MATH 251, MIDTERM, FALL 2022

INSTRUCTOR: TUAN PHAM

Name

Instructions:

- This is a closed-book exam, 50 minutes long.
- A single sided, handwritten, 3 " x 5 " note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.
- For Problems 1-7, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 8, 9 and 10, make sure to show all necessary steps. Mysterious answers will receive little or no credit.

1.	(A)
2.	(A) (B) (C)
3.	(A) (B) (C) (D)
4.	(A) (B) (C) (D)
5.	(A) (B) (C) (D)
6.	(A) (B) (C)
7.	(A) (B) (C) (D)

Problem	Possible points	Earned points
$1-7$	14	
8	5	
9	5	
10	5	
Total	29	

Problem 1. (2 points) Let $f(x)=x^{2}+1$ and $g(x)=\frac{1}{x}$. Which of the following is the composite function $f \circ g$? That is, function $f(g(x))$.
A. $\frac{1}{x^{2}+1}$
B. $\frac{2}{x^{2}}$
C. $\frac{1}{x^{2}}+1$
D. $\frac{1}{(x+1)^{2}}$

Problem 2. (2 points) Suppose a function f is not defined at $x=a$. Which of the following statements is false?
A. f is not continuous at a.
B. f is not differentiable at a.
C. $\lim _{x \rightarrow a} f(x)$ does not exist.

Problem 3. (2 points) If the $\lim _{x \rightarrow a^{-}} f(x) \neq \lim _{x \rightarrow a^{+}} f(x)$ then f is discontinuous at a. True or false?
A. True
B. False

Problem 4. (2 points) Choose the correct value of the limit

$$
\lim _{x \rightarrow-\infty} \frac{x}{\sqrt{x^{2}+1}}
$$

A. 1
B. -1
C. ∞
D. $-\infty$

Problem 5. (2 points) Choose the correct value of the limit

$$
\lim _{x \rightarrow \infty} \frac{x\left(2 x^{2}-3 x+5\right)}{\left(x^{2}+1\right)(x+1)}
$$

A. 1
B. 2
C. 0
D. ∞

Problem 6. (2 points) Let $f(x)=x+\frac{x}{x+1}$. Find $f^{\prime}(1)$.
A. $-1 / 4$
B. $1 / 4$
C. $3 / 4$
D. $5 / 4$

Problem 7. (2 points) The figure below contains the graphs of f, f^{\prime}, and $f^{\prime \prime}$. The graphs of these functions in that order are

A. $\mathrm{a}, \mathrm{b}, \mathrm{c}$
B. $\mathrm{a}, \mathrm{c}, \mathrm{b}$
C. $\mathrm{b}, \mathrm{a}, \mathrm{c}$
D. $\mathrm{b}, \mathrm{c}, \mathrm{a}$

Problem 8. (5 points) Evaluate the polynomial $x^{3}-3 x+1$ at $x=-2,-1,0,1,2$ and explain why it has three distinct roots.

Problem 9. (5 points) Use the limit laws you learned to find the limit

$$
\lim _{x \rightarrow-1} \frac{x^{2}-2 x-3}{x^{2}+4 x+3}
$$

Problem 10. (5 points) Find the point on the parabola $y=x^{2}+x$ at which the tangent line to the parabola is parallel to the line $y=3 x$. What is the equation for the tangent line at that point?

