Math 111 Online P. Sandoz, Instructor Name\_\_\_\_\_ Date\_\_\_\_\_

Exam 3

## **Chapter 4 Exponential and Logarithmic Functions**

Please show all your work in the space provided for each question.

1. Determine the inverse, if it exists, of the function  $f(x) = \frac{x+5}{4}$ . 1. \_\_\_\_\_

- 2. \_\_\_\_\_ 2. Find the inverse of the one-to-one function  $f(x) = 3x^5 + 1$ .
- 3. Use the function defined by  $f(x) = \sqrt{x-4}$ . Use interval notation. 3a. \_\_\_\_\_ a. What is the domain of *f*?
  - b. What is the range of *f*?
- 4. Graph the function  $f(x) = 3^x + 1$ . Describe its behavior as  $x \to \pm \infty$ . Be sure to label the tick marks.



- 3b. \_\_\_\_\_
- 4.\_\_\_\_\_

Directions: Use a calculator to find approximations for each of the following. Express answers to the *thousandths* place.

| 5.  | ln 241                                                                                                                                                        | 5  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 6.  | $\log_5 \frac{1}{125}$                                                                                                                                        | 6  |
| 7.  | Solve: $7^{3x} = 49^{4x+5}$                                                                                                                                   | 7  |
| 8.  | Solve: $\ln(2x-1) = 2$                                                                                                                                        | 8  |
| 9.  | Solve: $\log_2 x + \log_2 (x - 2) = 3$                                                                                                                        | 9  |
| 10. | Write in exponential form: $\log_3 \frac{1}{27} = -3$ .                                                                                                       | 10 |
| 11. | Write in logarithmic form: $16^{1/4} = 2$ .                                                                                                                   | 11 |
| 12. | Write the following expression as a sum or difference of logarithmic expressions. Eliminate exponents and radicals if possible: $\log \sqrt{\frac{x^3}{y^2}}$ | 12 |

13. Write the following expression as a logarithm of a single quantity, 13.

and simplify when possible:  $\frac{3}{5}\log x + \frac{4}{5}\log y$ 

Money:

• A principal P invested at an annual rate r compounded n times a year yields the amount A in the account at the end of t years is given by  $A = P(1 + \frac{r}{n})^{tn}$ .

• A principal P invested at an annual rate r compounded continuously yields an amount A in the account at the end of t years is given by  $A = Pe^{rt}$ .

15. Find the value in five years of an initial investment of \$500 at an interest rate of 3% compounded continuously.

15.

16. The magnitude of an earthquake is measured on the Richter scale 16. using the formula  $R(I) = \log \frac{I}{I_0}$ , where *I* represents the actual intensity of the earthquake and  $I_0$  is a baseline intensity used for comparisons. If an earthquake registers 5.8 on the Richter scale, express its intensity in terms of  $I_0$ .

17. The number of college students infected with a cold virus in a dormitory can be modeled by the logistic function  $N(t) = \frac{150}{1+2e^{-0.5t}}$ , where *t* is the number of days after the first infection. a. How many students were initially infected? 17a.

17b.\_\_\_\_\_

## Decay: A radioactive substance is decaying so that the number of grams present after t days is given by the function $A(t) = 2000e^{-0.02t}$ .

18. Find the amount of the substance, to the nearest tenth of a gram, present after 60 days.

18.\_\_\_\_\_

Before you finish this exam and present it to your proctor, please consider the following questions. If you simply answer "yes" without actually checking, lightning and acne will surely strike!

| 19. Did you label the intervals on your graph?                         | 19 |
|------------------------------------------------------------------------|----|
|                                                                        |    |
| 20. Did you round to the indicated level of precision in your answers? | 20 |