Final

Math 251 EOU Fall Name: _____

Show all work.

1. Find all inflection points of $f(x) = 3x^4 + x^3 - 2x + 1$. Round all *y*-coordinates to three decimal places. Include a sign diagram for f'' so that it's clear these are true inflection points and not just points where f''(x) = 0. (6 pts)

2. The position function of a particle is $s(t) = 5t \cos(t^2)$ where t is in seconds and s is in meters. What is the velocity of the particle when t = 1? Round your answer to two decimal places, and include correct units. (5 pts)

3. A box with a square base and an open top is made by cutting a square out of each corner of a piece of sheet metal which is 4 cm on a side. Find the largest volume that such a box can have. Round the volume to two decimal places. (6 pts)

4. Find all critical numbers of $f(x) = \frac{x}{2x^2 + 1}$. (6 pts)

5. The area of a circle is increasing at 5 $\rm cm^2/s$. At what rate is the length of its radius increasing when the area is 100 $\rm cm^2$? (5 pts)

Three functions are graphed below (f is solid, g is dashed, h is dotted). One is an antiderivative of another. Fill in the blanks: "_____ is an antiderivative of _____". (3 pts)

7. Calculate $\int_{1}^{4} (3x^2 + 10x + 2) dx$ exactly using the Evaluation Theorem. (6 pts)

8. Estimate $\sqrt[3]{7}$ by applying Newton's Method to the polynomial $f(x) = x^3 - 7$. Use an initial guess of $x_0 = 1$ and perform three iterations (so your answer will be x_3). Round your final answer to three decimal places. (6 pts)

9. Estimate the area under the graph of $f(x) = x^2 + 1$ between a = 2 and a = 4. Use n = 4 and left endpoints for your x_i^* sample points. Round your estimate to two decimal places. (6 pts)

10. Find the absolute minimum of the function $f(x) = 3x^4 - 5x^3 - 9$ on [-2, 3]. Round your answer to two decimal places. (6 pts)

11. If $f''(x) = 6x^2 + 4x - 1$, f(0) = 5, and f'(0) = -3, find f(x). (5 pts)

12. The speed of a particle between t = 0 and t = 3 seconds is given in the following table. The speed is given at half-second intervals in the table. Find a *lower* estimate for the change in position of the particle between t = 0 and t = 3 seconds (the speed is increasing on the interval [0,3]). Round your estimate to two decimal places. (6 pts)

t (seconds)	0	0.5	1.0	1.5	2.0	2.5	3.0
v(t) (meters per second)	0	0.25	0.70	1.15	1.30	1.50	1.75