MATH 251 - Final Exam

1. [8pts] Sunlight is shining down on a pond. The intensity of light below the surface drops off rapidly as a function of depth according to a function $L(d)$ where L is the intensity in units of lux and d is distance in units of meters.

Describe, in your own words, the physical meaning of the equation

$$
L^{\prime}(5)=-0.2
$$

(A complete explanation should indicate what units should be attached to the number -0.2).
2. [8pts] Find the general anti-derivative $f(x)$ of the function

$$
f^{\prime}(x)=\sin (2 x)+x^{2}
$$

3. [12pts] Calculate the following limit:

$$
\lim _{h \rightarrow 0} \frac{\frac{1}{(x+h)^{2}}-\frac{1}{x^{2}}}{h}
$$

4. [8pts] Find a real number c so that the following function is continuous.
$f(x)=\left\{\begin{array}{lll}x^{2}-x & \text { if } & x<-1 \\ 5 x+c & \text { if } & x \geq-1\end{array}\right\}$
5. [12pts] Find, exactly, the largest and smallest values assumed by the function $f(x)=x^{3}-5 x^{2}+3 x+1$ on the domain $[0,2]$.
6. [10pts] Sketch a graph of the region whose area is described by the integral $\int_{0}^{4} 4 x-x^{2} d x$. Then use the Fundamental Theorem of Calculus to calculate that area.
7. [12pts] Since the Earth rotates once every 24 hours, the rays of the setting sun strike the ground at an angle that is decreasing at a rate of $\frac{360 \text { degrees }}{24 \text { hours }}$. How fast is the length of the shadow of a 40 foot high flagpole increasing when the angle of the sun's rays strike ground at a 30° angle? (Draw a picutre of the situation and then solve the problem).
8. [12pts] Use curve sketching techniques to sketch the graph of the function

$$
f(x)=\frac{1}{x^{2}+1} .
$$

Be sure to include the exact values of any maxima, minima, and inflection points, together with any asymptotic behavior.
9. [8pts] It is a fact (which you'll learn about if you take Calc II) that the function $f(x)=e^{x}$ is its own derivative. That is, $\frac{d}{d x}\left(e^{x}\right)=e^{x}$. Use this fact to answer the question below:

Let $h(x)$ be some differentiable function and let $g(x)=e^{h(2 x)}$. Find an expression for $g^{\prime}(x)$.
10. [10pts] Let $f(x)=x^{3}-5 x+1$. Note that $f(0)=1$ while $f(1)=-3$, which means that $f(x)$ must be zero for some x in the interval $(0,1)$. Use $x_{1}=0$ as your initial guess and apply two iterations of Newton's method to estimate the value of the zero of this function.

