Blowup solutions of a Navier-Stokes-like equation from a probabilistic perspective

Tuan Pham
Brigham Young University
AMS Special Session on Recent Advances in the Theory of Fluid Dynamics

October 24, 2020

The ODE $u^{\prime}+u=f$

$$
\left\{\begin{aligned}
u^{\prime}+u & =f \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Integral form:

$$
u(t)=e^{-t} u_{0}+\int_{0}^{t} e^{-s} f(t-s) d s
$$

In terms of probability:

$$
u(t)=\mathbb{E}\left[u_{0} I_{T \geq t}\right]+\mathbb{E}\left[f(t-T) I_{T<t}\right]=\mathbb{E}\left[u_{0} I_{T \geq t}+f(t-T) I_{T<t}\right]
$$

where T is a random variable exponentially distributed $T \sim \operatorname{Exp}(1)$.

The ODE $u^{\prime}+u=f$

Consider the random variable:

$$
U(t)=\left\{\begin{array}{rll}
u_{0} & \text { if } \quad T \geq t \\
f(t-T) & \text { if } \quad T<t
\end{array}\right.
$$

U can be approximated by sampling and taking average.

$$
u(t)=\mathbb{E}[U(t)]
$$

The ODE $u^{\prime}+u=u^{2}$

$$
\left\{\begin{aligned}
u^{\prime}+u & =u^{2} \\
u(0) & =u_{0}
\end{aligned}\right.
$$

Integral form:

$$
u(t)=e^{-t} u_{0}+\int_{0}^{t} e^{-s} u^{2}(t-s) d s
$$

In terms of probability:

$$
u(t)=\mathbb{E}\left[u_{0} I_{T \geq t}\right]+\mathbb{E}\left[u^{2}(t-T) I_{T<t}\right]=\mathbb{E}\left[u_{0} I_{T \geq t}+u^{2}(t-T) I_{T<t}\right]
$$

where $T \sim \operatorname{Exp}(1)$.

The ODE $u^{\prime}+u=u^{2}$

Define (recursively) the random variable

$$
U(t)=\left\{\begin{aligned}
u_{0} & \text { if } \quad T \geq t \\
U^{(1)}(t-T) U^{(2)}(t-T) & \text { if } T<t
\end{aligned}\right.
$$

where $U^{(1)}$ and $U^{(2)}$ are independent copies of U.

$$
u(t)=\mathbb{E}[U(t)]
$$

We can describe U by the following branching process.

The ODE $u^{\prime}+u=u^{2}$

In this event,

$$
U(t)=u_{0}^{3}
$$

The ODE $u^{\prime}+u=u^{2}$

Comment:

- If $0<u_{0}<1$, global solution (i.e. solution exists for all $t>0$).

$$
u(t)=\frac{k e^{t}}{k e^{t}+1}
$$

- If $u_{0}>1$, solution blows up after finite time.

$$
u(t)=\frac{k e^{t}}{k e^{t}-1}
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{array}{rl}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in }
\end{array} \mathbb{R}^{d} \times(0, \infty),,\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

In Fourier domain:
$\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}_{0}(\xi)+c_{0} \int_{0}^{t} e^{-|\xi|^{2} s}|\xi| \int_{\mathbb{R}^{d}} \hat{u}(\eta, t-s) \odot_{\xi} \hat{u}(\xi-\eta, t-s) d \eta d s$
where $a \odot_{\xi} b=-i\left(e_{\xi} \cdot b\right)\left(\pi_{\xi^{\perp}} a\right)$.

Fourier-transformed Navier-Stokes equations (FNS)

Normalization to (FNS): LJS 1997, Bhattacharya et al 2003.

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

where $\chi=c_{0} \hat{u} / h$ and $H(\eta \mid \xi)=\frac{h(\eta) h(\xi-\eta)}{|\xi| h(\xi)}$.
h : majorizing kernel, i.e. $h * h=|\xi| h$.

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as
$\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left\{\begin{array}{lll}\chi_{0}(\xi) & \text { if } & T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } & T_{0} \leq t\end{array}\right.$

An example of $\mathbf{X}_{\text {FNS }}$

Consider the following event:

On this event,

$$
\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left(\chi_{0}\left(W_{11}\right) \odot_{W_{1}} \chi_{0}\left(W_{12}\right)\right) \odot_{\xi} \chi_{0}\left(W_{2}\right)
$$

Three ingredients: clocks, branching process, product.
Cascade structure $=$ clocks + branching process.

Stochastic explosion

$$
S_{n}=\min _{|\nu|=n} \sum_{j=0}^{n} T_{\nu \mid j}, \quad S=\lim _{n \rightarrow \infty} S_{n}=\sup _{n \in \mathbb{N}} S_{n}
$$

Explosion event: $\{S<\infty\}$.
Non-explosion event : $\{S=\infty\}$.

Stochastic explosion

Branching process may never stop, potentially making $\mathbf{X}_{\text {FNS }}$ not well-defined.

- Property of cascade structure, not of product.
- Depending on the majorizing kernel h.
- 3D self-similar cascade $h_{\text {dilog }}(\xi)=C|\xi|^{-2}$: stochastic explosion a.s.
(Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\mathrm{b}}(\xi)=C|\xi|^{-1} e^{-|\xi|}$: non-explosive a.s. (Orum, Pham 2019)

Cheap Navier-Stokes equation

$$
(\mathrm{cNSE}):\left\{\begin{array}{rlrl}
\partial_{t} u-\Delta u & =\sqrt{-\Delta}\left(u^{2}\right) & \text { in } \mathbb{R}^{d} \times(0, \infty) \\
u(\cdot, 0) & =u_{0} & & \text { in } \mathbb{R}^{d}
\end{array}\right.
$$

With $\chi=c_{0} \hat{u} / h$, we have

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi 0(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s \\
& =\mathbb{E}[\mathbf{X}(\xi, t)]
\end{aligned}
$$

where

$$
\mathbf{X}(\xi, t)= \begin{cases}\chi_{0}(\xi) & \text { if } T_{0}>t \\ \mathbf{X}^{(1)}\left(W_{1}, t-T_{0}\right) \mathbf{X}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } T_{0} \leq t\end{cases}
$$

Cascade solutions

Consider $\chi_{0}(\xi) \equiv \gamma>0$. In case of non-explosion (e.g. the Bessel cascade),

$$
\chi(\xi, t)=\sum_{n=1}^{\infty} \gamma^{n} p_{n}(\xi, t)
$$

$p_{n}(\xi, t)=\mathbb{P}\left(S_{\xi}>t\right.$, exactly n branches cross $)$.

Cheap NSE in 3D

Bessel majorizing kernel: $h=h_{\mathrm{b}}(\xi)=\frac{1}{2 \pi} \frac{e^{-|\xi|}}{|\xi|}$.

$$
(\mathrm{cNSE}):\left\{\begin{aligned}
& \partial_{t} u-\Delta u=\sqrt{-\Delta}\left(u^{2}\right) \\
& \text { in } \mathbb{R}^{3} \times(0, \infty), \\
& u(\cdot, 0)=\frac{2 \gamma}{1+|x|^{2}}
\end{aligned}\right.
$$

Dascaliuc, Orum, Pham (2020)

- If $0 \leq \gamma<1$, (cNSE) has a unique solution in $L^{5}\left(\mathbb{R}^{3} \times(0, \infty)\right)$.
- If $\gamma=1$, (cNSE) has a time-independent solution in $L^{5}\left(\mathbb{R}^{3} \times(0, T)\right)$ for any $T<\infty$.
- If $\gamma>1, u$ blows up after finite time.

Cheap NSE in 3D when $\gamma<1$

$p_{n}(\xi, t)=\mathbb{P}\left(S_{\xi}>t\right.$, exactly n branches cross $)$.
By conditioning on the first time of branching, we get
$p_{n}(\xi, t)=\int_{0}^{t}|\xi|^{2} e^{-s|\xi|^{2}} \int_{\mathbb{R}^{3}} \sum_{k=1}^{n-1} p_{k}(\eta, t-s) p_{n-k}(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s$
By induction, one can prove

$$
p_{n}(\xi, t) \leq \min \left\{1, \theta \lambda^{n-1} C_{n} e^{-|\xi| \sqrt{t}}\right\}
$$

If $\gamma<1$, choose κ small such that $4^{\kappa} \lambda^{\kappa} \gamma<1$.

$$
\chi(\xi, t)=\sum_{n=1}^{\infty} \gamma^{n} p_{n}(\xi, t) \lesssim \sum_{n=1}^{\infty}(\underbrace{4^{\kappa} \lambda^{\kappa} \gamma}_{<1})^{n} e^{-\kappa|\xi| \sqrt{t}}
$$

Cheap NSE in 3D when $\gamma>1$

$$
\begin{aligned}
& \gamma \rightsquigarrow \mathbf{X}^{(1)} \rightsquigarrow \chi_{1}=\mathbb{E}\left[\mathbf{X}^{(1)}\right], \\
& \frac{1}{\gamma} \rightsquigarrow \mathbf{X}^{(2)} \rightsquigarrow \chi_{2}=\mathbb{E}\left[\mathbf{X}^{(2)}\right], \\
& \sqrt{\gamma} \rightsquigarrow \mathbf{X}^{(3)} \rightsquigarrow \chi_{3}=\mathbb{E}\left[\mathbf{X}^{(3)}\right], \\
& \frac{1}{\sqrt{\gamma}} \rightsquigarrow \mathbf{X}^{(4)} \rightsquigarrow \chi_{4}=\mathbb{E}\left[\mathbf{X}^{(4)}\right] .
\end{aligned}
$$

Observation: $\mathbf{X}^{(1)} \mathbf{X}^{(2)}=\mathbf{X}^{(3)} \mathbf{X}^{(4)}=1, \mathbf{X}^{(3)}=\sqrt{\mathbf{X}^{(1)}}, \mathbf{X}^{(2)}=\sqrt{\mathbf{X}^{(4)}}$.

$$
\chi=\chi_{1} \geq \frac{1}{\chi_{2}} \gtrsim e^{\kappa|\xi| \sqrt{t}} \quad \text { (Schwarz's inequality) }
$$

Thus, $\hat{u} \sim \chi h \gtrsim e^{(\kappa \sqrt{t}-1)|\xi|} \Rightarrow u$ blows up by time $t=\kappa^{-2}$.

Thank You!

