MATH 252, FINAL EXAM, WINTER 2023

INSTRUCTOR: TUAN PHAM

	Name	

Instructions:

- This is a closed-book exam, 2 hours long.
- A 4" x 6" handwritten single-sided note card is allowed. The Table of Integral in References 6-10 in the back of the textbook is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.
- For Problems 1-12, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 13, 14 and 15, make sure to show all necessary steps. Mysterious answers will receive little or no credit.

1.	A B C D
2.	$A \oplus C \oplus$
3.	$A \otimes C \otimes$
4.	$(A \ B \ C \ D)$
5.	$(A \ B \ C \ D)$
6.	$(A \ B \ C \ D)$
7.	$(A \ B \ C \ D)$
8.	(A) (B) (C) (D)
9.	$(A \ B \ C \ D)$
10.	$(A \ B \ C \ D)$
11.	$(A \ B \ C \ D)$
12.	$(A \ B \ C \ D)$

Problem	Possible points	Earned points
1-10	20	
11-12 (extra credit)	4	
13	5	
14	5	
15	5	
Total	35	

Problem 1. (2 points) Choose the correct value of the limit

$$\lim_{x \to \infty} \frac{1 - e^{-2x}}{1 + e^{-x}}$$

A. 0

- B. 1
- C. -2
- D. ∞

Problem 2. (2 points) Choose the correct derivative of the function $f(x) = \sqrt{1+2^x}$.

A.
$$\frac{\ln 2}{2} \frac{2^x}{\sqrt{1+2^x}}$$

- $B. \quad \frac{1}{2\ln 2} \frac{2^x}{\sqrt{1+2^x}}$
- C. $\sqrt{2^x(\ln 2)}$

D.
$$\frac{1}{2} \frac{1}{\sqrt{2^x(\ln 2)}}$$

Problem 3. (2 points) Choose the correct derivative of the function $f(x) = \arctan(x^2)$.

A. $\frac{1}{x^4+1}$ B. $\frac{2x}{x^2+1}$ C. $\frac{1}{(x^2+1)^2}$ D. $\frac{2x}{x^4+1}$

Problem 4. (2 points) The domain of the function $f(x) = \tanh(x)$ is

- A. $(-\infty,\infty)$
- B. (-1, 1)
- C. $(0, \pi)$
- D. $(0, \pi/2)$

Problem 5. (2 points) Evaluate the limit

$$\lim_{x \to 1} \frac{x^3 - 3x + 2}{x^3 - x^2 - x + 1}$$

A. 0

B. 1

C. 3/2

D. Does not exist

Problem 6. (2 points) Evaluate the integral

$$\int_0^\pi \sin(x)\cos^2(x)dx$$

A. -2/3

B. 2/3

- C. 4
- D. $\pi^3/3$

Problem 7. (2 points) The area of the region under the curve $y = \ln x$ and above the x-axis, between x = 1 and x = 2, is

- A. $2\ln(2) 2$
- B. $2\ln(2) 3$
- C. $2\ln(2) + 1$
- D. $2\ln(2) 1$

Problem 8. (2 points) Find the value of

$$\int_1^\infty \frac{1}{x^2} dx$$

- A. 2
- B. -1
- C. 1

D. Does not exist

Problem 9. (2 points) Choose the correct derivative of $f(x) = x^x$.

- A. 1
- B. x^x
- C. $(\ln x)x^x$
- D. $(1 + \ln x)x^x$

Problem 10. (2 points) The function $f(x) = e^{-x+3\ln x}$ has an equivalent form as

- A. $x^3 e^{-x}$
- B. $3xe^{-x}$
- C. e^{2x}
- D. $e^{-x}3^x$

Problem 11. (2 points) Choose the correct antiderivative of the function $f(x) = \frac{1}{9+4x^2}$.

- A. $\frac{1}{3} \arctan\left(\frac{2x}{3}\right) + C$
- B. $\frac{1}{6} \arctan\left(\frac{2x}{3}\right) + C$
- C. $\frac{1}{4} \arctan\left(\frac{x}{3}\right) + C$
- D. $\frac{1}{6} \arctan\left(\frac{x}{3}\right) + C$

Problem 12. (2 points) Let *E* be the solid obtained by rotating the region under the curve y = 2x, $0 \le x \le 1$, about the *x*-axis. The volume of *E* is

- A. π
- B. $2\pi/3$
- C. $4\pi/3$
- D. $\pi/3$

Problem 13. (5 points) Use the method of substitution or integration by parts to evaluate

$$\int_0^\pi x \sin(2x) dx$$

Problem 14. (5 points) Evaluate the integral

$$\int_2^3 \frac{x}{x^2 + x - 2} dx$$

Problem 15. (5 points) Evaluate the area under the curve $y = 4 - x^2$ and above the line y = 3.