Stochastic cascade methods for differential equations

Tuan Pham

Brigham Young University

January 18, 2022

Tuan Pham (Brigham Young University)

January 18, 2022 1 / 13

$$\begin{cases} u'+u = f, \\ u(0) = u_0. \end{cases}$$

Integral form:

$$u(t) = e^{-t}u_0 + \int_0^t e^{-s}f(t-s)ds$$

Probabilistically, $u(t) = \mathbb{E}[X(t)]$ where

$$X(t) = \left\{ egin{array}{cc} u_0 & ext{if} & T \geq t, \ f(t-T) & ext{if} & T < t \end{array}
ight.$$

and $T \sim Exp(1)$.

Logistic equation $u' + u = u^2$, $u(0) = u_0$

$$\begin{cases} u'+u = u^2, \\ u(0) = u_0. \end{cases}$$

Integral form:

$$u(t) = e^{-t}u_0 + \int_0^t e^{-s}u^2(t-s)ds$$

Probabilistically, $u(t) = \mathbb{E}[X(t)]$ where

$$X(t) = \begin{cases} u_0 & \text{if } T \ge t, \\ X^{(1)}(t-T)X^{(2)}(t-T) & \text{if } T < t. \end{cases}$$

 $T \sim Exp(1)$ $X^{(1)}$ and $X^{(2)}$ are i.i.d. copies of X. Logistic equation $u' + u = u^2$, $u(0) = u_0$

In this event, $X(t) = u_0^3$. In general, $X(t) = u_0^{N(t)}$.

Logistic equation $u' + u = u^2$, $u(0) = u_0$

In this event, $X(t) = u_0^3$. In general, $X(t) = u_0^{N(t)}$.

Explicit solution:
$$u(t) = \frac{u_0}{u_0 - (u_0 - 1)e^t}$$

• If $-1 \le u_0 \le 1$, global solution

- If $u_0 > 1$, blowup solution

α -Riccati equation (Athreya 1985, Dascaliuc et al. 2018)

$$u' + u = u^2(\alpha t), \ u(0) = u_0$$

$$T_{1} \qquad T_{1} \sim \operatorname{Exp}(1)$$

$$T_{11} \qquad T_{12} \sim \operatorname{Exp}(\alpha)$$

$$T_{11} \qquad T_{12} \quad T_{21} \qquad T_{22} \sim \operatorname{Exp}(\alpha^{2})$$

S = shortest path (random)

- If $0 < \alpha \leq 1$ then $S = \infty$ a.s. \rightsquigarrow non-explosion
- If $\alpha > 1$ then $S < \infty$ a.s. \rightsquigarrow explosion
- u(t) = P(S < t) solves the equation with u₀ = 0 → non-uniqueness of solutions for α > 1.

KPP-Fisher equation (1930s)

$$u_t - \frac{1}{2}u_{xx} = u^2 - u, \quad u(x,0) = u_0(x)$$

McKean (1975) observed that $u(x,t) = \mathbb{E}[X(x,t)]$ where

$$X(x,t) = \begin{cases} u_0(B_t^x) & \text{if } T \ge t, \\ X^{(1)}(B_T^x, t-T) X^{(2)}(B_T^x, t-T) & \text{if } T < t. \end{cases}$$

Navier-Stokes equations

$$\left\{ \begin{array}{rl} u_t - \Delta u + u \cdot \nabla u + \nabla p = 0 & \text{ in } \mathbb{R}^3 \times (0, \infty), \\ & \text{ div } u = 0 & \text{ in } \mathbb{R}^3 \times (0, \infty), \\ & u(\cdot, 0) = u_0 & \text{ in } \mathbb{R}^3. \end{array} \right.$$

In Fourier domain:

$$\hat{u}(\xi,t)=e^{-|\xi|^2t}\hat{u}_0(\xi)+c\int_0^t e^{-|\xi|^2s}|\xi|\int_{\mathbb{R}^3}\hat{u}(\eta,t-s)\odot_\xi\hat{u}(\xi-\eta,t-s)d\eta ds$$

acyb=-iba

Normalization (LeJan-Sznitman 1997): $v = c\hat{u}/h$

$$v(\xi,t) = e^{-t|\xi|^2} v_0(\xi) + \int_0^t e^{-s|\xi|^2} |\xi|^2 \int_{\mathbb{R}^3} v(\eta,t-s) \odot_{\xi} v(\xi-\eta,t-s) H(\eta|\xi) d\eta ds$$

where $H(\eta|\xi) = \frac{h(\eta)h(\xi-\eta)}{|\xi|h(\xi)|}$ and $h * h = |\xi|h$.

Normalization (LeJan-Sznitman 1997): $v = c\hat{u}/h$

$$v(\xi,t) = e^{-t|\xi|^2} v_0(\xi) + \int_0^t e^{-s|\xi|^2} |\xi|^2 \int_{\mathbb{R}^3} v(\eta,t-s) \odot_{\xi} v(\xi-\eta,t-s) H(\eta|\xi) d\eta ds$$

where
$$H(\eta|\xi) = \frac{h(\eta)h(\xi-\eta)}{|\xi|h(\xi)}$$
 and $h * h = |\xi|h$.

 $v(\xi,t) = \mathbb{E}[X(\xi,t)]$ where

$$X(\xi, t) = \begin{cases} v_0(\xi) & \text{if } T_0 \ge t, \\ X^{(1)}(W_1, t - T_0) \odot_{\xi} X^{(2)}(W_2, t - T_0) & \text{if } T_0 < t. \end{cases}$$

 $W_1 \sim H(\cdot|\xi)$ and $W_2 = \xi - W_1 \sim H(\cdot|\xi)$.

Stochastic cascade

• $w = \mathbb{P}_{\xi}(S > t)$ solves

$$w(\xi,t) = e^{-t|\xi|^2} + \int_0^t e^{-s|\xi|^2} |\xi|^2 \int_{\mathbb{R}^3} w(\eta,t-s)w(\xi-\eta,t-s)H(\eta|\xi)d\eta ds$$

- Bessel kernel $h(\xi) = c \frac{e^{-|\xi|}}{|\xi|} \rightsquigarrow$ non-explosion.
- Self-similar kernel $h(\xi) = c |\xi|^{-2} \rightsquigarrow$ explosion

Non-explosion of Bessel cascade - Analytic approach

$$h(\xi) = c \frac{e^{-|\xi|}}{|\xi|}$$

Dascaliuc, Pham, Thomann (2021): for all ξ , $S = \infty$ a.s.

Sketched proof: we will show that $w \equiv 1$ is a unique solution. Reverse the normalization: $w = c\hat{u}/h$ where

(MS):
$$u_t - \Delta u = \sqrt{-\Delta}(u^2), \ u_0(x) = \frac{2}{|x|^2 + 1}$$

$$u = e^{\Delta t} u_0 + \int_0^t \sqrt{-\Delta} e^{\Delta(t-s)} u^2(s) ds$$

Kernel G(t) satisfies $||G(t)||_{L^q} \leq t^{\frac{3}{2q}-2}$ for all $q \in [1, \infty]$. By fixed-point argument, (MS) has a unique solution $u(x, t) = u_0(x)$.

Non-explosion of Bessel cascade - Applications

(MS)_a:
$$u_t - \Delta u = \sqrt{-\Delta}(u^2), \ u_0(x) = \frac{2a}{|x|^2 + 1}$$

Dascaliuc, Pham, Thomann (2021):

- *a* > 1: finite-time blowup solution
- $-1 \le a \le 1$: global solution

• -1 < a < 1: solution exponentially decays in time

Under certain assumption, NSE has a minimal blowup initial data (Rusin-Sverak 2011, Jia-Sverak 2013, Gallagher et al 2016, Pham 2018,...), but MS doesn't have minimal blowup data.

Dascaliuc, Pham, Thomann, Waymire (2021): proof of non-explosion using probabilistic argument

Explosion of self-similar cascade

Dascaliuc, Pham, Thomann, Waymire (2021):

(MS):
$$u_t - \Delta u = \sqrt{-\Delta}(u^2), \ u_0(x) = \frac{2}{\pi} \frac{1}{|x|}$$

has at least two solutions: $u_1 = u_0(x)$ and $u_2 = c\mathcal{F}^{-1}\{|\xi|^{-2}\mathbb{P}_{\xi}(S > t)\}.$

Monte Carlo simulation

- solution in Fourier domain,
- suitable to study energy cascade,
- can apply to many differential equations,
- very costly,
- Decoupling Principle can be used to reduce the cost,
- explosion issue.
- Stochastic cascade and mean-field models for turbulence
 - make precise the notion of averaging commonly used in empirical theories of energy cascade (Kolmogorov 5/3, Large Eddy Simulation,...)
 - depletion of nonlinearity (\odot -product) needs to be better understood,
 - Mean-field models that preserve the energy (dyadic shell model, Burgers equation) are good starting points.