Theory of Probability and Measure Theory – Math 8652

Homework #4

1) Prove that a sequence of real-valued random variables $\xi_n \geq 0, n = 1, ..., N$, such that ξ_n is \mathcal{F}_n -measurable and $E|\xi_n| < \infty$ for every n, is a submartingale if and only if, for each $1 \leq n \leq N$, we have $\xi_n = E(\eta_n | \mathcal{F}_n)$ a.s. where η_n is an increasing sequence of nonnegative random variables such that $\eta_N = \xi_N$.

2) Let X_n , n = 1, ..., N be iid standard normal on (Ω, \mathcal{F}, P) and $w_N = X_1 + ... + X_N$. For each $A \in \mathcal{F}$, define

$$P'(A) = EI_A \exp\left(w_N - \frac{N}{2}\right).$$

Show that P' is a probability measure on \mathcal{F} . Also show that $Y_n = X_n - 1$ are iid standard normal on $(\Omega, \mathcal{F}, P')$.

3) Let $(\xi, \xi_1, ..., \xi_n)$ be a Gaussian vector. Prove that for any Borel f such that $E|f(\xi)| < \infty$,

$$E(f(\xi)|\xi_1, ..., \xi_n) = Ef(x+\eta)|_{x=m}$$
 a.s

where $m = E(\xi|\xi_1, ..., \xi_n)$ and η is a normal $(0, \sigma^2)$ random variable with $\sigma^2 = E|\xi - m|^2$. Then show that if $\xi \neq m$ then

$$E(f(\xi)|\xi_1, ..., \xi_n) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{\mathbb{R}} f(x)e^{-(x-m)^2/(2\sigma^2)} dx.$$

4) Prove the Pythagorean theorem: For any X such that $EX^2 < \infty$ we have

$$EX^{2} = E[E(X|\mathcal{G})]^{2} + E[X - E(X|\mathcal{G})]^{2}.$$