MATH 112, FINAL EXAM, SPRING 2023

INSTRUCTOR: TUAN PHAM

	Name	

Instructions:

- This is a closed-book exam, 2 hours long.
- A 4" x 6" handwritten single-sided note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.
- For Problems 1-8, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 9-11, make sure to show all necessary steps. Mysterious answers will receive little or no credit.

1.	(A)	B	\bigcirc	\bigcirc
2.	(A)	B	\bigcirc	\bigcirc
3.	(A)	B	\bigcirc	\bigcirc
4.	(A)	B	\odot	\bigcirc
5.	(A)	B	\bigcirc	\bigcirc
6.	(A)	B	\bigcirc	\bigcirc
7.	(A)	B	\bigcirc	\bigcirc
8.	(A)	B	\bigcirc	\bigcirc

Problem	Possible points	Earned points
1-8	16	
9	5	
10	6	
11	6	
Total	30	

Problem 1. (2 points) Which of the following is the range of the function $\arccos(x)$?

- A. $[0, \pi/2]$
- B. $[0, \pi]$
- C. $[0, 2\pi]$
- D. $[-\pi/2, \pi/2]$

Problem 2. (2 points) Choose the correct value of $\sin\left(\arcsin\left(\frac{2}{\sqrt{2}}\right)\right)$

- A. $\frac{\pi}{4}$
- B. $\frac{\sqrt{2}}{2}$
- C. $\frac{2}{\sqrt{2}}$
- D. undefined

Problem 3. (2 points) Choose the correct graph of the function $f(x) = \sin(x - \frac{\pi}{3})$.

Problem 4. (2 points) Choose the expression that is equal to $\cos(x - \frac{\pi}{4})$.

- A. $\frac{\sqrt{2}}{2}(\cos x + \sin x)$
- B. $\frac{\sqrt{2}}{2}(\cos x \sin x)$
- C. $\frac{\sqrt{2}}{2}(-\cos x + \sin x)$
- D. $\frac{\sqrt{2}}{2}(-\cos x \sin x)$

Problem 5. (2 points) How many solutions $x \in [0, 2\pi]$ does the equation $\cos(2x) = 0$ have?

- A. 2
- B. 3
- C. 4
- D. 5

Problem 6. (2 points) A point has Cartesian coordinates $\left(-\frac{1}{3}, \frac{\sqrt{3}}{3}\right)$. Choose the correct polar coordinates of this point.

- A. $(6, \frac{\pi}{3})$
- B. $(6, \frac{2\pi}{3})$
- C. $\left(\frac{2}{3}, -\frac{2\pi}{3}\right)$
- D. $\left(-\frac{2}{3}, -\frac{\pi}{3}\right)$

Problem 7. (2 points) Which of the following is equal to $(\sqrt{3} + i)^4$?

- A. $16 \operatorname{cis} \left(\frac{2\pi}{3}\right)$
- B. $16 \operatorname{cis}\left(\frac{4\pi}{3}\right)$
- C. $\frac{1}{16} \operatorname{cis} \left(\frac{2\pi}{3}\right)$
- D. $\frac{1}{16} \operatorname{cis} \left(\frac{4\pi}{3}\right)$

Problem 8. (2 points) Consider three points A(0,1), B(-2,3), C(1,-1). Find the length of the vector $\overrightarrow{AB} + \overrightarrow{CA}$.

- A. $\sqrt{7}$ C. 5
- B. 1 D. $\sqrt{17}$

Problem 9. (5 points) Find all $x \in [0, 2\pi]$ satisfying the equation $\sin(2x) = -\cos x$ Problem 10. (6 points) Use suitable trigonometric identities to prove that

$$\sin(3x) = 3\sin x - 4\sin^3 x$$

Make sure to state the name of each identity you use.

Problem 11. (6 points) Consider a triangle with vertices A, B, C. Suppose the angle at A is 30° , the angle at B is 45° , and the length of AB is 5. Find the missing angle and side lengths. Round your answers up to four digits after the decimal point.