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Equilibria: u =1 (asymptotically stable), u = 0 (unstable)
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The pendulum motion

U+l + %sin u=0, u(0)=a, u(0)=0»b

Equilibria: v = 0 (asymptotically stable), u = 7 (unstable)
Simulation with different values of ¢
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https://web.engr.oregonstate.edu/~phamt3/Presentations/pendulum_combined.mp4

Linear system of homogeneous ODEs

u=Au, u=1u u .. u,,]T

@ The equilibrium solution u = 0 is asymptotically stable if and only if
Re(A) < 0 for all complex eigenvalues A of A.

@ Associated eigenvalue problem: Au = Au.

asymptotically stable <= exponentially stable (decay rate = —%Re(\))
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The heat equation - Linear stability analysis

Up = Vlyy, u(0,t) =u(l,t)=0
Steady state: u) =0, u,(0) = u,(1) = 0, which gives u, = 0.

Linear stability analysis: the associated eigenvalue problem
Au=vd", u(0)=u(l)=0.
A nontrivial solution exists if and only if
A=\, =—vn*r? forneN.

All eigenvalues are negative, so the steady-state solution is always
exponentially stable (for any v > 0).
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The heat equation - Nonlinear stability analysis

Up = Vlyy, u(0,t) =u(l,t)=0

Nonlinear stability analysis:

1d 1 1 1
/ u?(x, t)dx = —1// u?(x, t)dx < —)\/ u?(x, t)dx
where

1
e v [y (u')?dx .

A= i T
ueH3(01) [ udx

The energy E(t) = fol u?(x, t)dx satisfies E(t) < E(0)e 2,

Steady-state solution u, = 0 is L2-exponentially stable with decay rate \.
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The heat equation - Nonlinear stability analysis

1
inf V0ot 9% fo (u’)2dx‘

A= €HL(0,1) fl 24
ueHy(Y, OU X

How to check if A > 07

1
Rewrite: A= inf [[u], where I[u] = y/ (u')?dx.
0

ueH}(0,1)

fol u?dx=1
If a minimizer v exists, we use Lagrange multiplier:
1
v = argmin J[u], where J[u] = I[u] — )\/ u?dx
ueH;(0,1) 0

v can be found using Calculus of Variations: for all ¢ € H3(0, 1),

0= fim Jlv + ed] —

e—0 €

1
/v = —2/ (vv" + Av)pdx.
0
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The heat equation - Nonlinear stability analysis

One obtains the Euler-Lagrange equation of the variational problem:
v + v =0, v(0)=v(1)=0.

A nontrivial solution exists if and only if A € {vn®7?, n € N}.
The exponential decay rate is A = vm? > 0.
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Allen-Cahn equation - homogeneous boundary conditions

U = v + u— 3, u(0,t) = u(1,t) =0.
There are infinitely many steady-state solutions u, = u,(x):
0=vu! + v, — 2, u.(0) = u. (1) =0.
Linear stability analysis for u, = 0: for small v,
ur = vus + u, u(0) =u(l) =0.

Associated eigenvalue problem: \u = vu” + u.

e v > 72, all eigenvalues are negative. One has asymptotic stability for
small perturbations.

e v < 12, there are positive and negative eigenvalues. 0 is a saddle point.
Simulation with ¥ = 0.01 and different initial data
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https://web.engr.oregonstate.edu/~phamt3/Presentations/Allen_Cahn2.mp4

Burgers equation - Dirichlet boundary conditions

U = Vlxy — uly, u(0,t) =a, u(l,t)=0»b
Steady-state solution u, = u.(x) is unique and can be computed explicitly:
0=vu! — u,, u(0)=a, ul)=b.

Simulation with b = 0 and different values of a

The difference v = u — u, satisfies vi — Vv + v v + (usv)x = 0.
Linear stability analysis:

(=N)w = —vw” + (uw)’, w(0)=w(1)=0.

Nonlinear stability analysis (energy-based):

1
Aw = —vw” + Euiw, w(0) = w(l) =0.
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https://web.engr.oregonstate.edu/~phamt3/Presentations/Burgers_combined.mp4

Burgers equation - Dirichlet boundary conditions

Comparison of exponential decay rates in linear and energy stability analysis.

Ur = Ugx — Uy, u(0,t) =a, u(l,t)=0

Exp. decay rate

Linear stability analysis
Energy stability analysis

7
0 5

Nonlinear stability analysis based on Cole-Hopf transformation: steady-state
solution is exponentially stable for Dirichlet boundary condition u(0, t) = a,
u(1,t) = b (Kourbatov, 1992).
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Burgers equation - Time-dependent boundary conditions

Ur = Vs — uuy, u(0,t) = a(t), u(l,t) = b(t)

Definition (stability of time-dependent solutions)

Time-dependent solution u.(x,t) is L?-asymptotically stable if for
any solutions u(x,t), u(-,0) — u(,0) € L2 implies |u(-,t) —
us(-, t)||2 — 0 as t — oo.

The difference v = u — u, satisfies v; — Vv + v vx + (usv)y = 0.
Energy stability analysis:

1
E'(t) < —2\(£)E(t), where E(t) = / V2 (x, t)dx
0

1
Alt) = inf / v(w')? + ﬁW2 dx.
( ) wEH&(O,l) 0 ( ( ) 2 )

fol w2dx=1
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Burgers equation - Time-dependent boundary conditions

Ur = Vs — uuy, u(0,t) = a(t), u(l,t) = b(t)
Energy E(t) = fol v2(x, t)dx, where v = u — u,, satisfies

E(t) < E(0) exp <—2 /0 t)\(s)ds>

Theorem (L2-asymptotic stability criterion)

t
X2 Iiminfl/ A(s)ds.
0

t—oo t

If A > 0 then the solution u.(x, t) is L>-asymptotically stable.

Proof. For sufficiently large t,
1 ft -
E(t) < E(0) exp (—2tt / A(s)ds) < E(0) exp(—2t(X — €)).
0
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Burgers equation - Time-dependent boundary conditions

U = Vs — Uy, u(0,t) = a(t), u(l,t) = b(t)

How to compute ) for a given value of v > 0?7

e Find one solution u,(x, t) by Cole-Hopf transformation u, = —21/%;
where ¢ satisfies ¢+ — V¢ = 0 with Robin boundary conditions.

e For each t in a large time-interval [0, T], find the smallest eigenvalue
A(t) from Euler-Lagrange equation:

Mt)w = —vw” + %u*(-, t)w, w(0)=w(1)=0.

This is a Sturm-Liouville problem.
o Take the average in time A ~ + fOT A(t)dt.

Observations: )\ increases as v increases. One can use the Bisection
method to search for the critical value of v where A = 0.
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Burgers equation - Stochastic boundary conditions

Ur = Vs — uuy, u(0,t) = a(t), u(l,t) = b(t)

Here, {a(t)}+>0 and {b(t)}+>0 are stochastic processes.

1
AMtyw = —vw” + Eu*(-, t)w, w(0) =w(l) =0,
_ 1 [t
A= Iiminf/ A(s)ds.
t—oo t 0

The computational cost is much cheaper if {a(t)} and {b(t)} each
@ asymptotically stable in distribution: converges to an distribution ,

e mean-ergodic: (time average of f(a(t)) = state average of f(a(t)) in
distribution 7).

)\SW — —l/W” —+ %U*SW, W(O) = W(]_) = 0,

X = E[)\]
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Plane Couette flow

Y
u = Re(U(t),0)

u=2~0

ur —Au+(v-V)u+Vp=0, divu =0,
u(x,1,t) = Re (U(t),0),
u(x,0,t) =0,

{U(t)}+>0 is a asymptotically stable and mean-ergodic process with
E[U(t)] =1 for all t.
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Plane Couette flow - Literature

Some literature for deterministic case U(t) =1, u.(x,y,t) = Re(y,0).

o At given parameter values, will the flow return to its laminar state u,
no matter how it is perturbed?

@ Laminar state is stable for small perturbations for any Re > 0
(Romanov 1973).

@ Re. ~ 177.2 (Orr 1907).

e Using non-quadratic Lyapunov functional: Re. ~ 252.4 (Fuentes,
Goluskin, Chernyshenko ‘22).

Motivations:

@ In practice, the velocity of the moving plane is stochastic. Does
stochasticity improve or worsen the stability threshold?

@ Most literature deals with periodic domains (in horizontal direction),
which makes the problem mathematically simpler. Infinite domain is a
more natural physical setting.
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Plane Couette flow

ur—Au+(u-V)u+Vp=0, divu =0,
u(x,1,t) = Re (U(t),0), u(x,0,t)=0.

One solution is the unsteady laminar flow u.(x,t) = Re(x(y,t),0) where

Xt — Xyy =0, x(1,t) = U(t), x(0,t) =0, x(y,0) = yU(0).

Theorem (Foldes, Pham, Whitehead ‘25)

Suppose {U(t)}+>0 is an Ornstein-Uhlenbeck process, i.e. dU =
a(l — U)dt + odW; for a,0 > 0. There exists a unique critical
Reynolds number Re. = Re.(a,c) in the energy stability analysis
such that u, is L?-asymptotically stable whenever Re < Re.. Also,

@ Re. is decreasing in 0.

1

@ lim,_ o+ Rec = 177.2 and Rec ~ 0™+ as 0 — 0.
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Plane Couette flow - Energy stability analysis

H={f € H(D,R): divf =0}.

Let v =u — uy. Then

/| (-, t)[2dxdy < —A(t /| t)|2dxdy

where
A(t) = inf / (IVw|? + Re x, wiws)dxdy

||WHL2(1>):1

Stability criterion

lim ff)\ )ds = E[\°] > 0 = [2-asymptotic stability

t—00
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Plane Couette flow - Adjust minimization problem

Minimum value is, unfortunately, not attainable due to lack of
compactness in infinite domain. Solution to Euler-Lagrange equation is
not a minimizer.

Let ¢ be the stream function, i.e. ¢y = —wo, ¢, = wy, and ¥ = (£, y)
be the Fourier transform of ¢(x, y) in the x-direction.

A(t)=inf (), Rexy) > A(t) = inf inf I(f, Rexy)
$eRZ(D) €20 | ren(e)
IVl 2=1 Je(F)=1
where
1
(fo) = [ (P + 280 4 1P - g€am(e'F) dy.
0
1
k() = /0 (E2/F2 + | )dy.
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Plane Couette flow - Adjust minimization problem

Stability criterion (weakened)

lim ff)\ )ds = E[AJ] >0 == L%-asymptotic stability

t—00

Minimizer to each minimization problem exists. Euler-Lagrange equation:
i
F7— (262 = A"+ (€8 = A€ + SReg(2x5F + x5, f) = 0.

Boundary conditions: f(0) = f(1) = ’(0) = f’(1) = 0.
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Plane Couette flow - Algorithm

7" — (262 = X)F" + (€8 — X3 + éRe£(2xff’ + x5 ) = 0.

Boundary conditions: f(0) = f(1) = ’(0) = ’(1) = 0.

Algorithm to find critical Reynolds number, i.e. one that gives E[)\f] =0

@ For each ¢ in an interval [a, b], sample x° from the stationary
distribution.

o Compute the smallest eigenvalue A(§) of the ODE.

e Minimize (&) over § € [a, b]. Call it A,.

e Compute the average of A, over all samples. This approximates E[\.].
@ Use Bisection method to adjust Re so that E[\,] ~ 0.
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Numerical results

a=1, Ny=Kmax=32, N=768, £¢=0.005 log-log plot of the tail
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Numerical results

normalized critical Reynolds

normalized critical Reynolds
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Couette flow
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Numerical results

Couette flow
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Thank You!
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