Theory of Probability and Measure Theory - Math 8652

Homework \#8

1) Given a Markov chain on $S=\mathbb{Z}$ or \mathbb{Z}^{2}, let $u: S \rightarrow \mathbb{R}$ be a bounded harmonic function with respect to this Markov chain. Show that u is constant.
2) Consider a simple symmetric random walk on \mathbb{Z}^{d}, where $d=1$ or 2 . We know from Homework \#7, Problem 3, that it is recurrent, i.e. the returning time is almost surely finite. Show that the random walk is null recurrent.
3) (Theorem 26.9 in the textbook) Let μ be a probability distribution on $\mathbb{Z}^{+}=$ $\{0,1,2, \ldots\}$ such that $\mu(\{2,3, \ldots\})>0$. Let ρ be the probability generating function of μ. Consider a branching process having branching distribution μ. Show that the probability of extinction of the above process starting from 1 is the smallest root in $[0,1]$ of the equation $c=\rho(c)$.
4) Fix $d \geq 2$ and let $S=\{1,2, \ldots, d\}$. For $1<i<d$, let $p(i, i \pm 1)=1 / 2$ and let $p(1,1)=p(d, d)=1$. Find all invariant probability distributions.
