MATH 251, FINAL EXAM, FALL 2022

INSTRUCTOR: TUAN PHAM

Name

Instructions:

e This is a closed-book exam, 90 minutes long.

e A single sided, handwritten, 3” x 5” note card is allowed. A scientific calculator is allowed.
Graphing/programmable/transmittable calculators are not allowed.

e For Problems 1-16, fill in the bubbles on this front page. To each problem, only one answer is
correct. Problems 9-16 are for bonus credit.

e For Problems 17, 18 and 19, make sure to show all necessary steps. Mysterious answers will
receive little or no credit.

. ®®OO 0. ®®OO
2. ®®OO 1. O®O0O
3. ®O®OO 2. ®@O®OO
4 O®O®OO 3. ®OOO
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6. O®®OO 5. O®®OO
7T O®O0O 6. ®®OO®
8. ®O®OO
9. ®@®OO
Problem Possible points | Earned points
1-8 16
17 5
18 5
19 5
Total 31
Bonus (9-16) 8
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Problem 1. (2 points) The derivative of V22 + x is

A, 2z +1

B 2x+1
R AV

o L
T 2Vz24x

D 1
C o 2y2x+1

Problem 2. (2 points) Let f(z) = sin (Z). Which of the following is the correct value of /(1) ?

A -1

D.x

Problem 3. (2 points) Let = and y be related to each other through the equation zy + 3? = z.
Viewing y as a function of x, find y'.

1-y
A. T2y

—y
B. - 5

1-3y
C. 1=

D. 1-2y

Problem 4. (2 points) The linearization of the function f(x) = /z when z ~ 1 is
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Problem 5. (2 points) All the critical numbers of f(z) = 2® + 22 — x are

A. 0 and %@

1
B. —3
C. —1and %
D. 1and 3

Problem 6. (2 points) Let f be a function that is continuous on [—1, 1], differentiable on (—1,1), and
f(—=1) =3, f(1) = —1. Which of the following statement is correct?

A. There exists a number ¢ € (—1,3) such that f/(c) = —2.
B. There exists a number ¢ € (—1, 3) such that f'(c) = 2.
C. There exists a number ¢ € (—1,1) such that f'(c) = —2.

D. There exists a number ¢ € (—1,1) such that f'(c) = 0.

Problem 7. (2 points) Let f be a function that is continuous on [—1, 1], differentiable on (—1,1), and
f(—=1) =3, f(1) = —1. Which of the following results says that the equation f(z) = 0 has at least one
root?

A. Fermat’s Lemma
B. Rolle’s Theorem
C. Mean Value Theorem

D. Intermediate Value Theorem

Problem 8. (2 points) Let f be a differentiable function such that f’ is continuous and f’(z) < 0 for
x < 1and f'(z) > 0 for z > 1. Which of the following statement is correct?

A. f attains a local minimum at z = 1.
B. f attains a local maximum at x = 1.
C. z =1 is an inflection point of f.

D. The equation f(x) =1 has at least one root.
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Problem 9. (1 point) Find all the horizontal asymptotes of f(z) = >3-
A y=0
B. z=1

C. y=0andz =1
D. No horizontal asymptotes

Problem 10. (1 point) Choose the correct value of

. 241
Iim —
T——00 T
A1
B. -1
C. 0
D. —x

Problem 11. (1 point) Let
r+1 if z< -1,
fz) =

cx—1 if z>-1.

For which value of ¢ is f a continuous function?

A1l
B. 0
C. -1
D. -2

Problem 12. (1 point) The derivative of f(z) = zsin (1) is

xT

A. cos (%)
B. cos (—:C%)
C. —;12 cos (%)

D. sin (l) — r%cos (l)

xT
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Problem 13. (1 point) The tangent line to the parabola y = x? at the point (1,1) is
A y=z

B. y=222-2z+1

C. y=2x-3

D. y=2x—-1

Problem 14. (1 point) The tangent line to the unit circle % +y? = 1 at the point (2,3) is

A3
B. -3
C. %2
D. —3

Problem 15. (1 point) Suppose f/(1) = 0. Choose the correct statement.

A. x =11is a critical number of f.

B. x =1 is an z-intercept of f.

C. z =1 is an inflection point of f.

D. z =1 is a vertical asymptote of f.

Problem 16. (1 point) On the interval [~2, —1], the graph of the function f(x) = 23 — 4z is
A. increasing

B. decreasing

C. concave downward

D. concave upward
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Problem 17. (5 point) Let f(z) = 23 — 3.

a) Find all the critical numbers of f.

) Draw a fluctuation chart of f. Indicate in that chart the local minimum and local maximum.
) Find the inflection point of f.

) Sketch the graph of f.
)

(e) Find the minimum and maximum value of f when z € [—1.7,1.7]

(
(b
@
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Problem 18. (5 points) Use Newton’s method to evaluate /2 with allowable error 0.0001. Make sure
to write down the recursion formula before plugging in numbers.
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Problem 19. (5 points) Show that the function f(z) = 2z + sinx has exactly one real root.



