MATH 252, MIDTERM, WINTER 2023

INSTRUCTOR: TUAN PHAM

	Name	

Instructions:

- This is a closed-book exam, 50 minutes long.
- A 4" x 6" handwritten single-sided note card is allowed. A scientific calculator is allowed. Graphing/programmable/transmittable calculators are not allowed.
- For Problems 1-7, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 8, 9 and 10, make sure to show all necessary steps. Mysterious answers will receive little or no credit.

1.	(A) (B	C	D
2.	(A) (B	C	D
3.	(A) (B	C	D
4.	(A) (B	C	D
5.	(A) (B	C	D
6.	(A) (B	C	D
7.	(A) (B) (\odot	D

Problem	Possible points	Earned points
1-7	14	
8	5	
9	5	
10	5	
Total	29	

Problem 1. (2 points) Choose the correct antiderivative of the function $f(x) = x - \sin(2x)$.

- A. $1 2\cos(2x)$
- B. $\frac{x^2}{2} \frac{\cos(2x)}{2}$
- C. $\frac{x^2}{2} + \frac{\cos(2x)}{2} + 1$
- D. $1 + 2\cos(2x)$

Problem 2. (2 points) Choose the correct sigma notation for the sum

$$1 + \frac{2}{3} + \frac{3}{3^2} + \frac{4}{3^3} + \frac{5}{3^4} + \dots + \frac{100}{3^{99}}$$

A.
$$\sum_{k=1}^{99} \frac{k+1}{3^{k}}$$

B.
$$\sum_{k=1}^{100} \frac{k}{3^{k-1}}$$

C.
$$\sum_{k=0}^{100} \frac{1}{3^{k}}$$

D.
$$\sum_{k=1}^{100} \frac{3^{k}-1}{3^{k}}$$

Problem 3. (2 points) The function

$$f(x) = \frac{2x - 1}{(-x^2 + x)^2}$$

has an antiderivative

$$F(x) = \frac{1}{-x^2 + x}$$

What is the area under the curve y = f(x) where $2 \le x \le 3$?

A. 11/18

- B. 11/12
- C. 1/3
- D. 2/3

Problem 4. (2 points) The limit

$$\lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{k}{n}\right)^2 \frac{1}{n}$$

represents which of the following integrals?

A.
$$\int_{0}^{1} x^{2} dx$$

B.
$$\int_{0}^{1} x^{3} dx$$

C.
$$\int_{0}^{1} \frac{1}{x^{2}} dx$$

D.
$$\int_{0}^{2} \frac{1}{x^{2}} dx$$

Problem 5. (2 points) Evaluate the integral $\int_{0}^{3} |x - 1| dx$

- A. 7/2
- B. 9/2
- C. 3/2
- D. 5/2

Problem 6. (2 points) Find the inverse of the function $f(x) = \frac{x^2-1}{x^2+1}$ when x > 0.

A.
$$-\sqrt{\frac{1-y}{1+y}}$$

B. $\sqrt{\frac{1-y}{1+y}}$
C. $-\sqrt{\frac{1+y}{1-y}}$
D. $\sqrt{\frac{1+y}{1-y}}$

Problem 7. (2 points) Choose the correct value of the limit

$$\lim_{x \to \infty} \left[\ln(2x^{10} + x^9) - \ln(x^{10}) \right]$$

A. $\ln 2$

B. 3/4

C. 1

D. DNE

Problem 8. (5 points) Use the right-point Riemann sum with n = 4 to estimate the area under the curve $y = \ln x$ where $1 \le x \le 2$. Round your result to four decimal places.

Problem 9. (5 points) Find

$$\int x\sin(x^2+1)dx$$

using the substitution $u = x^2 + 1$.

Problem 10. (5 points) Evaluate

$$\int_0^1 x\sqrt{2-x}\,dx$$