
The first additional problem of Math 8302, Manifolds and Topology II posted
on April 29, 2013 by Tyler Lawson.

Solution

According to the assignment, M may not be path-connected. Thus we de-
compose M into path-connected components. Since M is locally Euclidean, the
path-connected components are the same as the connected components and are
open subspaces of M . Thus each component itself is a smooth manifold. Then
we will solve the problem on each of them separately but with the same method.
This means we can assume from the beginning that M is connected.

Our claim is that ω satisfies the conditions stated in the problem if and only if

ω(t) is independent of t and ω is an exact 1-form on M . In other words, there is
a smooth map η : M → R such that ω = dη.

We will break our proof into 3 steps, namely M = R, M = R
n and M arbitrary.

Step 1. M = R

Then ω(t) = f(x, t)dx, where f : R × (a, b) → R is a smooth function. The
property of ω can be restated as follow:

For any [c, d] ⊂ (a, b), for any smooth maps x1, x2 : [c, d] → R such that
x1(c) = x2(c) and x1(d) = x2(d), we have

d
∫

c

f(x1(t), t)x1
′(t)dt =

d
∫

c

f(x2(t), t)x2
′(t)dt

By taking x2 to be a constant function, the right hand side vanishes. Then the
above property can be restated as follow:

For any [c, d] ⊂ (a, b), for any smooth maps x : [c, d] → R such that x(c) = x(d),
we have

d
∫

c

f(x(t), t)x′(t)dt = 0 (1)

Now fix an interval [c, d] ⊂ (a, b). We will show that f(x, t) is independent of t.
Take x0 ∈ R arbitrarily. We will show that the map t ∈ [c, d] → f(x0, t) ∈ R is
constant. Put

τ = π
t− c

d− c
∀t ∈ [c, d],

g : [0, π] → R, g(τ) = f(x0, t) = f

(

x0,
d− c

π
τ + c

)

.

For each ǫ > 0, n ∈ N, we define the maps

xε,n : [c, d] → R, xε,n(t) = x0 + ε sin

(

nπ
t− c

d− c

)

,

yε,n : [0, π] → R, yε,n(τ) = xε,n(t) = x0 + ε sin (nτ) .
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Then xε,n is smooth and xε,n(c) = xε,n(d) = x0. Equivalently, yε,n is smooth and
yε,n(0) = yε,n(π) = x0. With x = xε,n, Eq. (1) becomes

0 =

d
∫

c

f(xε,n(t), t)xε,n
′(t)dt =

π
∫

0

f(yε,n(τ), t)yε,n
′(τ)

π

d− c
dτ

Thus,
π

∫

0

f

(

x0 + ε sin (nτ) ,
d− c

π
τ + c

)

cos(nτ)dτ = 0 (2)

Because this is true for all ǫ > 0, we can take the limit as ǫ → 0 on both sides of
Eq. (2). Note that f is smooth, so we can bring the limit into the integral sign.
Then Eq. (2) gives

π
∫

0

f

(

x0,
d− c

π
τ + c

)

cos(nτ)dτ = 0,

which means
π

∫

0

g (τ) cos(nτ)dτ = 0 ∀n ∈ N

We know that g has a Fourier Cosine series on [0, π] and

g(τ) =
a0
2

+
∞
∑

n=1

an cos(nτ)

where an = 2
π

π
∫

0

g (τ) cos(nτ)dτ . By what we have just proved, an = 0 for all n ∈ N .

Thus g(τ) is a constant function. Therefore, f(x0, t) is constant, i.e. f(x, t) does
not depend on t. We can write f(x, t) = f(x). Then ω(t) = ω = f(x)dt. This is
always an exact 1-form because f(x) has an antiderivative on R. Conversely, with
ω = f(x)dt, we have

d
∫

c

f(x(t))x′(t)dx =

x(d)
∫

x(c)

f(u)du,

which depends only on the values of x at the starting and ending points. Thus,
such an ω satisfies the property stated in the problem.

Step 2. M = R
n

Then

ω(t) =
n

∑

k=1

fk(x
1, . . . , xn, t)dxk
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where each fk : Rn × (a, b) → R is smooth. The property of ω can be restated as
follow:

For any [c, d] ⊂ (a, b), for any smooth maps γ1, γ2 : [c, d] → R
n such that

γ1(c) = γ2(c) and γ1(d) = γ2(d), written as γ1(t) = (x1(t), . . . , xn(t)) and γ2(t) =
(y1(t), . . . , yn(t)) we have

n
∑

k=1

d
∫

c

fk(x
1(t), . . . , xn(t), t)

dxk

dt
dt =

n
∑

k=1

d
∫

c

fk(y
1(t), . . . , yn(t), t)

dyk

dt
dt

By taking γ2 to be a constant path, the right hand side vanishes. Then we can
restate the above property as follow:

For any [c, d] ⊂ (a, b), for any smooth maps γ : [c, d] → R
n such that γ(c) =

γ(d), written as γ(t) = (x1(t), . . . , xn(t)), we have

n
∑

k=1

d
∫

c

fk(x
1(t), . . . , xn(t), t)

dxk

dt
dt = 0

We can restate the above property as follow:
For any [c, d] ⊂ (a, b), for any smooth maps x1, . . . , xn : [c, d] → R such that

xk(c) = xk(d) for every k = 1, 2, . . . , n, we have

n
∑

k=1

d
∫

c

fk(x
1(t), . . . , xn(t), t)

dxk

dt
dt = 0 (3)

Fix an interval [c, d] ⊂ [a, b]. We will show that each fk(x
1, . . . , xn, t) does not

depend on t. By symmetry, it suffices to prove this is true for f1(x
1, . . . , xn, t).

Take p0 = (x1
0, . . . , x

n
0 ) ∈ R

n arbitrarily. We will show that the map t ∈ [c, d] →
f(p0, t) ∈ R is constant. Choose xk(t) ≡ xk

0 for all k = 2, . . . , n. Then Eq. (3)
becomes

d
∫

c

f1(x
1(t), x2

0, . . . , x
n
0 , t)

dx1

dt
dt = 0

for all smooth map x1 : [c, d] → R such that x1(c) = x1(d) = x1
0. Put g :

R× (a, b) → R, g(x1, t) = f1(x
1, x2

0, . . . , x
n
0 , t). Then

d
∫

c

g(x1(t), t)
dx1

dt
dt = 0

for all smooth map x1 : [c, d] → R such that x1(c) = x1(d) = x1
0. Now we return

to the case M = R, where we proved that g is independent of t via Fourier Cosine
series. Therefore, f1 is also independent of t. We can write fk(x

1, . . . , xn, t) =
fk(x

1, . . . , xn) for all k = 1, . . . , n. Then

ω(t) = ω =
n

∑

k=1

fk(x
1, . . . , xn)dxk
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We know that
∫

γ

ω depends only on the starting and ending points of the path.

Fix p0 = (0, 0, . . . , 0) ∈ R
n. For each point p = (a1, . . . , an) ∈ R

n, we define a map
F : Rn → R,

F (p) :=

∫

γ

ω =
n

∑

k=1

d
∫

c

fk(x
1(t), .., xn(t))

dxk

dt
dt,

where γ : [c, d] → R
n is any smooth path from p0 to p. We will show that

∂F
∂xk (p) = fk(p) for every k = 1, . . . , n. It suffices to show that this is true for k = 1.
Choose γ to be a path from p0 to p such that xk(t) = ak for all (c+ d)/2 ≤ t ≤ d,
for all k = 2, . . . , n and x1((c+ d)/2) = 0. Then

F (p)− F

(

p

(

c+ d

2

))

=

d
∫

(c+d)/2

f1(x
1(t), a2, .., an)

dx1

dt
dt

Thus,

F (p) = F
(

0, a2, . . . , an
)

+

d
∫

(c+d)/2

f1(x
1(t), a2, . . . , an)

dx1

dt
dt

= F
(

0, a2, . . . , an
)

+

x1(d)
∫

x1((c+d)/2)

f1(u, a
2, . . . , an)du

= F
(

0, a2, . . . , an
)

+

a1
∫

0

f1(u, a
2, .., an)du

Thus, ∂F
∂x1 (p) = f1(a

1, a2, . . . , an) = f1(p). Therefore,

ω =
n

∑

k=1

∂F

∂xk
(x1, . . . , xn)dxk.

which is an exact 1-form on R
n. Conversely, if ω = dF then

∫

γ

ω =

∫

γ

dF =

d
∫

c

dF

dt
dt = F (γ(d))− F (γ(c)),

which depends only on the starting and ending points of γ. Thus, such an ω sat-
isfies the desired property.

Step 3. M is an arbitrary smooth connected n-manifold.
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Pick any smooth chart (U, φ : U → R
n) on M . On U , ω has the form

ω(t) =
n

∑

k=1

fk(x
1, . . . , xn, t)dxk

Since ω satisfies the property stated in the problem for (x1, . . . , xn, t) ∈ M× (a, b),
it must satisfy the same property for (x1, . . . , xn, t) ∈ U × (a, b). Now we return to
the case M = R

n. We conclude that, on U , ω is independent of t and there exists
a smooth map FU : U → R such that ω|U = dFU . Since ω(t) is independent of t
on every chart U , it is so on M . Thus, ω(t) = ω is simply a 1-form on M .

Fix a ∈ M . For each p ∈ M , there is a path γ from a to p. Since M is a smooth
manifold, there is at least such a piecewise smooth path γ. Since

∫

γ
ω depends

only on the ending point of γ, we can define a map

η : M → R, η(p) =

∫

γ

ω

We will show that η is smooth and dη = ω. On each chart (U, (xi)), we fix a point
pU . Then for any point p ∈ U , p can be connected from pU by a smooth path λ in
U . Then

η(p)− η(pU) =

∫

λ

ω

We know that ω|U = dFU . Thus

η(p)− η(pU) =

∫

λ

ω = FU(p)− FU(pU)

Then we get
η(p) = FU(p) + η(pU)− FU(pU) (4)

Since FU is smooth, η is also smooth on U . Hence η is smooth on M . By the local
property of the exterior derivative, Eq. (4) gives us dη = dFU = ω. Therefore ω is
an exact 1-form.

Conversely, suppose that ω(t) = ω = dη. Let γ : [c, d] → M be a smooth path.
Since γ([c, d]) is compact, it can be covered by finitely many coordinate charts
U1, . . . , Ur on M , each of which is diffeomorphic to R

n. Moreover, we can even
assume that there are c = t0 < t1 < . . . < tr = d such that γ([ti−1, ti]) ⊂ Ui for
i = 1, . . . , r. Then

∫

γ

ω =
r

∑

i=1

∫

γ([ti−1,ti])

dη =
r

∑

i=1

(η(γ(ti))− η(γ(ti−1)))

= η(γ(tr))− η(γ(t0)) = η(γ(d))− η(γ(c))

This means the integral depends only on the starting and ending point of γ.
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The second additional problem of Math 8302, Manifolds and Topology II posted
on April 29, 2013 by Tyler Lawson.

Solution

First, we define an equivalence relation on C
n+1 as follows

(z0, z1, . . . , zn) ∼ (z′0, z
′
1, . . . , z

′
n) ⇔ ∃λ ∈ C

∗ : (z0, z1, . . . , zn) = λ(z′0, z
′
1, . . . , z

′
n).

Denote by [z0 : z1 : . . . : zn] the equivalence class of (z0, z1, . . . , zn). Then CP
n is

defined to be the set of the equivalence classes. For each 0 ≤ k ≤ n, we put

Uk = {[z0 : z1 : . . . : zn]|zk 6= 0}

There is a bijective map φk : Uk → C
n given by

φk([z0 : z1 : . . . : zn]) =

(
z0
zk
, . . . ,

ẑk
zk
, . . . ,

zn
zk

)

On the other hand, we can identify C
n with R

2n via the bijection (x1+iy1, . . . , xn+
iyn) 7→ (x1, y1, . . . , xn, yn). Thus we can think of φk as a bijection from Uk to R

2n.
The cover {(Uk, φk)|k = 0, 1, .., n} defines a smooth structure on CP

n and makes
it a 2n-manifold.

CP
1 can be viewed as a submanifold of CPn via the inclusion i : [z0 : z1] 7→

[z0 : z1 : 0 : . . . : 0]. Given that H2
dR(CP

n) ≃ R, we will find a generator for this
group. This is equivalent to finding a nonzero element in H2

dR(CP
n). We know

that CP
1 ≃ S2, which has no boundary. This means CP

1 is a 2-cycle in CP
n.

By de Rham theorem, it suffices to find a closed 2-form on CP
n whose integral

over CP1 is nonzero. We break the solution into two steps, namely n = 1 and n ≥ 2.

Step 1. n = 1
First we will construct a diffeomorphism from CP

1 to S2. This gives a group
isomorphism from H2

dR(S
2) to H2

dR(CP
1) given by the pullbacks. Then we will find

a generator of H2
dR(S

2), which gives a generator of H2
dR(CP

1). Then we express
that 2-form in coordinates.

By definition,
CP

1 =
{
[z0 : z1]||z0|

2 + |z1|
2 6= 0

}

has an atlas consisting of two charts (U+, φ+) and (U−, φ−) defined as follows.

U+ = {[z0 : z1]|z1 6= 0} ,

U− = {[z0 : z1]|z0 6= 0} ,

φ+ : U+ → C, φ+([z0 : z1]) =
z0
z1
,

φ− : U− → C, φ−([z0 : z1]) =
z1
z0
.
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The inverse maps are φ−1
+ (z) = [z : 1] and φ−1

− (z) = [1 : z]. By definition, the
sphere

S2 =
{
(a, b, c)|a2 + b2 + c2 = 1

}

has an atlas consisting of two charts (V+, ψ+) and (V−, ψ−) defined as follows.

V+ =
{
(a, b, c) ∈ S2|c 6= 1

}
,

V− =
{
(a, b, c) ∈ S2|c 6= −1

}
,

ψ+ : V+ → C, ψ+(a, b, c) =
a+ ib

1− c
,

ψ− : V− → C, ψ−(a, b, c) =
a− ib

1 + c
.

The inverse maps are obtained by computation as

ψ−1
+ (x, y) =

(2x, 2y, x2 + y2 − 1)

x2 + y2 + 1
,

ψ−1
− (x, y) =

(2x,−2y, 1− x2 − y2)

x2 + y2 + 1

Define a function f : CP1 → S2

f([z0 : z1]) =
(2Re(z0z̄1), 2Im(z0z̄1), |z0|

2 − |z1|
2)

|z0|2 + |z1|2
.

Then f is bijective with f(U+) = V+ and f(U−) = V−. We can check that the
transtion maps f± = ψ± ◦ f ◦ φ−1

± : R2 → R
2 are the identity. This means the

coordinate representations of any differential form of S2 on V± are the same as the
representations of its pullback on U±.

Consider a 2-form on S2 given by ρ = a db∧dc+ b dc∧da+ c da∧db. Since S2

is a 2-manifold, ρ is closed. Moreover, we can compute the integral of ρ over S2

via spherical parametrization (the computation was done as an example in class
on April 10, 2013). Here we only give the result

∫
S2

ρ = −4π 6= 0. Thus [ρ] is a

nonzero element in H2
dR(S

2). Its pullback [η] = f ∗[ρ] is also a nonzero element in
H2

dR(CP
1). This is the 2-form we are looking for. We will express it in coordinate

charts. In the chart V+,

(a, b, c) = ψ−1
+ (x, y) =

(2x, 2y, x2 + y2 − 1)

x2 + y2 + 1

Thus,

ρ =

[
a

(
∂b

∂x

∂c

∂y
−
∂b

∂y

∂c

∂x

)
+ b

(
∂c

∂x

∂a

∂y
−
∂c

∂y

∂a

∂x

)
+ c

(
∂a

∂x

∂b

∂y
−
∂a

∂y

∂b

∂x

)]
dx ∧ dy

= −
4

(x2 + y2 + 1)2
dx ∧ dy
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Similarly, we also obtain the representation of ρ in V−, which turns out to be of
the same formula as in V+. Therefore, the representations of η in the U± are

η = −
4

(x2 + y2 + 1)2
dx ∧ dy. (1)

Step 2. n ≥ 2
The idea is as follows. We will define a 2-form ω in R

2n and then pull it back
to a 2-form in each Uk via the coordinate chart φ : Uk → R

2n. Then we get (n+1)
different 2-forms in U0, U1, . . . , Un. To say that these are just the restrictions of a
single 2-form in CP

n, we have to make sure that they are consistent on the overlaps.
Thus ω is supposed to be invariant under the transition maps φk ◦ φ

−1
j . With this

constraint in mind, we will define ω in R
2n = {(x1, y1, . . . , xn, yn)|xj, yj ∈ R} which

is symmetric in sense that (xj, yj) and (xk, yk) can commute without changing ω.
Then we say it suffices to check that ω is invariant under φ = φ1 ◦ φ

−1
0 . Put

S = 1 + x21 + y21 + ..+ x2n + y2n

We claim that

ω =
1

S2

{
n∑

j=1

(S − x2j − y2j )dxj ∧ dyj +
∑

1≤j<l≤n

[(xlyj − xjyl)dxl ∧ dxj−

− (xjxl + yjyl)dxj ∧ dyl − (xjxl + yjyl)dxl ∧ dyj + (xlyj − xjyl)dyl ∧ dyj ] }

(2)

is such a 2-form. Put U = {(w1, .., wn) ∈ C
n : w1 6= 0}. Then φ0(U0 ∩ U1) =

φ1(U0 ∩ U1) = U . Then φ : U → U and

φ(w1, w2, . . . , wn) =

(
1

w1

,
w2

w1

, ..
wn

w1

)
,

where wk = xk + iyk. If we write φ(w1, . . . , wn) = (w′
1, . . . , w

′
n) then

x′1 =
x1

x12 + y21
, y′1 =

−y1
x12 + y21

,

x′j =
xjx1 + yjy1
x12 + y21

, y′j =
yjx1 − xjy1
x12 + y21

∀2 ≤ j ≤ n

The pullback of ω in U by φ is thus

φ∗ω =
1

S ′2

{
n∑

j=1

(S ′ − x′j
2
− y′j

2
)dx′j ∧ dy

′
j +

∑

1≤j<l≤n

[
(x′ly

′
j − x′jy

′
l)dx

′
l ∧ dx

′
j−

− (x′jx
′
l + y′jy

′
l)dx

′
j ∧ dy

′
l − (x′jx

′
l + y′jy

′
l)dx

′
l ∧ dy

′
j + (x′ly

′
j − x′jy

′
l)dy

′
l ∧ dy

′
j ] }

(3)

where S ′ = 1 + x′1
2 + y′1

2 + . . .+ x′n
2 + y′n

2. We are going to show that φ∗ω = ω.
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Technically, we can use the chain rule to express dx′j, dy
′
l in terms of dxk, dys

and then use the antisymmetry property of exterior product to simplify the big
expression. However, actual work shows that the calculation is too much and that
the corresponding components of φ∗ω and ω are equal is not easy to prove (since
their formulae are too long!) Instead, we will use a casual manipulation as follows.
With the identification of R2n and C

n mentioned above, we define the notations

dwk = dxk + idyk, dw̄k = dxk − idyk.

We then assume that all laws of exterior derivatives (bilinearity, antisymmetry and
the chain rule) work for this notation. For example, we allow ourselves to write

dwk ∧ dw̄l = (dxk + idyk) ∧ (dxl − idyl)

= (dxk ∧ dxl) + i(dyk ∧ dxl)− i(dxk ∧ dyl) + (dyk ∧ dyl)

This looks like we are pulling back a ”differential form” in C
n to the one in R

2n.
Then Eq. (2) can be written as

−2iω =
n∑

j=1

S − |wj|
2

S2
dwj ∧ dw̄j −

∑

1≤l 6=j≤n

wjw̄l

S2
dwl ∧ dw̄j (4)

The pullback version of Eq. (4) is

− 2iφ∗ω =
n∑

j=1

S ′ − |w′
j|
2

S ′2
dw′

j ∧ dw̄
′
j −

∑

1≤l 6=j≤n

w′
jw̄

′
l

S ′2
dw′

l ∧ dw̄
′
j (5)

= A+B − C −D − E, (6)

where

A =
S ′ − |w′

1|
2

S ′2
dw′

1 ∧ dw̄
′
1, B =

n∑

j=2

S ′ − |w′
j|
2

S ′2
dw′

j ∧ dw̄
′
j

C =
n∑

l=2

w′
1w̄

′
l

S ′2
dw′

l ∧ dw̄
′
1, D =

n∑

j=2

w′
jw̄

′
1

S ′2
dw′

1 ∧ dw̄
′
j, E =

∑

2≤l 6=j≤n

w′
jw̄

′
l

S ′2
dw′

l ∧ dw̄
′
j

We have

S ′ = 1 + |w′
1|

2 + ..+ |w′
n|

2 =
S

|w1|2
, dw′

1 = −
1

w2
1

dw1, dw̄′
1 = −

1

w̄2
1

dw̄1,

dw′
r = d

(
wr

w1

)
=

1

w1

dwr −
wr

w2
1

dw1, ∀2 ≤ r ≤ n

dw̄′
r = d

(
w̄r

w̄1

)
=

1

w̄1

dw̄r −
w̄r

w̄2
1

dw̄1, ∀2 ≤ r ≤ n

Using these identities, we obtain A,B,C,D,E in terms of wj, w̄l as follows.

A =
1

|w1|2
S − 1

S2
dw1 ∧ dw̄1,
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B =
n∑

j=2

S − |wj|
2

S2

(
dwj ∧ dw̄j −

wj

w1

dw1 ∧ dw̄j −
w̄j

w̄1

dwj ∧ dw̄1 +
|wj|

2

|w1|2
dw1 ∧ dw̄1

)
,

C =
n∑

l=2

1

S2

(
−
w̄l

w̄1

dwl ∧ dw̄1 +
|wl|

2

|w1|2
dw1 ∧ dw̄1

)
,

D =
n∑

j=2

1

S2

(
−
wj

w1

dw1 ∧ dw̄j +
|wj|

2

|w1|2
dw1 ∧ dw̄1

)
,

E =
∑

2≤l 6=j≤n

1

S2

(
wjw̄ldwl ∧ dw̄j −

|wl|
2wj

|w1|2
dw1 ∧ dw̄j −

|wj|
2w̄l

w̄1

dwl ∧ dw̄1 +
|wj|

2|wl|
2

|w1|2
dw1 ∧ dw̄1

)

Now we check that A+B−C−D−E equals RHS(4) by comparing the coefficients
of dwk ∧ dw̄s.

Coefficients of dw1 ∧ dw̄1.
That of RHS(4) is

S − |w1|
2

S2

That of A+B − C −D − E is

1

|w1|2
S − 1

S2

︸ ︷︷ ︸
from A

+
n∑

j=2

S − |wj|
2

S2

|wj|
2

|w1|2

︸ ︷︷ ︸
from B

−

n∑

l=2

1

S2

|wl|
2

|w1|2

︸ ︷︷ ︸
from C

−

n∑

j=2

1

S2

|wj|
2

|w1|2

︸ ︷︷ ︸
from D

−
∑

2≤l 6=j≤n

|wl|
2|wj|

2

S2|w1|2

︸ ︷︷ ︸
from E

=
1

|w1|2S2

(
S − 1 +

n∑

j=2

(
S − |wj|

2
)
|wj|

2 − 2
n∑

j=2

|wj|
2 −

∑

2≤l 6=j≤n

|wl|
2|wj|

2

)

=
1

|w1|2S2


S + S(S − |w1|

2 − 1)−

(
1 +

n∑

j=2

|wj|
2

)2



=
S − |w1|

2

S2

Thus the coefficients are equal.
Coefficients of dw1 ∧ dw̄j where j ≥ 2.

That of RHS(4) is

−
wjw̄1

S2

That of A+B − C −D − E is

S − |wj|
2

S2

(
−
wj

w1

)

︸ ︷︷ ︸
from B

−

(
−

1

S2

wj

w1

)

︸ ︷︷ ︸
from D

−


−

n∑

l=2
l 6=j

|wl|
2wj

S2w1




︸ ︷︷ ︸
from E

5



=
wj

S2w1


|wj|

2 − S + 1 +
n∑

l=2
l 6=j

|wl|
2


 =

wj

S2w1

(
−S + 1 +

n∑

l=2

|wl|
2

)

=
−wj|w1|

2

S2w1

= −
wjw̄1

S2

Thus the coefficients are equal.
Coefficients of dwl ∧ dw̄1 where l ≥ 2.

That of RHS(4) is

−
w1w̄l

S2

That of A+B − C −D − E is

S − |wl|
2

S2

(
−
w̄l

w̄1

)

︸ ︷︷ ︸
from B

−

(
−

1

S2

w̄l

w̄1

)

︸ ︷︷ ︸
from C

−


−

n∑

l=2
l 6=j

|wl|
2wj

S2w̄1




︸ ︷︷ ︸
from E

=
w̄l

S2w̄1


|wl|

2 − S + 1 +
n∑

j=2
j 6=l

|wj|
2


 =

w̄l

S2w̄1

(
−S + 1 +

n∑

j=2

|wj|
2

)

=
−w̄l|w1|

2

S2w̄1

= −
w̄lw1

S2

Thus the coefficients are equal.
Coefficients of dwj ∧ dw̄j where j ≥ 2.

That of RHS(4) is
S−|wj |

2

S2 . That of A+B−C −D−E is
S−|wj |

2

S2 (from B). Thus
the coefficients are equal.

Coefficients of dwl ∧ dw̄j where j, l ≥ 2 and j 6= l.

That of RHS(4) is −
wjw̄l

S2 . That of A+B − C −D −E is −
wjw̄l

S2 (from E). Thus
the coefficients are equal.

Therefore we have proved that A+ B − C −D − E = RHS(4), i.e. φ∗ω = ω.
This means ω is invariant under the transition map φ1 ◦ φ

−1
0 . Since the formula

of ω at Eq. (2) is symmetric, ω is also invariant under any other transition map
φk ◦ φ

−1
j . Therefore, the pullbacks of ω to U0, U1, . . . , Un give rise to a differential

2-form on CP
n. We will still denote it by ω.

Next we will show that ω is closed. Again, we could compute dω by Eq. (2),
but the expression would be very complicated. Instead, we will compute dω by
Eq. (4). First we can separate the difference in the first sum of RHS(4) to get

−2iω =
1

S

n∑

j=1

dwj ∧ dw̄j −
∑

j,l

wjw̄l

S2
dwl ∧ dw̄j (7)
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Now take the d both sides.

−2idω = −
1

S2

n∑

j=1

dS ∧ dwj ∧ dw̄j+
2

S3

∑

j,l

wjw̄ldwl ∧ dw̄j−
∑

j,l

wjdw̄l + w̄ldwj

S2
dwl ∧ dw̄j

(8)
We know that

dS = d

(
1 +

n∑

k=1

wkw̄k

)
=

n∑

k=1

(wkdw̄k + w̄kdwk)

Then Eq. (8) becomes

−2idω = −
1

S2

∑

j,k

(wkdw̄k + w̄kdwk) ∧ dwj ∧ dw̄j

︸ ︷︷ ︸
A

+
2

S3

∑

j,l.k

(wjw̄lwkdw̄k ∧ dwl ∧ dw̄j + wjw̄lw̄kdwk ∧ dwl ∧ dw̄j)

︸ ︷︷ ︸
B

−
1

S2

∑

j,l

(wjdw̄l ∧ dwl ∧ dw̄j + w̄ldwj ∧ dwl ∧ dw̄j)

︸ ︷︷ ︸
C

We have

A =
∑

j,k

wkdw̄k ∧ dwj ∧ dw̄j +
∑

j,k

w̄kdwk ∧ dwj ∧ dw̄j

Renaming the indices (j, k) in the first sum by (l, j), and renaming the indices
(j, k) in the second sum by (j, l), we get A = −C. Also,

B =
∑

j,l,k

wjw̄lwkdw̄k ∧ dwl ∧ dw̄j +
∑

j,l,k

wjw̄lw̄kdwk ∧ dwl ∧ dw̄j

The first sum is zero because when we interchange the indices (k, j), the sign of
the sum switches due to antisymmetry of wedge product. The second sum is also
zero because when we interchange the indices (k, l), the sign of the sum switches.
Thus B = 0. Therefore,

−2idω = −
1

S2
A+

2

S3
B −

1

S2
C = 0

Thus dω = 0, and ω is a closed form.
Next we will show that ω is not exact. To do so, we need to show that the

integral of ω over some 2-cycle is nonzero. Recall that CP
1 can be viewed as a

submanifold of CPn by the inclusion map

i : CP1 → CP
n, [z0 : z1] 7→ [z0 : z1 : 0 : . . . : 0]
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Thus i(CP1) is a 2-cycle in CP
n and is contained in U0 ∪ U1. We will show that

the integral of ω over i(CP1) is nonzero. On U0 ∪ U1, we can define a projection
map

proj : U0 ∪ U1 → CP
1, [z0 : z1 : . . . : zn] 7→ [z0 : z1]

We have proj ◦ i = idCP1 . Recall that we have a 2-form in CP
1 given by Eq. (1).

It can be written in the following form

−
η

4
=

1

(x2 + y2 + 1)2
dx ∧ dy.

We will show that ω|i(CP1) is the pullback of −η/4 by proj. The coordinates

in U0 are (w1, .., wn) = (z1/z0, z2/z0, . . . , zn/z0). In U0 ∩ i(CP1), (w1, .., wn) =
(z1/z0, 0, . . . , 0). Therefore, only the coordinates x1 and y1 in the formula of ω
given by Eq. (2) can be nonzero. Thus,

ω|U0∩i(CP
1) =

1

(x21 + y21 + 1)2
dx1 ∧ dy1

Similarly, the coordinates in U1 are (w1, .., wn) = (z0/z1, z2/z1, . . . , zn/z1). In
U1∩ i(CP

1), (w1, .., wn) = (z1/z0, 0, . . . , 0). Therefore, only the coordinates x1 and
y1 in the formula of ω given by Eq. (2) can be nonzero. Thus,

ω|U1∩i(CP
1) =

1

(x21 + y21 + 1)2
dx1 ∧ dy1

This means ω|i(CP1) is the pullback of −η/4 by proj. Then

∫

i(CP1)

ω =

∫

CP
1

−
η

4
= −

1

4

∫

CP
1

η = π 6= 0

Therefore, ω is a 2-form in CP
n that we were looking for.

Case for the Grassmannian. We remind the definition of the complex
Grassmannian

GrC(2, 4) := {< u, v >: u, v ∈ C
4, linearly independent}

Also we define

∧2(C4) := {set of alternating 2-tensors onC4}

Now ∧2(C4) is a vector space over C of dimension 6. If we choose a canonical base
{e1, e2, e3, e4} of C, then ∧2(C4) =< e1∧ e2, e1∧ e3, e1∧ e4, e2∧ e3, e2∧ e4, e3∧ e4 >
and this can be identified with C

6 where this ordered base maps to the canonical
{(1, 0, 0, 0, 0, 0), · · · , (0, 0, 0, 0, 0, 1)}
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We will exhibit a smooth embedding

GrC(2, 4) −→ ∧2(C4) = C
6 −→ CP

5

< v1, v2 > −→< v1 ∧ v2 > =
∑

1≤i<j≤4

(vi1v
j
2 − vj1v

i
2)ei ∧ ej −→ [v11v

2
2 − v21v

1
2 : · · · : v31v

4
2 − v41v

3
2]

The function is well defined: If < λ1v1 + λ2v2, µ1v1 + µ2v2 >=< v1, v2 > then
< (λ1v1 + λ2v2) ∧ (µ1v1 + µ2v2) >=< (λ2µ2 − λ2µ1)v1 ∧ v2 > which is the same
(complex) subspace of C6 since (λ1µ2−λ2µ1) 6= 0 and thus defines the same point
in CP

5. It is obviously smooth and it is easy to see that it is an embedding since
the subspace < v1, v2 > is exactly the set of vectors w such that w ∧ (v1 ∧ v2) = 0

It is well known that this embedding of GrC(2, 4) can be given as the zero set
of the following polynomial in CP

5.

GrC(2, 4) ≡ {[z0 : z1 : z2 : z3 : z4 : z5] ∈ CP
5 | z1z4 − z0z5 − z2z3 = 0}

where z0 corresponds to e1 ∧ e2 etc. We notice here that although the polynomial
is defined in C

6 its zero set makes sense (is well defined) in CP
5 because it is

homogeneous.
Now CP

1 is also embedded in CP
5 in an obvious way, that is, projection to the

first two homogeneous coordinates. If we express this CP
1 as the zero set of the

system of the following (again homogeneous) equations.

CP
1 = {[z0 : z1 : z2 : z3 : z4 : z5] ∈ CP

5 | z2 = z3 = z4 = z5 = 0}

we observe that z2 = z3 = z4 = z5 = 0 implies z1z4 − z0z5 − z2z3 = 0 which
means that this way CP

1 is embedded in CP
5 as a subset (actually submanifold)

of GrC(2, 4).

We consider the inclusions CP
1 j
−֒→ GrC(2, 4) and the inclusion GrC(2, 4)

i
−֒→

CP
5 and their composition i ◦ j = λ. It is important that λ is actually the

projection on the first two variables which is exactly the inclusion that we used in
the first part of the problem.

The next part of the proof proceeds as follows. We have a 2−form ω on
CP

5. The pullback i∗ω is a 2−form on GrC(2, 4). We claim i∗ω is a generator of
H2

dR(GrC(2, 4)) (given that H2
dR(GrC(2, 4)) = R).

Indeed, since ω is closed dω = 0 ⇒ i∗(dω) = 0 ⇒ d(i∗ω) = 0 ⇒ i∗ω is a closed
2−form on GrC(2, 4). It is only left to show that i∗ω is not exact.

Since CP1 is a 2−cycle in GrC(2, 4) it is enough to show that
∫
CP1 i

∗ω 6= 0 where
the inclusion of CP1 is given by j. By the very definition of integrating a k−form
defined on a greater-dimension manifoldM over an immersed k−dimensional sub-
manifold we have ∫

CP1

ω =

∫

CP1

λ∗ω (9)

and ∫

CP1

i∗ω =

∫

CP1

(j∗ ◦ i∗)ω (10)
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We know though that j∗ ◦ i∗ = (i ◦ j)∗ = λ∗, so from Eq. (9) and Eq. (10) we get
∫

CP1

i∗ω =

∫

CP1

ω 6= 0 by the first part of the problem.

Finally, we will describe how one can give an explicit expression for i∗ω. Strictly
speaking we need only describe i in local coordinates but we will do a bit more.
The fact that we have expressed GrC(2, 4) as a submanifold of CP5 is very useful
here because we can consider local coordinates induced by the ambient space as
opposed to the classical ones.

CP
5 has 6 coordinate charts {(Uj, φj) : j = 0, · · · , 5}. Then {Uj∩GrC(2, 4)}j=0,··· ,5

is an open cover of GrC(2, 4). These will give us coordinate charts on GrC(2, 4).
In U0 the local coordinates of CP5 are

w1 =
z1
z0
, w2 =

z2
z0
, · · · , w5 =

z5
z0

In U0 ∩ GrC(2, 4) the extra relation z1z4 − z0z5 − z2z3 = 0 holds. This in local
coordinates means (divide by z20).

w1w4 − w5 − w2w3 = 0 ⇐⇒ w5 = w1w4 − w2w3

Then we have the diffeomorphism

ψ : C4 → U0 ∩GrC

(u1, · · · , u4) → (w1, · · · , w5)

where (w1, w2, w3, w4) = (u1, u2, u3, u4) and w5 = u1u4−u2u3. This diffeomorphism
actually describes the inclusion j of the grassmannian in the complex projective
space in local coordinates for GrC(2, 4) induced by the ambient local coordinates
of CP5. The inclusion map is similarly described in the other 5 charts. We will
moreover describe the pullback i∗ω on U0 ∩GrC(2, 4).

By the first part of the problem, we have a 2-form on CP
5 given in Eq. (7).

ω =
−1

2i

[
1

S

5∑

j=1

dwj ∧ dw̄j −
∑

1≤j,l≤5

wjw̄l

S2
dwl ∧ dw̄j

]

Now i∗ω in U0 ∩GrC(2, 4) will be given by

i∗ω =
−1

2i

[ 1
S

4∑

j=1

duj ∧ dūj +
(u4du1 + u1du4 − u3du2 − u2du3) ∧ (ū4dū1 + ū1dū4 − ū3dū2 − ū2dū3)

S

−
∑

1≤j,l≤4

ujūl
S2

dul ∧ dūj −
∑

1≤j≤4

uj(ū1ū4 − ū2ū3)

S2
(u4du1 + u1du4 − u3du2 − u2du3) ∧ dūj

−
∑

1≤l≤4

(uiu4 − u2u3)ūl
S2

dul ∧ (ū4dū1 + ū1dū4 − ū3dū2 − ū2dū3)

−
|u1u4 − u2u3|

2

S2
(u4du1 + u1du4 − u3du2 − u2du3) ∧ (ū4dū1 + ū1dū4 − ū3dū2 − ū2dū3)

]

Note that S = 1+|w1|
2+. . .+|w5|

2 = 1+|u1|
2+|u2|

2+|u3|
2+|u4|

2+|u1u4−u2u3|
2.
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