Complex Burgers singularities
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The purpose of this note is to give a correction to Equation (4.5) in the paper “Zeros of complex
caloric functions and singularities of complex viscous Burgers equation” by Pola¢ik and Sverdk (J
Reine Angew Math 616:205-217, 2008).

Proposition 1. Let v = v(z,t) be a comples-valued smooth function on a neighborhood Q C R? of
(0,0) such that v — vz = 0 and that (0,0) is the only zero of v in Q. Suppose that a = v,(0,0)
and b = v(0,0) are linearly independent over R. Then the function u = —2°2 satisfies
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where o is the sign of the imaginary part of ¢ = b/a, and & denotes the Dirac distribution at the
point (0,0).

Proof of Proposition 1. Let ¢ be a smooth function compactly supported on 2 and let
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where Q. = Q\[—¢,¢]?. By Divergence Theorem,
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where n = (nj,n2) is the normal vector on J€2. pointing outward. Note that double integral on
RHS(1) vanishes because u satisfies the Burgers equation pointwise in Q\{(0,0)}. We have
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One can rewrite (1) as
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Write Q. = CZ UCY, where C is the inner boundary (clockwise oriented square), and CZ" is the
outer boundary. Note that the integrands of I; and I vanish on CZ". One can rewrite I; as
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where I'. = v(CC). Viewing v(x,t) = £ +in = (§,n) as a transformation on the plane, we can
compute its Jacobian as follows:

(&)

O(z,t)

5:1? gt

= — = Im(0,v;).
Ne M §x77t gtnz ( T t)

At (z,t) = (0,0), the sign of the Jacobian is o, which is not zero. By the Inverse Function Theorem,
there exists a neighborhood of (0,0) on which v is a one-to-one mapping and on which the sign of
Im(v,v;) does not change and is equal to o. Thus, for sufficiently small ¢ > 0, I'; is a simple curve
with positive orientation if 0 = —1, and negative orientation if o = 1. Let ¢(z) = —2¢(z,t) where
z =&+ in =wv(z,t). By Cauchy-Pompeiu integral formula,
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Here D, is the region enclosed by I's, and 5 = %W& + i1)y), which is a continuous function in
(€,m). Since ¥ is Lebesgue integrable in a neighborhood of (0,0), the double integral in (2) tends

to0ase — O.Z Therefore,
hH(l) I = —2mioy(0) = 4wic(0,0).
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To evaluate Iz, denote f(x,t) = —2vy¢,. Then
_ y f(€>5) f(—s,s)
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I = _Zf(s,s)( LI )>ds+/61(f(s,s)—f(—s,s))ds.
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One can rewrite I as
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Note that v(e, s) = ac + bs + O(?) for all s € [—¢,¢]. Therefore,
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By Lebesgue’s Dominated Convergence Theorem,
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where C is the line segment from —b/a to b/a on the complex plane. Note that C' lies inside the

region C\{z € R : |z| > 1}. In this region, the function has an antiderivative Log (Hz)’
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where Log denotes the principal branch of the complex logarithm. Hence,
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where ¢ = b/a. To estimate {2}, we use the change of variables s = e7 and rewrite {2} as
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By Lebesgue’s Dominated Convergence Theorem, lin(1){2} = 0. Thus,
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Therefore,
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Numerical confirmation. A program written the Wolfram Mathematica language is attached to
this document. It confirms numerically that J. ~ RHS(3). In the program, we use:
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ni- €= (I-1) /5;

A= 2;
a = 0.1;
€ = 0.00005;

Q. = ImplicitRegion[((-1<x<-€||e<x<1)&&-1<t=<1)|]
(-e<x<e(-1<t<-€e]||le<st=cl)), {x, t}];

p[x_, t_] :=Piecewise[{{(x"*2-1)"3 % (t*2-1)"2, -1 <x<18& -1<t=<1}}, 0];

pXx[x_, t_] :=Piecewise[{{6X (x*2-1)"2% (t*2-1)"2, -1 <x=<18&&-1<t<1}}, 0];

PXX[X_, t_] := Piecewise[{{6 (—1+t2)2 (-1+x%) (-1+5x%), -1sx<18-1<t=<1}}, 0];

pt[x_, t_] :=Piecewise[{{4t (t"2-1) » (x*2-1)"3, -1 <x<18&-1<t<1}}, 0];

ufx_, t_]:=-2(1+cx)/ (Xx+ct+c*xx”2/2);

8+8cx+c? (-8t+4x?)
ux[x_, t_]: H

(2x+c (2t+x2))2

8(l+cx) (4+2cx+c? (-6t+x?))
uxx[x_, t_] :=- H
(2x+c (2t+x?))?

8c (1+cx)
ut[x_, t_]:

(2x+c (2t+x2))?
OIx_, t_1 t=p[A (X-a), Axt];
ot[x_, t_] :=2Apt[A (X-a), Axt];
dxX[X_, t_] = ApX[A (X-a), Axt];
SXX[X_, t_] = A2 poXX[A (X-a), Axt];
(*The double integral J.x)
NIntegrate[-u[X, t] * ($t[X, t] +u[X, t] *éx[X, t] / 2+ ¢xx[X, t]), {X, t} € Q]
(*The number 4rwicd (0,0) +o, (0,0)fLog(l—_c) *)
c 1l+c
N[Sign[Im[c]] *4*Pi* I « [0, O] +4/ C + ¢pX[0, O] *Log[(1-c) / (1+¢c)]]

.=+ NIntegrate: Numerical integration converging too slowly; suspect one of the following: singularity, value of the integration is O,

highly oscillatory integrand, or WorkingPrecision too small.
Out[18]=

17.6721 -11.5885 1

Out[19]=

17.6722 -11.5885 1



