Theory of Probability and Measure Theory - Math 8652

Homework \#7

1) (Doob's decomposition. Problem 24.10 in the textbook) Prove that a sequence of real-valued random variables $\xi_{n}, n=1, \ldots, N$, such that ξ_{n} is \mathcal{F}_{n}-measurable and $E\left|\xi_{n}\right|<\infty$ for every n, is a submartingale if and only if $\xi_{n}=A_{n}+m_{n}$, where m_{n} is an \mathcal{F}_{n}-martingale and A_{n} is an increasing sequence such that $A_{1}=0$ and A_{n} is \mathcal{F}_{n-1}-measurable for every $n \geq 2$.
2) Let $X_{1}, X_{2}, X_{3}, \ldots$ be an iid sequence of random variables, each having uniform distribution on $[0,2]$. Show that

$$
\xi_{n}=\prod_{k=1}^{n} X_{k}
$$

converges to 0 almost surely.
3) Let $Y_{1}, Y_{2}, Y_{3}, \ldots$ be iid \mathbb{Z}^{d}-valued random variables such that

$$
P\left(Y_{k}= \pm e_{i}\right)=\frac{1}{2 d},
$$

$i=1, \ldots, d$, where e_{1}, \ldots, e_{d} is the standard basis in \mathbb{R}^{d}. Suppose $d \geq 3$. Show that the probability for the random walk $X_{0}=0, X_{n}=Y_{1}+\ldots+Y_{n}$ to ever return to the origin is strictly less than 1 .
4) In the proof of Ionescu-Tulcea theorem given in Lecture 29, assume there is a probability measure on \mathcal{F} which agrees with P on \mathcal{E}. Prove that $X_{0}(\omega), X_{1}(\omega), \ldots$ is a Markov chain relative to $\left\{\mathcal{F}_{n}\right\}$ with transition kernel $p(x, B)$ and with initial distribution π_{0}.

