MATH 252, MIDTERM, WINTER 2023

INSTRUCTOR: TUAN PHAM

Instructions:

- This is a closed-book exam, 50 minutes long.
- A 4" x $6 "$ handwritten single-sided note card is allowed. A scientific calculator is allowed. Graphing/ programmable/ transmittable calculators are not allowed.
- For Problems 1-7, fill in the bubbles on this front page. To each problem, only one answer is correct.
- For Problems 8, 9 and 10, make sure to show all necessary steps. Mysterious answers will receive little or no credit.

1.	(A) (B) (C) (D)
2.	(A) (B) (C) (D)
3.	(A) (B) (C) (D)
4.	(A) (B) (C) (D)
5.	(A) (B) (C) (D)
6.	(A) (B) (C) (D)
7.	(A) (B) (C) (D)

Problem	Possible points	Earned points
$1-7$	14	
8	5	
9	5	
10	5	
Total	29	

Problem 1. (2 points) Choose the correct antiderivative of the function $f(x)=x-\sin (2 x)$.
A. $1-2 \cos (2 x)$
B. $\frac{x^{2}}{2}-\frac{\cos (2 x)}{2}$
C. $\frac{x^{2}}{2}+\frac{\cos (2 x)}{2}+1$
D. $1+2 \cos (2 x)$

Problem 2. (2 points) Choose the correct sigma notation for the sum

$$
1+\frac{2}{3}+\frac{3}{3^{2}}+\frac{4}{3^{3}}+\frac{5}{3^{4}}+\ldots+\frac{100}{3^{99}}
$$

A. $\sum_{k=1}^{99} \frac{k+1}{3^{k}}$
B. $\sum_{k=1}^{100} \frac{k}{3^{k-1}}$
C. $\sum_{k=0}^{100} \frac{1}{3^{k}}$
D. $\sum_{k=1}^{100} \frac{3^{k}-1}{3^{k}}$

Problem 3. (2 points) The function

$$
f(x)=\frac{2 x-1}{\left(-x^{2}+x\right)^{2}}
$$

has an antiderivative

$$
F(x)=\frac{1}{-x^{2}+x}
$$

What is the area under the curve $y=f(x)$ where $2 \leq x \leq 3$?
A. $11 / 18$
B. $11 / 12$
C. $1 / 3$
D. $2 / 3$

Problem 4. (2 points) The limit

$$
\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\frac{k}{n}\right)^{2} \frac{1}{n}
$$

represents which of the following integrals?
A. $\int_{0}^{1} x^{2} d x$
B. $\int_{0}^{1} x^{3} d x$
C. $\int_{0}^{1} \frac{1}{x^{2}} d x$
D. $\int_{0}^{2} \frac{1}{x^{2}} d x$

Problem 5. (2 points) Evaluate the integral $\int_{0}^{3}|x-1| d x$
A. $7 / 2$
B. $9 / 2$
C. $3 / 2$
D. $5 / 2$

Problem 6. (2 points) Find the inverse of the function $f(x)=\frac{x^{2}-1}{x^{2}+1}$ when $x>0$.
A. $-\sqrt{\frac{1-y}{1+y}}$
B. $\sqrt{\frac{1-y}{1+y}}$
C. $-\sqrt{\frac{1+y}{1-y}}$
D. $\sqrt{\frac{1+y}{1-y}}$

Problem 7. (2 points) Choose the correct value of the limit

$$
\lim _{x \rightarrow \infty}\left[\ln \left(2 x^{10}+x^{9}\right)-\ln \left(x^{10}\right)\right]
$$

A. $\ln 2$
B. $3 / 4$
C. 1
D. DNE

Problem 8. (5 points) Use the right-point Riemann sum with $n=4$ to estimate the area under the curve $y=\ln x$ where $1 \leq x \leq 2$. Round your result to four decimal places.

Problem 9. (5 points) Find

$$
\int x \sin \left(x^{2}+1\right) d x
$$

using the substitution $u=x^{2}+1$.

Problem 10. (5 points) Evaluate

$$
\int_{0}^{1} x \sqrt{2-x} d x
$$

