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The logistic equation u′ = ru(1− u/M)

Equilibria: u ≡ 1 (asymptotically stable), u ≡ 0 (unstable)
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The pendulum motion

u′′ + cu′ +
g

L
sin u = 0, u(0) = a, u′(0) = b

Equilibria: u ≡ 0 (asymptotically stable), u ≡ π (unstable)
Simulation with different values of c
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Linear system of homogeneous ODEs

u′ = Au, u = [u1 u2 ... un]T

The equilibrium solution u = 0 is asymptotically stable if and only if
Re(λ) < 0 for all complex eigenvalues λ of A.

Associated eigenvalue problem: λu = Au.

asymptotically stable ⇐⇒ exponentially stable (decay rate = −Re(λ))
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The heat equation - Linear stability analysis

ut = νuxx , u(0, t) = u(1, t) = 0

Steady state: u′′∗ = 0, u∗(0) = u∗(1) = 0, which gives u∗ ≡ 0.

Linear stability analysis: the associated eigenvalue problem

λu = νu′′, u(0) = u(1) = 0.

A nontrivial solution exists if and only if

λ = λn = −νn2π2 for n ∈ N.

All eigenvalues are negative, so the steady-state solution is always
exponentially stable (for any ν > 0).
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The heat equation - Nonlinear stability analysis

ut = νuxx , u(0, t) = u(1, t) = 0

Nonlinear stability analysis:

1

2

d

dt

∫ 1

0
u2(x , t)dx = −ν

∫ 1

0
u2x (x , t)dx ≤ −λ

∫ 1

0
u2(x , t)dx

where

λ = inf
u∈H1

0 (0,1)

ν
∫ 1
0 (u′)2dx∫ 1
0 u2dx

≥ 0.

The energy E (t) =
∫ 1
0 u2(x , t)dx satisfies E (t) ≤ E (0)e−2λt .

Steady-state solution u∗ ≡ 0 is L2-exponentially stable with decay rate λ.
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The heat equation - Nonlinear stability analysis

λ = inf
u∈H1

0 (0,1)

ν
∫ 1
0 (u′)2dx∫ 1
0 u2dx

. How to check if λ > 0?

Rewrite: λ = inf
u∈H1

0
(0,1)∫ 1

0 u2dx=1

I [u], where I [u] = ν

∫ 1

0
(u′)2dx .

If a minimizer v exists, we use Lagrange multiplier:

v = argmin
u∈H1

0 (0,1)

J[u], where J[u] = I [u]− λ
∫ 1

0
u2dx

v can be found using Calculus of Variations: for all φ ∈ H1
0 (0, 1),

0 = lim
ε→0

J[v + εφ]− J[v ]

ε
= −2

∫ 1

0
(νv ′′ + λv)φdx .
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The heat equation - Nonlinear stability analysis

One obtains the Euler-Lagrange equation of the variational problem:

νv ′′ + λv = 0, v(0) = v(1) = 0.

A nontrivial solution exists if and only if λ ∈ {νn2π2, n ∈ N}.
The exponential decay rate is λ = νπ2 > 0.
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Allen-Cahn equation - homogeneous boundary conditions

ut = νuxx + u − u3, u(0, t) = u(1, t) = 0.

There are infinitely many steady-state solutions u∗ = u∗(x):

0 = νu′′∗ + u∗ − u3∗ , u∗(0) = u∗(1) = 0.

Linear stability analysis for u∗ ≡ 0: for small u,

ut ≈ νuxx + u, u(0) = u(1) = 0.

Associated eigenvalue problem: λu = νu′′ + u.
• ν > π−2, all eigenvalues are negative. One has asymptotic stability for
small perturbations.
• ν < π−2, there are positive and negative eigenvalues. 0 is a saddle point.
Simulation with ν = 0.01 and different initial data
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https://web.engr.oregonstate.edu/~phamt3/Presentations/Allen_Cahn2.mp4
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Burgers equation - Dirichlet boundary conditions

ut = νuxx − uux , u(0, t) = a, u(1, t) = b

Steady-state solution u∗ = u∗(x) is unique and can be computed explicitly:

0 = νu′′∗ − u∗u
′
∗, u∗(0) = a, u∗(1) = b.

Simulation with b = 0 and different values of a

The difference v = u − u∗ satisfies vt − νvxx + v vx + (u∗v)x = 0.
Linear stability analysis:

(−λ)w = −νw ′′ + (u∗w)′, w(0) = w(1) = 0.

Nonlinear stability analysis (energy-based):

λw = −νw ′′ + 1

2
u′∗w , w(0) = w(1) = 0.
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https://web.engr.oregonstate.edu/~phamt3/Presentations/Burgers_combined.mp4
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Burgers equation - Dirichlet boundary conditions

Comparison of exponential decay rates in linear and energy stability analysis.

ut = uxx − uux , u(0, t) = a, u(1, t) = 0

Nonlinear stability analysis based on Cole-Hopf transformation: steady-state

solution is exponentially stable for Dirichlet boundary condition u(0, t) = a,

u(1, t) = b (Kourbatov, 1992).
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Burgers equation - Time-dependent boundary conditions

ut = νuxx − uux , u(0, t) = a(t), u(1, t) = b(t)

Definition (stability of time-dependent solutions)

Time-dependent solution u∗(x , t) is L2-asymptotically stable if for
any solutions u(x , t), u(·, 0) − u∗(·, 0) ∈ L2 implies ‖u(·, t) −
u∗(·, t)‖L2 → 0 as t →∞.

The difference v = u − u∗ satisfies vt − νvxx + v vx + (u∗v)x = 0.
Energy stability analysis:

E ′(t) ≤ −2λ(t)E (t), where E (t) =

∫ 1

0
v2(x , t)dx

λ(t) = inf
w∈H1

0
(0,1)∫ 1

0 w2dx=1

∫ 1

0

(
ν(w ′)2 +

u∗
2
w2
)
dx .
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Burgers equation - Time-dependent boundary conditions

ut = νuxx − uux , u(0, t) = a(t), u(1, t) = b(t)

Energy E (t) =
∫ 1
0 v2(x , t)dx , where v = u − u∗, satisfies

E (t) ≤ E (0) exp

(
−2

∫ t

0
λ(s)ds

)
Theorem (L2-asymptotic stability criterion)

λ̄
def

=== lim inf
t→∞

1

t

∫ t

0
λ(s)ds.

If λ̄ > 0 then the solution u∗(x , t) is L2-asymptotically stable.

Proof. For sufficiently large t,

E (t) ≤ E (0) exp

(
−2t

1

t

∫ t

0
λ(s)ds

)
≤ E (0) exp(−2t(λ̄− ε)).
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Burgers equation - Time-dependent boundary conditions

ut = νuxx − uux , u(0, t) = a(t), u(1, t) = b(t)

How to compute λ̄ for a given value of ν > 0?

Find one solution u∗(x , t) by Cole-Hopf transformation u∗ = −2ν φxφ
where φ satisfies φt − νφxx = 0 with Robin boundary conditions.

For each t in a large time-interval [0,T ], find the smallest eigenvalue
λ(t) from Euler-Lagrange equation:

λ(t)w = −νw ′′ + 1

2
u∗(·, t)w , w(0) = w(1) = 0.

This is a Sturm-Liouville problem.

Take the average in time λ̄ ≈ 1
T

∫ T
0 λ(t)dt.

Observations: λ̄ increases as ν increases. One can use the Bisection
method to search for the critical value of ν where λ̄ = 0.
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Burgers equation - Stochastic boundary conditions

ut = νuxx − uux , u(0, t) = a(t), u(1, t) = b(t)

Here, {a(t)}t≥0 and {b(t)}t≥0 are stochastic processes.

λ(t)w = −νw ′′ + 1

2
u∗(·, t)w , w(0) = w(1) = 0,

λ̄ = lim inf
t→∞

1

t

∫ t

0
λ(s)ds.

The computational cost is much cheaper if {a(t)} and {b(t)} each

asymptotically stable in distribution: converges to an distribution π,

mean-ergodic: (time average of f (a(t)) = state average of f (a(t)) in
distribution π).

λSw = −νw ′′ + 1

2
uS∗w , w(0) = w(1) = 0,

λ̄ = E[λS ].
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Plane Couette flow


ut −∆u + (u · ∇)u +∇p = 0, div u = 0,

u(x , 1, t) = Re (U(t), 0),

u(x , 0, t) = 0 ,

{U(t)}t≥0 is a asymptotically stable and mean-ergodic process with
E[U(t)] = 1 for all t.
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Plane Couette flow - Literature

Some literature for deterministic case U(t) ≡ 1, u∗(x , y , t) = Re (y , 0).

At given parameter values, will the flow return to its laminar state u∗
no matter how it is perturbed?

Laminar state is stable for small perturbations for any Re > 0
(Romanov 1973).

Rec ≈ 177.2 (Orr 1907).

Using non-quadratic Lyapunov functional: Rec ≈ 252.4 (Fuentes,
Goluskin, Chernyshenko ‘22).

Motivations:

In practice, the velocity of the moving plane is stochastic. Does
stochasticity improve or worsen the stability threshold?

Most literature deals with periodic domains (in horizontal direction),
which makes the problem mathematically simpler. Infinite domain is a
more natural physical setting.
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Plane Couette flow

{
ut −∆u + (u · ∇)u +∇p = 0, div u = 0,

u(x , 1, t) = Re (U(t), 0), u(x , 0, t) = 0.

One solution is the unsteady laminar flow u∗(x , t) = Re(χ(y , t), 0) where

χt − χyy = 0, χ(1, t) = U(t), χ(0, t) = 0, χ(y , 0) = yU(0).

Theorem (Foldes, Pham, Whitehead ‘25)

Suppose {U(t)}t≥0 is an Ornstein-Uhlenbeck process, i.e. dU =
α(1 − U)dt + σdWt for α, σ > 0. There exists a unique critical
Reynolds number Rec = Rec(α, σ) in the energy stability analysis
such that u∗ is L2-asymptotically stable whenever Re < Rec . Also,

Rec is decreasing in σ.

limσ→0+ Rec ≈ 177.2 and Rec ∼ σ−1 as σ →∞.
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Plane Couette flow - Energy stability analysis

H = {f ∈ H1
0 (D,R) : div f = 0}.

Let v = u − u∗. Then

1

2

d

dt

∫
D
|v(·, t)|2dxdy ≤ −λ(t)

∫
D
|v(·, t)|2dxdy

where

λ(t) = inf
w∈H

‖w‖L2(D)=1

∫
D

(|∇w |2 + Re χyw1w2)dxdy

Stability criterion

lim
t→∞

1

t

t∫
0

λ(s)ds = E[λS ] > 0 =⇒ L2-asymptotic stability
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Plane Couette flow - Adjust minimization problem

Minimum value is, unfortunately, not attainable due to lack of
compactness in infinite domain. Solution to Euler-Lagrange equation is
not a minimizer.
Let φ be the stream function, i.e. φx = −w2, φy = w1, and ψ = ψ(ξ, y)
be the Fourier transform of φ(x , y) in the x-direction.

λ(t) = inf
ψ∈Ĥ2

0
(D)

‖∇ψ‖L2=1

I (ψ,Reχy ) ≥ λ∗(t) = inf
ξ≥0

 inf
f∈Ĥ2

0
(ξ)

Jξ(f )=1

Iξ(f ,Reχy )


where

Iξ(f , g) =

∫ 1

0

(
ξ4|f |2 + 2ξ2|f ′|2 + |f ′′|2 − gξIm(f ′f̄ )

)
dy ,

Jξ(f ) =

∫ 1

0
(ξ2|f |2 + |f ′|2)dy .
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Plane Couette flow - Adjust minimization problem

Stability criterion (weakened)

lim
t→∞

1

t

t∫
0

λ∗(s)ds = E[λS∗ ] > 0 =⇒ L2-asymptotic stability

Minimizer to each minimization problem exists. Euler-Lagrange equation:

f ′′′′ − (2ξ2 − λS∗ )f ′′ + (ξ4 − λS∗ ξ2)f +
i

2
Reξ(2χS

y f
′ + χS

yy f ) = 0.

Boundary conditions: f (0) = f (1) = f ′(0) = f ′(1) = 0.
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Plane Couette flow - Algorithm

f ′′′′ − (2ξ2 − λS∗ )f ′′ + (ξ4 − λS∗ ξ2)f +
i

2
Reξ(2χS

y f
′ + χS

yy f ) = 0.

Boundary conditions: f (0) = f (1) = f ′(0) = f ′(1) = 0.

Algorithm to find critical Reynolds number, i.e. one that gives E[λS∗ ] = 0:

For each ξ in an interval [a, b], sample χS from the stationary
distribution.

Compute the smallest eigenvalue λ(ξ) of the ODE.

Minimize λ(ξ) over ξ ∈ [a, b]. Call it λ∗.

Compute the average of λ∗ over all samples. This approximates E[λ∗].

Use Bisection method to adjust Re so that E[λ∗] ≈ 0.
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Numerical results
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Numerical results
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Numerical results
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Thank You!
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