agrees with μ on \mathcal{F}.
B) For $a \geq 0, b \in \mathbb{R}$ and Borel set $B \subset \mathbb{R}$ define $a B+b=\{a x+b: x \in B\}$. Prove that $a B+b$ is Borel and $\lambda(a B+b)=a \lambda(B)$, where λ is Lebesgue measure.

In the following problems, we assume the setting of Example 1.4 presented in class and in lecture notes.
C) Take a finite subset $\left\{k_{1}, k_{2}, \ldots, k_{n}\right\}$ of integers $\{1,2,3, \ldots\}$ such that $k_{1}<k_{2}<$ $\ldots<k_{n}$ and take some numbers a_{1}, a_{2}, \ldots such that $a_{j}=0$ or 1 . Show that

$$
\left\{\omega: \omega_{k_{j}}(\omega)=a_{j} \quad \forall j=1, \ldots, n\right\}
$$

is an event and compute its probability.
D) For $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right)$ define

$$
X(\omega)=\sum_{k=1}^{\infty} \frac{\omega_{2 k}}{2^{k}}, \quad Y(\omega)=\sum_{k=1}^{\infty} \frac{\omega_{2 k-1}}{2^{k}} .
$$

Show that for any numbers a, b, c, d such that $0 \leq a \leq b \leq 1$ and $0 \leq c \leq d \leq 1$ we have

$$
P(\{\omega:(X(\omega), Y(\omega)) \in(a, b] \times(c, d]\})=(b-a)(d-c) .
$$

