Theory of Probability and Measure Theory - Math 8652

Homework \#5

1) Let $X_{1}, \ldots, X_{n} \in L^{1}(\Omega, \mathcal{F}, P)$. Define $\operatorname{Span}\left(X_{1}, \ldots, X_{n}\right)$ as the collection of elements X of $L^{1}(\Omega, \mathcal{F}, P)$ for each of which there exist real numbers $\alpha_{1}, \ldots \alpha_{n}$ such that

$$
\left\|X-\sum_{k=1}^{n} \alpha_{k} X_{k}\right\|=0
$$

Prove that $\operatorname{Span}\left(X_{1}, \ldots, X_{n}\right)$ is a closed subset of $L^{1}(\Omega, \mathcal{F}, P)$.
2) Let $\Omega=\bigcup_{n} A_{n}$ be a partition of Ω into disjoint sets $A_{n} \in \mathcal{F}, n=1,2, \ldots$ such that $P\left(A_{n}\right)>0$ for any n. Let $\mathcal{G}=\sigma\left(A_{n}, n=1,2, \ldots\right)$. Assume that $E|\xi|<\infty$. Prove that

$$
E(\xi \mid \mathcal{G})=\frac{1}{P\left(A_{n}\right)} E \xi I_{A_{n}}
$$

on A_{n} for any n.
3) Prove that any nonnegative quadratic function attains its minimum at least one point, that is, if we are given numbers $a_{i j}, b_{i}, c, i, j=1, \ldots, d$, such that the function on \mathbb{R}^{d}

$$
f(x)=\sum_{i, j=1}^{d} a_{i j} x_{i} x_{j}+2 \sum_{i=1}^{d} b_{i} x_{i}+c=(a x, x)+2(b, x)+c
$$

is nonnegative, then there exists a point $\bar{x} \in \mathbb{R}^{d}$ such that

$$
f(\bar{x})=\inf _{x \in \mathbb{R}^{d}} f(x)
$$

4) We know that for simple symmetric random walk $S_{n}, n=0,1,2, \ldots$, starting from the origin, the process

$$
\xi_{n}=\left(\frac{5}{4}\right) 2^{S_{n}}
$$

is a martingale. Prove that $\xi_{n} \rightarrow 0$ a.s. and conclude from this that

$$
E \sup _{n \geq 0} \xi_{n}=\infty .
$$

