Non-explosion criterion for branching Markov chains and applications

Tuan Pham
Brigham Young University

September 30, 2020

KPP equation in Fourier domain

$$
u_{t}-D u_{x x}=r u(1-u) \quad \forall t>0, x \in \mathbb{R}
$$

By rescaling the time and space variables, and introducing $v=1-u$, we get

$$
v_{t}-v_{x x}=v^{2}-v \quad \forall t>0, x \in \mathbb{R}
$$

In Fourier domain (integral form),
$\hat{v}(\xi, t)=e^{-\left(1+\xi^{2}\right) t} \hat{v}_{0}(\xi)+\int_{0}^{t} \int_{-\infty}^{\infty} e^{-\left(1+\xi^{2}\right) s} \hat{v}(\eta, t-s) \hat{v}(\xi-\eta, t-s) d \eta d s$.
Normalization: $\chi(\xi, t)=\frac{\hat{v}(\xi, t)}{h(\xi)}$

KPP equation in Fourier domain

$$
\begin{aligned}
\chi(\xi, t) & =e^{-\left(1+\xi^{2}\right) t} \chi_{0}(\xi) \\
& +\int_{0}^{t} \int_{-\infty}^{\infty}\left(1+\xi^{2}\right) e^{-\left(1+\xi^{2}\right) s} \chi(\eta, t-s) \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s .
\end{aligned}
$$

where $H(\eta \mid \xi)=\frac{h(\eta) h(\xi-\eta)}{\left(1+\xi^{2}\right) h(\xi)}$.

$$
\mathbf{X}(\xi, t)=\left\{\begin{array}{rll}
\chi_{0}(\xi) & \text { if } & T_{0}>t \\
\mathbf{X}^{(1)}\left(W_{1}, t\right) \mathbf{X}^{(2)}\left(\xi-W_{1}, t\right) & \text { if } & T_{0} \leq t
\end{array}, ~ \chi(\xi, t)=\mathbb{E}[\mathbf{X}(\xi, t)] \quad .\right.
$$

Cascade of Fourier-transformed KPP equation

On this event,

$$
\mathbf{X}(\xi, t)=\chi_{0}\left(W_{11}\right) \chi_{0}\left(W_{12}\right) \chi_{0}\left(W_{2}\right)
$$

Explosion time

The explosion time is

$$
\zeta=\zeta(\xi)=\lim _{n \rightarrow \infty} \min _{|v|=n} \sum_{j=0}^{n} \frac{T_{v \mid j}}{1+W_{v \mid j}^{2}}
$$

The event $[\zeta=\infty]$ is called the non-explosion event. If $\zeta=\infty$ a.s then the cascade is called non-explosive.

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
\partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
\operatorname{div} u=0 & \text { in } \mathbb{R}^{d} \times(0, \infty), \\
u(\cdot, 0)=u_{0} & \text { in } \mathbb{R}^{d}
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

Navier-Stokes equations

$$
(\mathrm{NSE}):\left\{\begin{aligned}
& \partial_{t} u-\Delta u+u \cdot \nabla u+\nabla p=0 \text { in } \\
& \mathbb{R}^{d} \times(0, \infty), \\
& \operatorname{div} u=0 \text { in } \mathbb{R}^{d} \times(0, \infty), \\
& u(\cdot, 0)=u_{0} \text { in } \mathbb{R}^{d} .
\end{aligned}\right.
$$

Integro-differential equation:

$$
u(x, t)=e^{\Delta t} u_{0}-\int_{0}^{t} e^{\Delta s} \mathbf{P} \operatorname{div}[u(t-s) \otimes u(t-s)] d s
$$

In Fourier domain:
$\hat{u}(\xi, t)=e^{-|\xi|^{2} t} \hat{u}_{0}(\xi)+c_{0} \int_{0}^{t} e^{-|\xi|^{2} s}|\xi| \int_{\mathbb{R}^{d}} \hat{u}(\eta, t-s) \odot_{\xi} \hat{u}(\xi-\eta, t-s) d \eta d s$
where $a \odot_{\xi} b=-i\left(e_{\xi} \cdot b\right)\left(\pi_{\xi^{\perp}} a\right)$.

Fourier-transformed Navier-Stokes equations (FNS)

Normalization to (FNS): LJS 1997, Bhattacharya et al 2003.

$$
\begin{aligned}
\chi(\xi, t) & =e^{-t|\xi|^{2}} \chi_{0}(\xi) \\
& +\int_{0}^{t} e^{-s|\xi|^{2}}|\xi|^{2} \int_{\mathbb{R}^{d}} \chi(\eta, t-s) \odot_{\xi} \chi(\xi-\eta, t-s) H(\eta \mid \xi) d \eta d s
\end{aligned}
$$

where $\chi=c_{0} \hat{u} / h$ and $H(\eta \mid \xi)=\frac{h(\eta) h(\xi-\eta)}{|\xi| h(\xi)}$.
h : majorizing kernel, i.e. $h * h=|\xi| h$.

Cascade structure of FNS

Define a stochastic multiplicative functional recursively as
$\mathbf{X}_{\mathrm{FNS}}(\xi, t)=\left\{\begin{array}{lll}\chi_{0}(\xi) & \text { if } & T_{0}>t, \\ \mathbf{X}_{\mathrm{FNS}}^{(1)}\left(W_{1}, t-T_{0}\right) \odot_{\xi} \mathbf{X}_{\mathrm{FNS}}^{(2)}\left(\xi-W_{1}, t-T_{0}\right) & \text { if } & T_{0} \leq t\end{array}\right.$

Explosion time

The explosion time is

$$
\zeta=\zeta(\xi)=\lim _{n \rightarrow \infty} \min _{|v|=n} \sum_{j=0}^{n} \frac{T_{v \mid j}}{\left|W_{v \mid j}\right|^{2}}
$$

The event $[\zeta=\infty]$ is called the non-explosion event. If $\zeta=\infty$ a.s then the cascade is called non-explosive.

Stochastic explosion

Branching process may never stop, potentially making the stochastic multiplicative functional not well-defined.

- 3D self-similar cascade $h_{\text {dilog }}(\xi)=C|\xi|^{-2}$: stochastic explosion a.s.
(Dascaliuc, Pham, Thomann, Waymire 2019)
- 3D Bessel cascade $h_{\mathrm{b}}(\xi)=C|\xi|^{-1} e^{-|\xi|}$: non-explosive a.s. (Orum, Pham 2019)

Branching Markov chain

Definition: A tree-indexed family $Y=\left\{Y_{v}\right\}_{v \in \mathcal{V}}$ of random variables on a countable or continuous state space $S \subset(0, \infty)$ is called a (binary) branching Markov chain if it satisfies the following:
(A) For any path $s \in \mathcal{T}_{\infty}$, the sequence $Y_{\emptyset}, Y_{s \mid 1}, Y_{s \mid 2}, \ldots$ is a time homogeneous Markov chain.
(B) For any path $s \in \mathcal{T}_{\infty}$, the stationary transition probability $p(x, d y)$ does not depend on s.
(0) For each $\sigma \in \mathcal{V}$, the two subtrees $\left\{Y_{\sigma \cdot 1 \cdot v}\right\}_{v \in \mathcal{V}}$ and $\left\{Y_{\sigma \cdot 2 \cdot v}\right\}_{v \in \mathcal{V}}$ are independent of each other given $Y_{\sigma \cdot 1}$ and $Y_{\sigma \cdot 2}$.

Le Jan - Sznitmann (LJS) cascade

Function $g:[0, \infty) \rightarrow[0, \infty)$ satisfying

- g is locally bounded,
- $g(x)>0$ for all $x>0$.

We will refer to this stochastic model as Le Jan-Sznitmann (LJS) cascade.
Definition: The explosion time of an LJS cascade (Y, T, g) is a $[0, \infty]$-valued random variable ζ defined by

$$
\zeta=\lim _{n \rightarrow \infty} \min _{|s|=n} \sum_{j=0}^{n} \frac{T_{s \mid j}}{g\left(Y_{s \mid j}\right)}
$$

The event of no-explosion is defined by $[\zeta=\infty]$. The cascade is said to be non-explosive if $\mathbb{P}(\zeta=\infty)=1$, and explosive if $\mathbb{P}(\zeta=\infty)<1$.

Main statement

Theorem: Let Y be a branching Markov chain. Suppose that
(D) There exist constants $c>0, r>2$ and a locally bounded function $\psi:[0, \infty) \rightarrow \mathbb{R}$ such that $I_{n}(a) \leq \psi(a) r^{-n}$ for all $n \in \mathbb{N}$ and $a>0$, where

$$
I_{n}(a)=\mathbb{P}_{a}\left(Y_{s \mid 1}>c, Y_{s \mid 2}>c, \ldots, Y_{s \mid n}>c\right)
$$

Here \mathbb{P}_{a} denotes the probability measure given the initial state $Y_{\emptyset}=a>0$ (constant).
Then for any $a>0$, an LJS cascade (Y, T, g) with initial state $Y_{\emptyset}=a$ is non-explosive.

Proof

The proof is done in two stages. The first stage is to show that the branching Markov chain Y visits the region ($0, c$] "infinitely often". We start an inspection process of whether $Y_{v}>c$ as follows...

$$
\begin{aligned}
\mathbb{P}_{a}\left(\mathcal{O}_{n}=2\right) & =p_{n, 2}:=\mathbb{P}_{a}\left(Y_{v \cdot 1}>c, Y_{v \cdot 2}>c \mid Y_{v \mid 1}, \ldots, Y_{v \mid n}>c\right), \\
\mathbb{P}_{a}\left(\mathcal{O}_{n}=1\right) & =\underbrace{\mathbb{P}_{a}\left(Y_{v \cdot 1}>c, Y_{v \cdot 2} \leq c \mid Y_{v \mid 1}, \ldots, Y_{v \mid n}>c\right)}_{p_{1, n}} \\
& +\underbrace{\mathbb{P}_{a}\left(Y_{v \cdot 1} \leq c, Y_{v \cdot 2}>c \mid Y_{v \mid 1}, \ldots, Y_{v \mid n}>c\right)}_{\tilde{p}_{1, n}}, \\
\mathbb{P}_{a}\left(\mathcal{O}_{n}=0\right) & =p_{n, 0}:=\mathbb{P}_{a}\left(Y_{v \cdot 1} \leq c, Y_{v \cdot 2} \leq c \mid Y_{v \mid 1}, \ldots, Y_{v \mid n}>c\right)
\end{aligned}
$$

Proof

Claim: the inspection process terminates a.s. after finitely many steps.

$$
\begin{aligned}
& \mu_{n}:=\mathbb{E} \mathcal{O}_{n}=2 p_{n, 2}+p_{n, 1}+\tilde{p}_{n, 1}=\left(p_{n, 2}+p_{n, 1}\right)+\left(p_{n, 2}+\tilde{p}_{n, 1}\right) \\
&=\mathbb{P}\left(Y_{s \cdot 1}>c \mid Y_{s \mid 1}, \ldots, Y_{s \mid n}>c\right) \\
&+\mathbb{P}\left(Y_{s \cdot 2}>c \mid Y_{s \mid 1}, \ldots, Y_{s \mid n}>c\right) \\
&=2 \mathbb{P}\left(Y_{s \cdot 1}>c \mid Y_{s \mid 1}, \ldots, Y_{s \mid n}>c\right) \\
&=2 \frac{I_{n+1}}{I_{n}} \\
& \mathbb{E} Z_{n}=\mathbb{E}\left[\mathbb{E}\left[Z_{n} \mid Z_{n-1}\right]\right]=\mathbb{E}\left[\sum_{j=1}^{Z_{n-1}} \mathbb{E} \mathcal{O}_{n-1, j}\right]=\mathbb{E}\left[\mu_{n-1} Z_{n-1}\right]=\mu_{n-1} \mathbb{E} Z_{n-1}
\end{aligned}
$$

Proof

Construct a sequence of cutsets:

Figure 1: The first cutset \mathcal{C}_{1} consists of the bold dots. The second cutset \mathcal{C}_{2} consists of the stars.

Proof

Each cutset has bounded expectation: For any $\sigma \in\{\emptyset\} \cup \mathcal{C}_{1} \cup \mathcal{C}_{2} \cup \ldots$, we have

$$
\mathbb{E}_{\mathrm{a}}\left[\operatorname{card} \mathcal{C}^{(\sigma)}\right] \leq \mu
$$

where $\mu=\mu(a)=\max \left\{1, M(a) \frac{2 r}{r-2}\right\}$ and $M(a)=\sup _{x \leq \max \{a, c\}} \psi(x)$.

Proof

Reduce the problem:

$$
\zeta_{n}(\omega, \tilde{\omega}) \geq \min _{|v|=n} \sum_{i=1}^{k} \frac{T_{s \mid l_{i}}(\tilde{\omega})}{g\left(Y_{v| |_{i}}(\omega)\right)} \geq \frac{1}{C} \min _{|v|=n} \sum_{i=1}^{k} T_{v \mid l_{i}}(\tilde{\omega})
$$

Proof

Figure 2: Tree $\mathcal{T}^{\prime}(\omega)$.

Thank You!

