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Differential equations are everywhere!

y ′ = ay + b



• Population growth
• Mixing
• Radioactive decay
• Compound interest
• Newton’s law of cooling
• . . .

y ′ = ay2 + by + c


• Population growth
• Chemical reaction
• Falling object
• Learning curve
• . . .
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Differential equations are everywhere!

Diffusion equation:
ut − auxx = f (x , t)

Wave equation:
utt − auxx = f (x , t)

Minimal surface:

(1 + u2
x )uyy − 2uxuyuxy + (1 + u2

y )uxx = 0

Navier-Stokes equations:

ut −∆u + u∇u +∇p = 0, div u = 0
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Methods to solve a differential equation

Integrating factor

Separation of variables

Power series

Laplace transform

Iteration method

Discretization methods (finite difference/volume/element methods)

. . .

Stochastic cascade method

History: Feynman, Kac, Itô (1940s, 1950s), McKean (1970s), Le Jan,
Sznitman (1990s)
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Some probability background

Random variable: X ∈ R

Figure 1: Samplings of X

Expected value: E[X ] =
∫∞
−∞ xp(x)dx
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Some probability background

Random variable: X ∈ R

Figure 2: Probability density function p(x) of X

Expected value: E[X ] =
∫∞
−∞ xp(x)dx
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Some probability background

Waiting time (with intensity λ): T ∼ Exp(λ)

p(x) =

{
λe−λx if x > 0

0 if x ≤ 0

E[T ] = 1/λ
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Equation y ′ + y = f , y(0) = y0

y ′ + y = f , y(0) = y0

Solution (integrating factor method):

y(t) = e−ty0 +

∫ t

0
e−s f (t − s)ds

Equivalently, y(t) = E[X (t)] where

X (t) =

{
y0 if T ≥ t,

f (t − T ) if T < t

and T ∼ Exp(1).
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Monte Carlo simulation

y ′ + y = t, y(0) = 1

Exact solution: y(t) = t − 1 + 2e−t

Stochastic cascade method: y(t) = E[X (t)]

X (t) =

{
1 if T ≥ t,

t − T if T < t
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Logistic equation y ′ + y = y 2, y(0) = y0

y ′ + y = y2, y(0) = y0

Using integrating factor, we get

y(t) = e−ty0 +

∫ t

0
e−sy2(t − s)ds

Equivalently, y(t) = E[X (t)] where

X (t) =

{
y0 if T ≥ t,

X (1)(t − T )X (2)(t − T ) if T < t.

X (1) and X (2) are independent copies of X .
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Logistic equation y ′ + y = y 2, y(0) = y0

In this event, X (t) = y3
0 . In general, X (t) = y

N(t)
0 .

Observations:

If −1 ≤ y0 ≤ 1, global solution

If y0 > 1, solution might blow up after finite time

Compare with explicit solution: y(t) =
y0

y0 − (y0 − 1)et
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α-Riccati equation (Athreya 1985, Dascaliuc et al. 2018)

y ′ + y = y2(αt), y(0) = y0

Power series: y = a0 + a1t
2 + a2t

2 + a3t
3 + . . .

a0 = y0

a0 + a1 = a2
0

a1 + 2a2 = 2a0a1α
a2 + 3a3 = a2

1α
2 + 2a0a2

. . .

Is this power-series solution the only solution? Are there other solutions?
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α-Riccati equation, evidence of nonuniqueness

y ′ + y = y2(αt), y(0) = 1

Integral form: y(t) = e−t +

∫ t

0
et−sy2(αs)ds

Iteration: Yn(t) = e−t +

∫ t

0
et−sY 2

n−1(αs)ds, Y0(t) = 0
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α-Riccati equation, stochastic cascade method

y ′ + y = y2(αt), y(0) = y0

0 < α ≤ 1: non-explosion

α > 1: explosion  nonuniqueness of solutions
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α-Riccati equation, Monte Carlo simulation

y(t) = E[X (t)]
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Other equations

Reaction-diffusion equation:

ut − auxx = b(x)u

KPP-Fisher equation (1930s):

ut −
1

2
uxx = u2 − u, u(x , 0) = u0(x)

Navier-Stokes equations:

ut − ν∆u + u∇u +∇p = 0, div u = 0

Euler equation:

ut + u∇u +∇p = 0, div u = 0
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Navier-Stokes equations


ut −∆u + u∇u +∇p = 0 in R3 × (0,∞),

div u = 0 in R3 × (0,∞),
u(·, 0) = u0 in R3.

In Fourier domain:

û(ξ, t) = e−|ξ|
2t û0(ξ)+c

∫ t

0
e−|ξ|

2s |ξ|
∫
R3

û(η, t − s)�ξû(ξ − η, t − s)dηds
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Normalized Navier-Stokes equations

Normalization (LeJan-Sznitman 1997): v = cû/h

v(ξ, t) = e−t|ξ|
2
v0(ξ) +

∫ t

0
e−s|ξ|

2 |ξ|2
∫
R3

v(η, t − s)�ξ v(ξ − η, t − s)H(η|ξ)dηds

where H(η|ξ) = h(η)h(ξ−η)
|ξ|h(ξ) and h ∗ h = |ξ|h.

v(ξ, t) = E[X (ξ, t)] where

X (ξ, t) =

{
v0(ξ) if T0 ≥ t,

X (1)(W1, t − T0)�ξX
(2)(W2, t − T0) if T0 < t.

W1 ∼ H(·|ξ) and W2 = ξ −W1 ∼ H(·|ξ).
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Stochastic cascade

Bessel kernel h(ξ) = c e−|ξ|

|ξ|  non-explosion

Self-similar kernel h(ξ) = c |ξ|−2  explosion

Dascaliuc, Pham, Thomann, Waymire (2021)
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Non-explosion of Bessel cascade - Analytic approach

h(ξ) = c
e−|ξ|

|ξ|
Sketched proof: w(ξ, t) = Pξ(all paths cross horizon t) solves

w(ξ, t) = e−t|ξ|
2

+

∫ t

0
e−s|ξ|

2 |ξ|2
∫
R3

w(η, t − s)w(ξ − η, t − s)H(η|ξ)dηds

We show that w ≡ 1 is a unique solution. Note that w = cû/h solves

(MS): ut −∆u =
√
−∆(u2), u0(x) =

2

|x |2 + 1

u = e∆tu0 +

∫ t

0

√
−∆e∆(t−s)u2(s)ds

Kernel G (t) satisfies ‖G (t)‖Lq . t
3

2q
−2 for all q ∈ [1,∞].

By fixed-point argument, (MS) has a unique solution u(x , t) = u0(x).
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Non-explosion of Bessel cascade - Applications

(MS)a: ut −∆u =
√
−∆(u2), u0(x) =

2a

|x |2 + 1

Dascaliuc, Pham, Thomann (2021):

a > 1: finite-time blowup solution

−1 ≤ a ≤ 1: global solution

−1 < a < 1: solution exponentially decays in time

Under certain assumption, NSE has a minimal blowup initial data
(Rusin-Sverak 2011, Jia-Sverak 2013, Gallagher et al 2016, Pham
2018,. . . ), but MS doesn’t have minimal blowup data.
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Explosion of self-similar cascade, nonuniqueness

h(ξ) = c |ξ|−2

Dascaliuc, Pham, Thomann, Waymire (2021):

(MS): ut −∆u =
√
−∆(u2), u0(x) =

2

π

1

|x |

has at least two solutions: u1 = u0(x) and u2 = cF−1{|ξ|−2Pξ(S > t)}.
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Proposed research

1 Monte Carlo simulation

solution in Fourier domain,
suitable to study energy cascade,
can apply to various differential equations,
very costly,
Decoupling Principle can be used to reduce the cost,
explosion issue.

2 Stochastic cascade and mean-field models for turbulence

make precise the notion of averaging commonly used in empirical
theories of energy cascade (Kolmogorov 5/3, Large Eddy
Simulation,. . . )
depletion of nonlinearity (�-product) needs to be better understood,
Mean-field models that preserve the energy (dyadic shell model,
Burgers equation) are good starting points.
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