Stochastic cascade method for differential equations

Tuan Pham

Brigham Young University

February 28, 2022

Tuan Pham (Brigham Young University)

Differential equations are everywhere!

- $y' = ay + b \begin{cases} \bullet \text{ Population growth} \\ \bullet \text{ Mixing} \\ \bullet \text{ Radioactive decay} \\ \bullet \text{ Compound interest} \\ \bullet \text{ Newton's law of cooling} \\ \bullet \text{ use} \end{cases}$

$$y' = ay^2 + by + c$$

$$\begin{cases}
\bullet \text{ Population growth} \\
\bullet \text{ Chemical reaction} \\
\bullet \text{ Falling object} \\
\bullet \text{ Learning curve} \\
\bullet \dots \end{aligned}$$

Diffusion equation:

$$u_t - au_{xx} = f(x, t)$$

Wave equation:

$$u_{tt} - au_{xx} = f(x, t)$$

Minimal surface:

$$(1 + u_x^2)u_{yy} - 2u_xu_yu_{xy} + (1 + u_y^2)u_{xx} = 0$$

Navier-Stokes equations:

$$u_t - \Delta u + u \nabla u + \nabla p = 0$$
, div $u = 0$

- Integrating factor
- Separation of variables
- Power series
- Laplace transform
- Iteration method
- Discretization methods (finite difference/volume/element methods)

• . . .

- Integrating factor
- Separation of variables
- Power series
- Laplace transform
- Iteration method
- Discretization methods (finite difference/volume/element methods)

• . . .

• Stochastic cascade method

History: Feynman, Kac, Itô (1940s, 1950s), McKean (1970s), Le Jan, Sznitman (1990s)

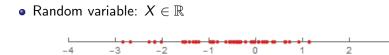


Figure 1: Samplings of X

• Expected value: $\mathbb{E}[X] = \int_{-\infty}^{\infty} xp(x) dx$

3

• Random variable: $X \in \mathbb{R}$

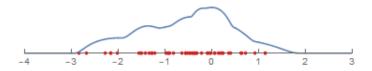
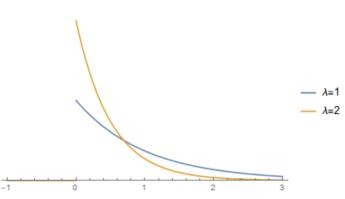


Figure 2: Probability density function p(x) of X

• Expected value: $\mathbb{E}[X] = \int_{-\infty}^{\infty} xp(x)dx$

Some probability background

Waiting time (with intensity λ): $T \sim Exp(\lambda)$



$$y' + y = f$$
, $y(0) = y_0$

Solution (integrating factor method):

$$y(t) = e^{-t}y_0 + \int_0^t e^{-s}f(t-s)ds$$

Equivalently, $y(t) = \mathbb{E}[X(t)]$ where

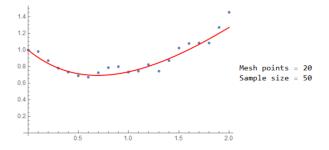
$$X(t) = \left\{egin{array}{cc} y_0 & ext{if} & T \geq t, \ f(t-T) & ext{if} & T < t \end{array}
ight.$$

and $T \sim \text{Exp}(1)$.

Monte Carlo simulation

y' + y = t, y(0) = 1Exact solution: $y(t) = t - 1 + 2e^{-t}$ Stochastic cascade method: $y(t) = \mathbb{E}[X(t)]$

$$X(t) = \left\{egin{array}{ccc} 1 & ext{if} & T \geq t, \ t-T & ext{if} & T < t \end{array}
ight.$$



$$y' + y = y^2$$
, $y(0) = y_0$

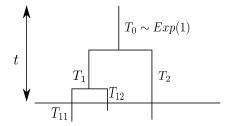
Using integrating factor, we get

$$y(t) = e^{-t}y_0 + \int_0^t e^{-s}y^2(t-s)ds$$

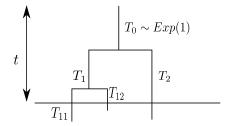
Equivalently, $y(t) = \mathbb{E}[X(t)]$ where

$$X(t) = \left\{ egin{array}{ccc} y_0 & {
m if} & T \geq t, \ X^{(1)}(t-T) X^{(2)}(t-T) & {
m if} & T < t. \end{array}
ight.$$

 $X^{(1)}$ and $X^{(2)}$ are independent copies of X.



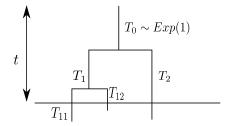
In this event, $X(t) = y_0^3$. In general, $X(t) = y_0^{N(t)}$.



In this event, $X(t) = y_0^3$. In general, $X(t) = y_0^{N(t)}$.

Observations:

- If $-1 \le y_0 \le 1$, global solution
- If $y_0 > 1$, solution might blow up after finite time



In this event, $X(t) = y_0^3$. In general, $X(t) = y_0^{N(t)}$.

Observations:

• If $-1 \le y_0 \le 1$, global solution

• If $y_0 > 1$, solution might blow up after finite time Compare with explicit solution: $y(t) = \frac{y_0}{y_0 - (y_0 - 1)e^t}$

α -Riccati equation (Athreya 1985, Dascaliuc et al. 2018)

$$y' + y = y^2(\alpha t), y(0) = y_0$$

α -Riccati equation (Athreya 1985, Dascaliuc et al. 2018)

$$y' + y = y^2(\alpha t), \ y(0) = y_0$$

Power series: $y = a_0 + a_1t^2 + a_2t^2 + a_3t^3 + \dots$

$$\begin{cases} a_0 = y_0 \\ a_0 + a_1 = a_0^2 \\ a_1 + 2a_2 = 2a_0a_1\alpha \\ a_2 + 3a_3 = a_1^2\alpha^2 + 2a_0a_2 \\ \dots \end{cases}$$

α -Riccati equation (Athreya 1985, Dascaliuc et al. 2018)

$$y' + y = y^2(\alpha t), y(0) = y_0$$

Power series: $y = a_0 + a_1t^2 + a_2t^2 + a_3t^3 + \dots$

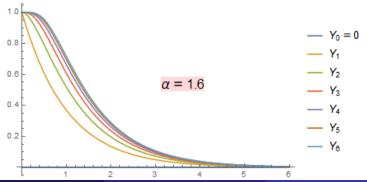
$$\begin{cases} a_0 = y_0 \\ a_0 + a_1 = a_0^2 \\ a_1 + 2a_2 = 2a_0a_1\alpha \\ a_2 + 3a_3 = a_1^2\alpha^2 + 2a_0a_2 \\ \dots \end{cases}$$

Is this power-series solution the only solution? Are there other solutions?

α -Riccati equation, evidence of nonuniqueness

$$y' + y = y^{2}(\alpha t), \quad y(0) = 1$$

Integral form: $y(t) = e^{-t} + \int_{0}^{t} e^{t-s} y^{2}(\alpha s) ds$
Iteration: $Y_{n}(t) = e^{-t} + \int_{0}^{t} e^{t-s} Y_{n-1}^{2}(\alpha s) ds, \quad Y_{0}(t) = 0$



α -Riccati equation, stochastic cascade method

$$y' + y = y^{2}(\alpha t), \ y(0) = y_{0}$$

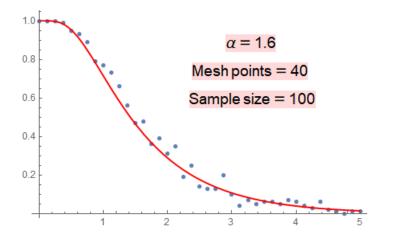
$$T_{1} \qquad T_{2} \sim \operatorname{Exp}(\alpha)$$

$$T_{11} \qquad T_{12} \qquad T_{21} \qquad T_{22} \sim \operatorname{Exp}(\alpha^{2})$$

- $0 < \alpha \leq 1$: non-explosion
- $\alpha > 1$: explosion \rightsquigarrow nonuniqueness of solutions

α -Riccati equation, Monte Carlo simulation

 $y(t) = \mathbb{E}[X(t)]$



Other equations

• Reaction-diffusion equation:

$$u_t - au_{xx} = b(x)u$$

• KPP-Fisher equation (1930s):

$$u_t - \frac{1}{2}u_{xx} = u^2 - u, \ u(x,0) = u_0(x)$$

• Navier-Stokes equations:

$$u_t - \nu \Delta u + u \nabla u + \nabla p = 0$$
, div $u = 0$

• Euler equation:

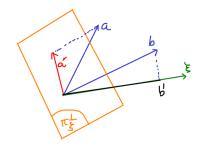
$$u_t + u \nabla u + \nabla p = 0$$
, div $u = 0$

Navier-Stokes equations

$$\left\{\begin{array}{rll} u_t - \Delta u + u \nabla u + \nabla p = 0 & \text{ in } \mathbb{R}^3 \times (0, \infty), \\ & \text{ div } u = 0 & \text{ in } \mathbb{R}^3 \times (0, \infty), \\ & u(\cdot, 0) = u_0 & \text{ in } \mathbb{R}^3. \end{array}\right.$$

In Fourier domain:

$$\hat{u}(\xi,t)=e^{-|\xi|^2t}\hat{u}_0(\xi)+c\int_0^t e^{-|\xi|^2s}|\xi|\int_{\mathbb{R}^3}\hat{u}(\eta,t-s)\odot_\xi\hat{u}(\xi-\eta,t-s)d\eta ds$$



a0, b = -iba

Normalization (LeJan-Sznitman 1997): $v = c\hat{u}/h$

$$v(\xi,t) = e^{-t|\xi|^2} v_0(\xi) + \int_0^t e^{-s|\xi|^2} |\xi|^2 \int_{\mathbb{R}^3} v(\eta,t-s) \odot_{\xi} v(\xi-\eta,t-s) H(\eta|\xi) d\eta ds$$

where $H(\eta|\xi) = \frac{h(\eta)h(\xi-\eta)}{|\xi|h(\xi)|}$ and $h * h = |\xi|h$.

Normalization (LeJan-Sznitman 1997): $v = c\hat{u}/h$

$$v(\xi,t) = e^{-t|\xi|^2} v_0(\xi) + \int_0^t e^{-s|\xi|^2} |\xi|^2 \int_{\mathbb{R}^3} v(\eta,t-s) \odot_{\xi} v(\xi-\eta,t-s) H(\eta|\xi) d\eta ds$$

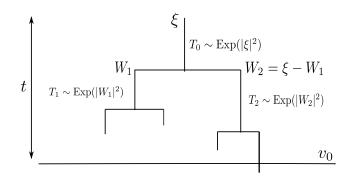
where
$$H(\eta|\xi) = \frac{h(\eta)h(\xi-\eta)}{|\xi|h(\xi)}$$
 and $h * h = |\xi|h$.

 $v(\xi, t) = \mathbb{E}[X(\xi, t)]$ where

$$X(\xi,t) = \begin{cases} v_0(\xi) & \text{if } T_0 \ge t, \\ X^{(1)}(W_1,t-T_0) \odot_{\xi} X^{(2)}(W_2,t-T_0) & \text{if } T_0 < t. \end{cases}$$

 $W_1 \sim H(\cdot|\xi)$ and $W_2 = \xi - W_1 \sim H(\cdot|\xi)$.

Stochastic cascade



- Bessel kernel $h(\xi) = c \frac{e^{-|\xi|}}{|\xi|} \rightsquigarrow$ non-explosion
- Self-similar kernel $h(\xi) = c |\xi|^{-2} \rightsquigarrow$ explosion

Dascaliuc, Pham, Thomann, Waymire (2021)

Non-explosion of Bessel cascade - Analytic approach

$$h(\xi) = c \frac{e^{-|\xi|}}{|\xi|}$$

Sketched proof: $w(\xi, t) = \mathbb{P}_{\xi}(\text{all paths cross horizon } t)$ solves

$$w(\xi,t) = e^{-t|\xi|^2} + \int_0^t e^{-s|\xi|^2} |\xi|^2 \int_{\mathbb{R}^3} w(\eta,t-s) w(\xi-\eta,t-s) \mathcal{H}(\eta|\xi) d\eta ds$$

We show that $w \equiv 1$ is a unique solution. Note that $w = c\hat{u}/h$ solves

(MS):
$$u_t - \Delta u = \sqrt{-\Delta}(u^2), \ u_0(x) = \frac{2}{|x|^2 + 1}$$

$$u = e^{\Delta t}u_0 + \int_0^t \sqrt{-\Delta}e^{\Delta(t-s)}u^2(s)ds$$

Kernel G(t) satisfies $||G(t)||_{L^q} \lesssim t^{\frac{3}{2q}-2}$ for all $q \in [1, \infty]$. By fixed-point argument, (MS) has a unique solution $u(x, t) = u_0(x)$.

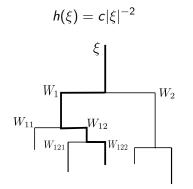
(MS)_a:
$$u_t - \Delta u = \sqrt{-\Delta}(u^2), \ u_0(x) = \frac{2a}{|x|^2 + 1}$$

Dascaliuc, Pham, Thomann (2021):

- *a* > 1: finite-time blowup solution
- $-1 \le a \le 1$: global solution
- -1 < a < 1: solution exponentially decays in time

Under certain assumption, NSE has a minimal blowup initial data (Rusin-Sverak 2011, Jia-Sverak 2013, Gallagher et al 2016, Pham 2018,...), but MS doesn't have minimal blowup data.

Explosion of self-similar cascade, nonuniqueness



Dascaliuc, Pham, Thomann, Waymire (2021):

(MS):
$$u_t - \Delta u = \sqrt{-\Delta}(u^2), \ u_0(x) = \frac{2}{\pi} \frac{1}{|x|}$$

has at least two solutions: $u_1 = u_0(x)$ and $u_2 = c\mathcal{F}^{-1}\{|\xi|^{-2}\mathbb{P}_{\xi}(S > t)\}$.

Monte Carlo simulation

- solution in Fourier domain,
- suitable to study energy cascade,
- can apply to various differential equations,
- very costly,
- Decoupling Principle can be used to reduce the cost,
- explosion issue.
- Stochastic cascade and mean-field models for turbulence
 - make precise the notion of averaging commonly used in empirical theories of energy cascade (Kolmogorov 5/3, Large Eddy Simulation,...)
 - depletion of nonlinearity (\odot -product) needs to be better understood,
 - Mean-field models that preserve the energy (dyadic shell model, Burgers equation) are good starting points.