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Abstract

Important ecological phenomena are often observed
indirectly. Consequently, probabilistic latent variable
models provide an important tool, because they can in-
clude explicit models of the ecological phenomenon
of interest and the process by which it is observed.
However, existing latent variable methods rely on hand-
formulated parametric models, which are expensive to
design and require extensive preprocessing of the data.
Nonparametric methods (such as regression trees) auto-
mate these decisions and produce highly accurate mod-
els. However, existing tree methods learn direct map-
pings from inputs to outputs—they cannot be applied to
latent variable models.

This paper describes a methodology for integrating non-
parametric tree methods into probabilistic latent vari-
able models by extending functional gradient boosting.
The approach is presented in the context of occupancy-
detection (OD) modeling, where the goal is to model the
distribution of a species from imperfect detections. Ex-
periments on 12 real and 3 synthetic bird species com-
pare standard and tree-boosted OD models (latent vari-
able models) with standard and tree-boosted logistic re-
gression models (without latent structure). All methods
perform similarly when predicting the observed vari-
ables, but the OD models learn better representations of
the latent process. Most importantly, tree-boosted OD
models learn the best latent representations when non-
linearities and interactions are present.

For many problems in ecology and ecosystem management,
the phenomena of interest are not directly observed. Exam-
ples range from the basic spatial distribution of species to
more complex phenomena such as dispersal, migration, and
species interactions (mating, predation, etc.). Instead of di-
rect observations, we often can obtain only indirect infor-
mation such as animal sightings, abandoned nests, animal
droppings, and so on. A fundamental challenge for data-
driven modeling in ecology is to construct models of the
phenemona of interest from such indirect information.

In this paper, we consider a particular instance of this
problem: modeling the habitat requirements of a species. A
habitat model is a function f : X — Y, where z € X de-
scribes the habitat at a site and y € {0, 1} indicates whether
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the habitat is suitable or unsuitable for the species. To con-
struct such a model using machine learning methods, one
would like to visit a variety of sites and measure whether
the species is present or absent at those sites. The result-
ing data could be applied to train a habitat model. Unfor-
tunately, many species are difficult to detect (e.g., because
they actively hide from people, they are camouflaged, or
they roam over large ranges). So an observer may report that
the species is absent at a site when in fact it is present. Su-
pervised learning applied to such observations will try to fit
these “false zeroes” and seriously underestimate the distri-
bution of the species (MacKenzie et al. 2002), which can
lead to errors in scientific understanding and in the design of
conservation strategies.

A general approach to solving such problems is to formu-
late a probabilistic latent variable model in which the true
presence or absence of the species is represented by a la-
tent variable z, and the observations y are produced by a
stochastic observation process in which, when the species is
present (z = 1), y = 1 according to a detection probability
and y = 0 otherwise. This model is known in ecology as the
“occupancy model”, but we will refer to it by the more ac-
curate name of “occupancy-detection model” (abbreviated
OD).

Recently, the OD model has begun to be applied in ecol-
ogy and wildlife studies (MacKenzie et al. 2002; 2006).
However, the OD model exhibits several drawbacks com-
mon to all parametric probabilistic models. The modeler
must carefully design the model so that it includes relevant
environmental features. If there are interactions or nonlin-
earities, then terms must be included in the model to cap-
ture these. If some features are missing, then their values
must be imputed or the relevant records must be ignored.
Finally, the data must be transformed and standardized to
match the model assumptions (e.g., linearity, gaussianity,
etc.). In cases where the system is already well-understood
and the goal is hypothesis testing, this is acceptable. But
these drawbacks make parametric probabilistic models un-
suitable for exploratory and predictive modeling, where the
goal is to discover a good model and apply it to make accu-
rate predictions.

One of the most important contributions of machine learn-
ing to statistical modeling has been the development of ro-
bust, easy-to-use, nonparametric modeling methods such as



boosted trees and support vector machines. Classification
and regression trees (Breiman et al. 1984), in particular, can
be applied to data without preprocessing, because they are
invariant to rescaling and other monotonic data transforma-
tions. They can handle missing values in the input features,
and they automatically capture nonlinearities and feature in-
teractions. Within ecology, boosted regression trees (e.g., as
implemented by the R package gbm (Ridgeway 2007)) have
been shown to produce extremely accurate species distribu-
tion models (Elith et al. 2006) in the fully-observed case.

An exciting direction for machine learning is to find ways
to integrate nonparametric methods into probabilistic graph-
ical models, and especially into latent variable models. A
first step in this direction was achieved by Friedman (2001),
who showed how to incorporate boosted regression trees
into generalized linear models such as logistic regression
and Poisson regression. A second step was the work of Di-
etterich, et al. (2008), who showed how to integrate boosted
regression trees into structured output models such as con-
ditional random fields.

In this paper, we show how to integrate boosted regression
trees into the OD model. The method is general and can be
applied to any probabilistic graphical model for which the
necessary functional gradients can be computed. It is most
appropriate in cases where it is desired to condition parts of
the model on potentially large sets of input features. Com-
bining nonparametric methods with graphical models allows
us to obtain the best aspects of both. The modeler can spec-
ify the qualitative structure of the graphical model (e.g., to
introduce appropriate latent variables) and then the condi-
tional probability distributions in the model can be fit using
flexible boosted regression trees.

The OD Model

Figure 1 shows a plate diagram of the OD model. The outer
plate represents M sites (indexed by ¢ = 1,..., M). The
variable z; denotes a vector of occupancy features, and z; €
{0, 1} denotes the true occupancy of site 4. Site ¢ is visited
T; times (indexed by t = 1,...,T;). The variable w;; is
a vector of detection features, and y;; € {0,1} indicates
whether the species was detected (y;; = 1) on visit £.

Figure 1: Plate diagram of the Occupancy-Detection model.

In the standard parametric form, the OD model has the
following structure. To generate the observations for site ¢,
a logistic regression formula logit(o;) = F'(z;; «) (the oc-
cupancy or habitat model) is first evaluated to compute the

probability o; that site ¢ is occupied by the species. Then the
true occupancy z; is generated by drawing from a Bernoulli
random variable with parameter o;. Next, the site is visited
T, times. At each visit £, a second logistic regression formula
logit(d;;) = G(wy; B) is evaluated to compute the detection
probability d;;. Finally, the observation y;; is generated by
drawing a Bernoulli random variable with parameter z;d;.
The effect is that if z; = 0, then y;; = 0, but if z; = 1, then
y;+ = 1 with probability d;; and 0 otherwise. In this formu-
lation, F" and G are linear models with coefficient vectors «
and (3, respectively.

From this description, we can see that the OD model
makes two assumptions:

e Survey sites are visited multiple times over a period of
population closure during which the occupancy status (z;)
of a site does not change.

e Observers are trained sufficiently well that it is reason-
able to assume there are no false positives in the data.
There may be false negatives, but the observers never mis-
take one species for another or otherwise falsely report the
presence of the species.

The log likelihood function for the OD model can be writ-
ten as follows (1(+) is 1 if its argument is true and O other-
wise, and 6 = {«, 8}):
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We will refer to this standard approach as OD-LR, be-
cause it employs log-linear models for F' and G. To fit OD-
LR to data, the parameters of the model, o and 3, are ad-
justed via gradient ascent to maximize Eq. 1.

Integrating Boosted Regression Trees into the
OD Model

To integrate boosted regression trees into the OD model, we
can replace the functions F' and G that determine the occu-
pancy and detection probabilities with weighted sums of re-
gression trees trained via coordinate functional gradient de-
scent. We will call this the OD-BRT model. The functions
F and G are initialized to be F(®) = G(©) = (. Then each
gradient descent step j = 1, ..., J consists of the following:



1. For each site ¢, compute the partial derivative of the log
likelihood wrt F evaluated at its current value F' 1) (z;).
The computed derivative, z;, is called the pseudo-target
for F at site 7.

2. Fitaregression tree f; to the training examples {(x;, Z;) }.
Choose a step size p;. (We employed constant step sizes,
chosen via a holdout set.) Let FU) = FU—=1D 4 p. ;.

3. For each visit ¢ to each site ¢, compute the partial deriva-
tive of the log likelihood wrt G evaluated at its current
value G~V (w;;). The computed derivative, 7j;; is called
the pseudo-target for G at (i,1).

4. Fit a regression tree g¢; to the training examples
{(wit, Git) }- Choose a step size v;. Let GU) = GU=Y +
Vj gj .

While we have written this algorithm in terms of a spe-
cific ecological example, we note that the functional gradi-
ent descent algorithm could be applied to a variety of other
problems in which prior knowledge indicates a particular
probabilistic structure but the model probabilities are un-
known functions of a potentially large set of input variables.
In this case, we used a standard application of functional gra-
dient ascent, since the latent variables can be marginalized
out easily. For models with more complex latent structure, it
may be necessary to merge this algorithm with Expectation-
Maximization (Dempster, Laird, and Rubin 1977).

Experimental Design and Data

To test the effectiveness of the OD-LR and OD-BRT mod-
els, we designed an experiment to compare them against the
standard methods of logistic regression (which we will re-
fer to as S-LR) and boosted regression trees (which we will
denote by S-BRT). The S in S-LR and S-BRT stands for
“supervised”, because these algorithms formulate the task
as a standard supervised learning problem. This four-way
comparison allows us to measure the effect of introducing
boosted trees to both the supervised and OD models.

We applied these four models to a portion of the eBird
Reference Data Set (Munson et al. 2010). eBird is a citi-
zen science program (www.eBird.org) run by the Cor-
nell Lab of Ornithology and the National Audobon Society
in which bird-watchers report their observations to a central
database. Our data consists of 3124 detection/non-detection
observations of 12 species from the breeding seasons (May-
July) of 2006-2008 in the state of New York. Table 1 lists the
features accompanying these observations, which include
variables describing both the surrounding habitat and the ob-
servation conditions for each report. In order to apply S-LR
and OD-LR, all of the features were standardized to N'(0, 1);
this is unnecessary for the tree methods.

A drawback of using real data is that we do not have
ground truth for the latent occupancy variables z; nor do
we know the true structure of the occupancy and detection
models. To address this, we designed three synthetic species
(Species 13-15) and generated latent variables and observa-
tions for each of them (using the same features as for the real
species). The functions were chosen arbitrarily to showcase
a variety of relationships. For Species 13, the occupancy and

detection functions are linear, and hence match the assump-
tions of OD-LR:

logit(o;) = 72xz(4) + 2x§13)
logit(d;;) = wEtZ) + wl(f) -1

Species 14 introduces nonlinear occupancy and detection
components, which should favor OD-BRT:

logit(o;)) = —2[zM]? = 32P)? — 2.
logit(dy) = exp(—0.5w) + sin(1.25w + 5)

Species 15 introduces interactions between nonlinear
components, which should further favor OD-BRT:

logit(o;) = — eXp(—x§4)x§12)) B 2$2(1) 05
ogitdn) = exp(-05uf) sn(L25ul) +5) 4
exp(—0.5w)) + sin(1.25w ) + 5)

XM Human population per sq. mile

X® Number of housing units per sq. mile
X® Percentage of housing units vacant
X Elevation

X©®) . X019 | Percent of surrounding 22,500 hectares

in each of 15 habitat classes from the
National Land Cover Dataset (NLCD)!

wo Time of day

w® Observation duration

w®) Distance traveled during observation
W@ Day of year

Table 1: Input variables for the species distribution models.

The S-LR and S-BRT algorithms treat each observation
as iid, so they can be applied directly to the eBird observa-
tions. The OD-LR and OD-BRT methods take into account
the non-iid nature of the data—namely that multiple visits
to the same site ¢ are influenced by a single value of z;. To
reveal the site structure of the data, we aggregated obser-
vations within 0.16 kilometers of each other into sites, con-
densing 3124 observations to 314 sites. The number of visits
per site ranged from 1 to 81. Observations from the same lo-
cation in different years were treated as different “sites” so
that the population closure assumption only applied within a
year and not across years. While OD models are more com-
monly applied to data collected specifically to match their
assumptions (repeated visits, population closure, etc.), they
have also been applied to citizen science data using similar
preprocessing (Kéry, Gardner, and Monnerat 2010).

Each of the four models has tuning parameters to set. The
S-LR parameters were regularized with an L2 penalty with

'NLCD classes are: open water, developed open space, devel-
oped low intensity, developed medium intensity, developed high
intensity, barren land, deciduous forest, evergreen forest, mixed
forest, shrub/scrub, grassland/herbaceous, pasture/hay, cultivated
crops, woody wetlands, emergent herbaceous wetlands



the regularization parameter A € {0,0.001,0.01,0.1,1}.
The S-BRT models were fit using the gbm package in R
(Ridgeway 2007). The tuning parameters for S-BRT were
the number of trees (nT'rees € {100, 200, 400, 800, 1600}),
the step size (shrinkage € {0.001,0.01,0.1}), and the
depth of the trees (treeDepth € {1,2,5,10}). In ad-
dition to tuning these parameters, we set other gbm pa-
rameters to match the OD-BRT implementation. The log-
linear components of OD-LR were also L2-regularized,
but the occupancy and detection components had separate
penalties with independent regularization parameters: Ao €
{0,0.001,0.01,0.1} and A\p € {0,0.001,0.01,0.1}. The
OD-BRT models were tuned with the same parameters and
values as gbm, but due to the already large number of tuning
parameter combinations, we used the same settings for both
the occupancy and detection components. For each combi-
nation of model, species, and training set, the tuning param-
eters were set to the values that produced the best AUC in
predicting the observations on an independent validation set.

To divide the eBird data into training and test sets, we
placed a 9 x 16 checkerboard pattern over the state of
New York (each grid cell was roughly 50km x 33km). We
then performed two-fold cross-validation with the white and
black squares defining the folds. Within the training set, we
further subdivided each square into a 2 x 2 grid and used one
diagonal pair as the training set and the other as a validation
set for choosing tuning parameters. We repeated this 2-fold
cross-validation for ten random placements of the bottom
left corner of the checkerboard, for a total of 20 splits of the
data. This is the same validation scheme that was used by Yu
et al. (2010). For visualization purposes, we also trained one
instance of each model using the entire training set (with the
tuning parameters set to the mode of the tuning parameters
from the cross-validation runs).

Results

When methods without latent occupancy structure (like S-
LR and S-BRT) are applied in species distribution model-
ing, they are typically evaluated based on their ability to
predict held-out observations. Figure 2 presents the means
and standard deviations (across the 20 train/test splits) of
the AUCs for all four methods on all 15 species for pre-
dicting the observations Y. These results indicate that while
the tree-based methods tend to slightly outperform the lin-
ear methods, there is no significant and consistent difference
between these four methods for the task of predicting Y.
However, the predictions of Y do not answer the ecologi-
cal question of interest for species distribution models in the
presence of imperfect detection. Instead, they only predict
what will be observed at a new location rather than whether
the location is truly inhabited by the species of interest.
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Figure 2: Mean AUCs (error bars are + one standard deviation)
for predicting held-out observations Y. The mean and standard de-
viation are taken across 20 train/test splits. Circles represent real
species and crosses represent synthetic species. While the tree-
based methods tend to slightly outperform the linear methods, there
is no significant and consistent difference between these four meth-
ods for the task of predicting Y. However, the predictions of Y do
not answer the ecological question of interest for species distribu-
tion models in the presence of imperfect detection.
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Figure 3: True occupancy probabilities for Species 14 versus
model predictions.

Since predictive performance on the observations is not
our primary goal, we would like to evaluate the accuracy of
the model in predicting the true occurrence pattern of the
species. Unfortunately, we almost never have ground truth
for the latent variables in occupancy-detection models, but
we can address this question with the synthetic species. Fig-
ure 3 shows scatter plots of probabilities from the four mod-
els against the true occupancy probabilities used to gener-
ate the data for Species 14. The OD-LR and OD-BRT plots
show the estimated probabilities of occupancy, P(Z), on
the y-axis. The S-LR and S-BRT model plots show the esti-
mated probabilities of observation, P(Y") on the y-axis. As
expected, the S-LR and S-BRT predictions are biased low,
since these models must interpret all zeroes in the data as
true absences, whereas the occupancy-detection models can
interpret some zeroes as false absences. While the S-LR and
S-BRT plots may not seem like a fair comparison, we em-
phasize that these models cannot make a prediction about
P(Z). Nonetheless their predicted probabilities of observa-
tions are frequently interpreted as predictions of occupancy
when the detection issue is ignored.

We also note that the nonlinear OD-BRT model produces
better estimates of P(Z) than the OD-LR model, due to its
ability to model the nonlinear relationships underlying the
data for Species 14. In this case, the OD-LR model could be
tailored to represent these relationships by adding the appro-
priate quadratic terms to the occupancy and detection func-
tions, if the model designer suspected these relationships in
advance. On the other hand, the OD-BRT model discovers
and represents the nonlinearities automatically, which is use-
ful for exploratory modeling in which the relevant variables
and relationships are unknown.

Partial dependence plots (Friedman 2001) provide a visu-
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Figure 4: Partial dependence of time of day for Species 15.
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Figure 5: Partial dependence of distance of survey for Species 13.

alization of the effect of a variable on a predicted response
after averaging over all of the other variables. Figure 4 shows
the effects of w(®) on the functions estimated by the four
methods, along with the true, bimodal relationship used in
generating the data for Species 15. This bimodality is an ex-
ample of a nonlinearity that cannot easily be represented by
the OD-LR model even if it is known to the model designer,
whereas the OD-BRT model again discovers and represents
the relationship automatically. Figure 5 shows a similar plot
for w®) in Species 13, a relationship that is truly linear. This
plot shows that while the (correct) OD-LR model estimates
the linear effect slightly better, the OD-BRT model also does
a reasonable job of capturing the effect.

Note that these partial dependence plots display the rela-
tionship between an input variable and the function estimat-
ing P(Y"), since all four methods can compute this quantity.
OD-LR and OD-BRT can also produce partial dependence
plots for the occupancy and detection functions.

While we cannot validate partial dependence plots for the
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Figure 6: Partial dependence of time of day for Species 2.
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Figure 7: Partial dependence of survey duration for Species 2.

real species against ground truth, they are nonetheless a good
tool for visualizing trained models. For example, the partial
dependence plots for the OD-BRT model on Species 2 sug-
gest plausible nonlinear effects of the detection conditions.
The effect of time of day in Figure 6 has a peak early in the
day followed by a plateau before the effect drops off rapidly
at night. The effect of the duration of the survey shown in
Figure 7 shows a rapid increase as duration starts to increase,
but indicates diminishing returns after a period of time.

Conclusions

This paper has presented a method for combining boosted
regression trees and probabilistic occupancy-detection mod-
els from the ecology literature. Our results indicate that this
model can produce accurate estimates of the true occupancy
probabilities for synthetic species without sacrificing the
ability to predict observations, and that it performs favor-
ably in comparison with logistic regression, boosted regres-
sion trees without latent structure, and occupancy-detection

models without trees. We have also shown that tree-boosted
occupancy-detection models can automaticaly discover and
represent the relationships with the input variables that gen-
erated the synthetic species data, and we have given exam-
ples applying these models to the eBird data.

This work makes important contributions in both machine
learning and ecology. Our incorporation of regression trees
into occupancy-detection models represents the first appli-
cation of functional gradient descent to probabilistic models
with latent variables in machine learning. In ecology, merg-
ing boosted regression trees and occupancy models resolves
an existing false dichotomy in species distribution modeling:
that we can account for imperfect detection or build flexible
models, but not both.

In future work, we will extend our work on functional gra-
dient descent with latent variables to more complex mod-
els in which the latent variables cannot be marginalized
away. We expect to achieve this by combining our current
algorithm with an Expectation-Maximization approach and
by developing appropriate initialization and regularization
strategies to guide the optimization. We also plan to apply
our methods to additional datasets, and we are developing
an R package to make our methods conveniently available.
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