Lab 3

In this lab, we will practice with Mathematica the following topics:

- Find the limits and derivatives of a function.
- Visualize exponential, inverse trigonometric, and inverse hyperbolic trigonometric functions.
- Compute and visualize inverse functions.

1 Reminder about getting access

There are two ways to get free access to Mathematica:
A) Install three free components: Wolfram Engine, JupyterLab, and WolframLanguageForJupyter. You can use the unlimited computing power of Mathematica on your own computer, with Jupyter Notebook acting as a user interface. The instruction is here:

```
https://web.engr.oregonstate.edu/~phamt3/Resource/Wolfram-Mathematica-with-JupyterLab.pdf
```

B) Use the cloud-based version of Mathematica: https://www.wolframcloud.com

In this option, you are limited to about 8 minutes of computation per month. Files stored on the cloud will be deleted after 60 days.

2 Find limits

(1) Type Limit $\left[\left(E^{\wedge}\left(x^{\wedge} 2\right)-1\right) / x^{\wedge} 2, x->0\right]$, then Shift+Enter.
(2) Type $\mathrm{a}=\operatorname{Limit}\left[(1+1 / \mathrm{x})^{\wedge} \mathrm{x}, \mathrm{x}->\right.$ Infinity $]$, then Shift+Enter.

Type $N[a, 6]$, then Shift+Enter.
Type N[a,10], then Shift+Enter.
Type N[a,15], then Shift+Enter.
(3) Use Mathematica to do Problems 10 of Section 5.8 on page 311 of the textbook. Round the result to 4 decimal places.
(4) Use Mathematica to do Problems 12 of Section 5.8. Round the result to 4 decimal places.
(5) Use Mathematica to do Problems 33 of Section 5.8. Round the result to 4 decimal places.
(6) Use Mathematica to do Problems 34 of Section 5.8. Round the result to 4 decimal places.

3 Find derivatives

(7) Type $f[x]:=\operatorname{Cos}[x]$, then Shift+Enter.

Type $f^{\prime}[x]$, then Shift+Enter.
Type f', ' x$]$, then Shift+Enter.
(8) Graph the function $f(x)=a^{x}$ on the interval $[-2,2]$ with $a=\frac{1}{6}, \frac{1}{3}, \frac{1}{2}, 1,2,3,6$. What do you observe about the increasing/ decreasing behaviors of those functions for each value of a ?
(9) For the above values of a, find the slope of the curve at $x=0$. In other words, find $f^{\prime}(0)$. What is the slope of the curve at $x=0$ when $a=e$?
(10) Find the derivative of the function $f(x)=x^{x}$.

4 Optimization problem

(11) Graph the function $f(x)=x^{x}$ on the intervals $[0,1],[1,3]$, and $[0,3]$. Does this function have a minimum value and/or maximum value for $x>0$?
(12) Find all the critical numbers of f.
(13) Find the minimum value of f and the value of x where the minimum occurs. Express those values precisely and also numerically (4 decimal places).

5 The inverse trigonometric functions

The inverse sine, cosine, tangent, cotangent in Mathematica are ArcSin, ArcCos, ArcTan, ArcCot. The inverse hyperbolic sine, cosine, tangent, cotangent in Mathematica are ArcSinh, ArcCosh, ArcTanh, ArcCoth.
(14) Plot the function $f(x)=\arcsin (x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(15) Plot the function $f(x)=\arccos (x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(16) Plot the function $f(x)=\arctan (x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(17) Plot the function $f(x)=\operatorname{arccot}(x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(18) Plot the function $f(x)=\operatorname{arcsinh}(x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(19) Plot the function $f(x)=\operatorname{arccosh}(x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(20) Plot the function $f(x)=\operatorname{arctanh}(x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.
(21) Plot the function $f(x)=\operatorname{arccoth}(x)$ and determine from the graph the domain, range, asymptotic behaviors of this function.

6 Compute and visualize inverse functions

(22) Let $f(x)=\frac{2 x+1}{3 x-2}$. To find the inverse of this function, we set $x=\frac{2 y+1}{3 y-2}$ and solve for y. Try

$$
\text { Solve }[x==(2 y+1) /(3 y-1), y]
$$

What do you get for $f^{-1}(x)$?
(23) The above problem can be solved by hand. However, the following problem is much harder to do by hand. Let $f(x)=x^{3}+x$. Use derivative to explain why it has an inverse.
(24) Then find the inverse using the command Solve shown above. (Note that Mathematica will give three solutions, two of which are complex valued. You should only take the real valued expression.)

7 To turn in

Submit your implementation of Exercises (1) - (24) as a single pdf file.

