MATH 252, FINAL EXAM, WINTER 2023

INSTRUCTOR: TUAN PHAM

Name

Instructions:

- This is a closed-book exam, 2 hours long.
- A 4 " x $6 "$ handwritten single-sided note card is allowed. The Table of Integral in References $6-10$ in the back of the textbook is allowed. A scientific calculator is allowed. Graphing/ programmable/ transmittable calculators are not allowed.
- For Problems 1-12, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 13, 14 and 15, make sure to show all necessary steps. Mysterious answers will receive little or no credit.

1.	(A) (B) (C) (D)
2.	(A) (B) (C) (D)
3.	(A) (B) (C) (D)
4.	(A) (B) (C) (D)
5.	(A) (B) (C) (D)
6.	(A) (B) (C) (D)
7.	(A) (B) (C) (D)
8.	(A) (B) (C) (D)
9.	(A) (B) (C) (D)
10.	(A) (B) (C) (D)
11.	(A) (B) (C) (D)
12.	(A) (B) (C) (D)

Problem	Possible points	Earned points
$1-10$	20	
$11-12$ (extra credit)	4	
13	5	
14	5	
15	5	
Total	35	

Problem 1. (2 points) Choose the correct value of the limit

$$
\lim _{x \rightarrow \infty} \frac{1-e^{-2 x}}{1+e^{-x}}
$$

A. 0
B. 1
C. -2
D. ∞

Problem 2. (2 points) Choose the correct derivative of the function $f(x)=\sqrt{1+2^{x}}$.
A. $\frac{\ln 2}{2} \frac{2^{x}}{\sqrt{1+2^{x}}}$
B. $\frac{1}{2 \ln 2} \frac{2^{x}}{\sqrt{1+2^{x}}}$
C. $\sqrt{2^{x}(\ln 2)}$
D. $\frac{1}{2} \frac{1}{\sqrt{2^{x}(\ln 2)}}$

Problem 3. (2 points) Choose the correct derivative of the function $f(x)=\arctan \left(x^{2}\right)$.
A. $\frac{1}{x^{4}+1}$
B. $\frac{2 x}{x^{2}+1}$
C. $\frac{1}{\left(x^{2}+1\right)^{2}}$
D. $\frac{2 x}{x^{4}+1}$

Problem 4. (2 points) The domain of the function $f(x)=\tanh (x)$ is
A. $(-\infty, \infty)$
B. $(-1,1)$
C. $(0, \pi)$
D. $(0, \pi / 2)$

Problem 5. (2 points) Evaluate the limit

$$
\lim _{x \rightarrow 1} \frac{x^{3}-3 x+2}{x^{3}-x^{2}-x+1}
$$

A. 0
B. 1
C. $3 / 2$
D. Does not exist

Problem 6. (2 points) Evaluate the integral

$$
\int_{0}^{\pi} \sin (x) \cos ^{2}(x) d x
$$

A. $-2 / 3$
B. $2 / 3$
C. 4
D. $\pi^{3} / 3$

Problem 7. (2 points) The area of the region under the curve $y=\ln x$ and above the x-axis, between $x=1$ and $x=2$, is
A. $2 \ln (2)-2$
B. $2 \ln (2)-3$
C. $2 \ln (2)+1$
D. $2 \ln (2)-1$

Problem 8. (2 points) Find the value of

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x
$$

A. 2
B. -1
C. 1
D. Does not exist

Problem 9. (2 points) Choose the correct derivative of $f(x)=x^{x}$.
A. 1
B. x^{x}
C. $(\ln x) x^{x}$
D. $(1+\ln x) x^{x}$

Problem 10. (2 points) The function $f(x)=e^{-x+3 \ln x}$ has an equivalent form as
A. $x^{3} e^{-x}$
B. $3 x e^{-x}$
C. $e^{2 x}$
D. $e^{-x} 3^{x}$

Problem 11. (2 points) Choose the correct antiderivative of the function $f(x)=\frac{1}{9+4 x^{2}}$.
A. $\frac{1}{3} \arctan \left(\frac{2 x}{3}\right)+C$
B. $\frac{1}{6} \arctan \left(\frac{2 x}{3}\right)+C$
C. $\frac{1}{4} \arctan \left(\frac{x}{3}\right)+C$
D. $\frac{1}{6} \arctan \left(\frac{x}{3}\right)+C$

Problem 12. (2 points) Let E be the solid obtained by rotating the region under the curve $y=2 x$, $0 \leq x \leq 1$, about the x-axis. The volume of E is
A. π
B. $2 \pi / 3$
C. $4 \pi / 3$
D. $\pi / 3$

Problem 13. (5 points) Use the method of substitution or integration by parts to evaluate

$$
\int_{0}^{\pi} x \sin (2 x) d x
$$

Problem 14. (5 points) Evaluate the integral

$$
\int_{2}^{3} \frac{x}{x^{2}+x-2} d x
$$

Problem 15. (5 points) Evaluate the area under the curve $y=4-x^{2}$ and above the line $y=3$.

