Theory of Probability and Measure Theory – Math 8652

Take-home final exam

1) Let $w_t, t \in [0, \infty)$, be a Wiener process. Find the average time it spends in [-1,1] before exiting (-2,2).

2) Let $w_t, t \in [0, \infty)$, be a Wiener process. Find the distribution of

$$\sup_{t\geq 0}(w_t-t)$$

3) Let X be a Markov chain on \mathbb{Z}^d starting at the origin and having a transition kernel

$$p(x,B) = \sum_{y \in B} p(y-x),$$

where p(y) is a probability distribution on \mathbb{Z}^d (not necessarily on the nearest neighbors of the origin) such that p(0) < 1. Such X are called random walks. Prove that the origin is either transient or null recurrent.

4) Assume that we are givin a Markov chain with state space $S = \{1, 2, ...\}$ and, for an $i_0 \in S$, we have $P_{i_0}(\exists n \ge 1 : X_n = i_0) = 1$. Prove that, if, for a j, we have $\pi_{i_0j} > 0$, then $\pi_{i_0j} = \pi_{jj} = \pi_{ji_0} = 1$.

5) Let $U = (u_0, u_1, u_2, ...)$ be a potential sequence of a renewal sequence such that not all $u_n = 0$. Prove that $\gamma(U)$, introduced in Definition 10/1 of the Lecture Notes, is the greatest integer in $\{1, 2, ...\}$ such that $P(T_1/\gamma \in \{\infty, 1, 2, ...\}) = 1$.

6) (Close to Problem 24.44 in the textbook) Prove the following version of Lebesgue's differentiation theorem. Let f(t) be a finite monotone function on [0,1]. For $x \in [0,1)$ and integer $n \ge 0$, write $x = k2^{-n} + \epsilon$, where k is an integer and $0 \le \epsilon < 2^{-n}$, and define $a_n(x) = k2^{-n}$ and $b_n(x) = (k+1)2^{-n}$. Prove that

$$\lim_{n \to \infty} \frac{f(b_n(x)) - f(a_n(x))}{b_n(x) - a_n(x)}$$

exists for almost every $x \in [0, 1]$.

7) Let X be an inner product space with scalar product $\langle ., . \rangle$ and norm ||.||. Prove that ||x + y|| is a continuous of x and y: $||x_n + y_n|| \to 0$ if $||x_n - x||, ||y_n - y|| \to 0$. Also prove that $\langle x, y \rangle$ is a continuous function of x and y: $\langle x_n, y_n \rangle \to 0$ if $||x_n - x||, ||y_n - y|| \to 0.$

8) (Problem 25.10 in the textbook) Describe all potential sequences beginning with two 1's: (1,1,...).

9) (Problem 26.33 in the textbook) Let $q \in (0, 1)$ and $\mu\{x\} = (1 - q)q^x$, $x \in \mathbb{Z}^+$. Calculate $x \mapsto \pi_{\{0\}}(x)$ for a branching process with branching distribution μ .

10) (Problem 26.39 in the textbook) Show that if two states are accessible from each other then they both have the same period and are of the same type: transient, positive recurrent or null recurrent.