Theory of Probability and Measure Theory - Math 8652

Homework \#6

1) Let ξ_{n} be summable \mathcal{F}_{n}-measurable random variables given for $n=0,1, \ldots$ Assume that for any bounded stopping times $\tau \geq \sigma$ we have $E \xi_{\tau} \geq E \xi_{\sigma}$. Prove that $\left(\xi_{n}, \mathcal{F}_{n}\right)$ is a submartingale.
2) (Problem 24.24 in the textbook) Consider a random walk $S_{0}=0, S_{n}=$ $X_{1}+\ldots+X_{n}$, where X_{k} 's are iid on \mathbb{R} whose step size has mean zero. Set

$$
\tau=\inf \left\{n \geq 0: S_{n}>0\right\}
$$

Prove that $E \tau=\infty$.
3) Take two numbers $\lambda, \mu>0$ such that $\lambda+\mu<1$. Show that the sequence $\left(1, \lambda+\mu, \lambda^{2}+\mu^{2}, \ldots\right)$ cannot be the potential sequence of any renewal sequence.
4) (Problem 25.9 in the textbook) Decide for which $q \in(0,1]$ the sequence $(1,0, q, q, \ldots)$ is a potential sequence and find the corresponding waiting time distribution.

