Theory of Probability and Measure Theory – Math 8652

Homework #6

1) Let ξ_n be summable \mathcal{F}_n -measurable random variables given for n = 0, 1, ... Assume that for any bounded stopping times $\tau \geq \sigma$ we have $E\xi_{\tau} \geq E\xi_{\sigma}$. Prove that (ξ_n, \mathcal{F}_n) is a submartingale.

2) (Problem 24.24 in the textbook) Consider a random walk $S_0 = 0$, $S_n = X_1 + \ldots + X_n$, where X_k 's are iid on \mathbb{R} whose step size has mean zero. Set

$$\tau = \inf\{n \ge 0 : S_n > 0\}.$$

Prove that $E\tau = \infty$.

3) Take two numbers $\lambda, \mu > 0$ such that $\lambda + \mu < 1$. Show that the sequence $(1, \lambda + \mu, \lambda^2 + \mu^2, ...)$ cannot be the potential sequence of any renewal sequence.

4) (Problem 25.9 in the textbook) Decide for which $q \in (0, 1]$ the sequence (1, 0, q, q, ...) is a potential sequence and find the corresponding waiting time distribution.