## Final

Math 251 EOU Fall Name:

Show all work.

1. Find all inflection points of $f(x)=3 x^{4}+x^{3}-2 x+1$. Round all $y$-coordinates to three decimal places. Include a sign diagram for $f^{\prime \prime}$ so that it's clear these are true inflection points and not just points where $f^{\prime \prime}(x)=0$. ( 6 pts )
2. The position function of a particle is $s(t)=5 t \cos \left(t^{2}\right)$ where $t$ is in seconds and $s$ is in meters. What is the velocity of the particle when $t=1$ ? Round your answer to two decimal places, and include correct units. ( 5 pts )
3. A box with a square base and an open top is made by cutting a square out of each corner of a piece of sheet metal which is 4 cm on a side. Find the largest volume that such a box can have. Round the volume to two decimal places. ( 6 pts )
4. Find all critical numbers of $f(x)=\frac{x}{2 x^{2}+1}$. ( 6 pts )
5. The area of a circle is increasing at $5 \mathrm{~cm}^{2} / \mathrm{s}$. At what rate is the length of its radius increasing when the area is $100 \mathrm{~cm}^{2}$ ? ( 5 pts )
6. Three functions are graphed below ( $f$ is solid, $g$ is dashed, $h$ is dotted). One is an antiderivative of another. Fill in the blanks: " $\qquad$ is an antiderivative of $\qquad$ ". (3 pts)

7. Calculate $\int_{1}^{4}\left(3 x^{2}+10 x+2\right) d x$ exactly using the Evaluation Theorem. ( 6 pts )
8. Estimate $\sqrt[3]{7}$ by applying Newton's Method to the polynomial $f(x)=x^{3}-7$. Use an initial guess of $x_{0}=1$ and perform three iterations (so your answer will be $x_{3}$ ). Round your final answer to three decimal places. ( 6 pts )
9. Estimate the area under the graph of $f(x)=x^{2}+1$ between $a=2$ and $a=4$. Use $n=4$ and left endpoints for your $x_{i}^{*}$ sample points. Round your estimate to two decimal places. ( 6 pts )
10. Find the absolute minimum of the function $f(x)=3 x^{4}-5 x^{3}-9$ on $[-2,3]$. Round your answer to two decimal places. ( 6 pts )
11. If $f^{\prime \prime}(x)=6 x^{2}+4 x-1, f(0)=5$, and $f^{\prime}(0)=-3$, find $f(x)$. (5 pts)
12. The speed of a particle between $t=0$ and $t=3$ seconds is given in the following table. The speed is given at half-second intervals in the table. Find a lower estimate for the change in position of the particle between $t=0$ and $t=3$ seconds (the speed is increasing on the interval $[0,3]$ ). Round your estimate to two decimal places. ( 6 pts )

| $t$ (seconds) | 0 | 0.5 | 1.0 | 1.5 | 2.0 | 2.5 | 3.0 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $v(t)$ (meters per second) | 0 | 0.25 | 0.70 | 1.15 | 1.30 | 1.50 | 1.75 |

