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Abstract—To avoid ecological collapse, we must manage Earth's 

ecosystems sustainably. Viewed as a control problem, the two 

central challenges of ecosystem management are to acquire a 

model of the system that is sufficient to guide good decision mak-

ing and then optimize the control policy against that model. This 

paper describes three efforts aimed at addressing the first of the-

se challenges—machine learning methods for modeling ecosys-

tems. The first effort focuses on automated quality control of 

environmental sensor data. Next, we consider the problem of 

learning species distribution models from citizen science observa-

tional data. Finally, we describe a novel approach to modeling the 

migration of birds. A major challenge for all of these methods is 

to scale up to large, spatially-distributed systems. 
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I.  INTRODUCTION 

The world-wide spread and rapid growth of human popula-
tions and the associated modification of the earth’s ecosystems 
has resulted in large changes in the functioning of these ecosys-
tems. There has been a huge conversion of land to agricultural 
production and, consequently, large decreases in the range and 
size of the populations of many species. Paradoxically, some 
invasive pest species have greatly increased their range and 
population sizes so that they are interfering with ecosystem 
services upon which humans and other species rely. 

From a control systems perspective, we do not know what 
these large-scale changes imply for the future trajectory of the 
Earth system. Are we headed toward a world-wide ecosystem 
collapse accompanied by the extinction of most or all humans? 
Or will the Earth shift to a new quasi-stable operating point that 
can sustainably support 9-10 billion people? What controls 
should we apply to the system to achieve desirable outcomes? 

The central problem is that we lack an accurate model of 
the dynamics of the earth’s ecosystems. Doak et al., [4] docu-
ment a long list of “ecological surprises”—cases where either 
an ecosystem behaved in a way that is still not understood or 
where an attempted intervention had major unforeseen conse-
quences. 

The same lack of models at global scales is also seen at 
smaller scales. For example, the habitat requirements and popu-
lation dynamics of most wild bird species are not well-
understood. While the populations of many species are declin-
ing, some are increasing.  

Fortunately, there are two trends that are helping address 
the lack of models. First, we are in the midst of multiple revo-
lutions in sensing. One revolution is driven by sensing technol-
ogy: the number, diversity, and capability of sensors is rapidly 
increasing. Another revolution is driven by the development of 
citizen science and crowd sourcing where people (and often 
their smart phones and laptops) collect observational data at a 
scale that dwarfs what professional scientists could ever col-
lect. The second trend is the rapid development of machine 
learning algorithms that can fit complex models to the massive 
amounts of data that are becoming available. 

At the moment, the machine learning techniques lag behind 
the data collection. The new data sources raise challenges—
both old and new—for machine learning, and this paper de-
scribes research on three such challenges: 

 Automated data quality control (QC). In the past, 
human data technicians have manually inspected sen-
sor data streams to identify data quality problems (e.g., 
sensor and communications failures, configuration er-
rors, etc.). However, the number of deployed sensors is 
rapidly outstripping the ability of people to QC the da-
ta. Methods are needed to automate the quality control 
process. 

 Fitting models to citizen science data. Citizen ob-
servers vary tremendously in their expertise. For ex-
ample, bird watchers may fail to detect a bird species 
even though it is present at a site. In addition, citizen 
scientists choose when and where to make their obser-
vations—they do not follow a carefully-designed sta-
tistical sampling plan. Consequently, their data may 
exhibit a wide range of sampling biases and errors. 
Machine learning methods are needed that can com-
pensate for all of these data quality issues. 

 Fitting models of population dynamics to count da-
ta. To create models of population dynamics, the ideal 
form of data collection would be to track each individ-
ual in the population so that all interactions (e.g., pre-
dation, mating, reproduction, mortality) could be di-
rectly observed. However, in virtually all ecosystems, 
we lack this kind of data. Instead, we often have only 
(noisy) counts of the number of individuals observed at 
selected times and places. Can we develop machine 
learning methods that can fit dynamical models to such 
data? 
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Figure 1. Temperature readings from four thermometers. The 1.5m 

thermometer reads incorrectly high because of a broken sun shield. 

 
Figure 2. Temperature readings showing 1.5m thermometer buried in snow 

from day 23 to day 39. 

The remainder of this paper describes research in progress that 
addresses each of these challenges. We hope to give the reader 
a sense of the computer science questions underlying this work 
and provide pointers to the technical details which have been 
published elsewhere.  

II. AUTOMATED  DATA CLEANING 

Figure 1 shows signals from four air temperature thermom-
eters deployed on a single instrument tower at the H. J. An-
drews Experimental Forest in Oregon. Data are reported every 
15 minutes, so the 24-hour daily cycle is clearly visible. How-
ever, the 1.5m sensor has a broken sun shield, so it heats up too 
quickly and reports incorrectly-elevated readings during the 
middle of the day. Figure 2 shows another situation in which 
two thermometers have become buried in snow, so that the 
reported values are no longer air temperature values. We seek 
an automated method that can detect these kinds of anomalies 
and also impute accurate values for the damaged readings. Fur-
thermore, we want a general purpose method that can detect 
novel sensor failures, rather than a method that is only able to 
diagnose a fixed set of known failure modes.  

To solve this problem, we have pursued a probabilistic 

modeling approach. At each time step  , let   
  denote the true 

temperature being measured by sensor   and   
  be the observed 

value reported by the sensor. We introduce a discrete “sensor 

status” variable   
  whose value is    if the sensor is function-

ing correctly and        otherwise. We then define the proba-
bilistic model 
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Here,    
  is a small value (e.g., 0.1), while         

  is a 
large value (e.g., 1000.0). According to this model, if the sen-

sor is   , then the observed value   
  is equal to the true value 

  
  with additive Gaussian noise specified by    

 . However, if 
the sensor is broken, then the value being reported is no longer 

related to the true temperature. The large variance        
  al-

lows the model to explain a broad range of anomalous behav-
ior.   

To extend this model to handle the time series of observa-
tions, we introduce a first-order Markov process whose condi-

tional distribution,  (  
 |  

   ) , is assumed to be a linear 

Gaussian:       (       
       

 ) . This turns the model 
into a Kalman filter with a switched observation distribution 
(similar to a switching linear dynamical system). In previous 
work [2], we scaled up this approach to handle relationships 
among multiple sensors. This was done by fitting a multivariate 
conditional linear Gaussian model to represent the joint condi-
tional distribution  (  |    ).   

Although this approach is very elegant, it raises difficult 
computational problems. First, the single-sensor switched 
Kalman filter is computationally intractable because at each 

time step, we must consider the two values of    
 ,    and 

        In a standard Kalman filter, the only hidden variable 

at each time step is   
     and it can be marginalized out of the 

joint distribution  (  
    

   )  to produce a single Gaussian 
distribution. However, when there is a discrete hidden variable 

such as   
    and it is marginalized out, the result is a mixture 

of two Gaussians (corresponding to the two values   
       

and   
          ). Hence, to exactly represent the probabil-

ity distribution  (  
 |  

     ) requires a mixture of Gaussians 
with      components.  

We resolve this problem via the following “argmax” ap-
proximation. At each time step, we compute the most likely 

state of the sensor,  ̂ 
          (  

 |   
        

   ). We then 

assert that   
   ̂ 

   which reduces the resulting distribution 

over   
  to a single Gaussian, which can then be processed us-

ing the standard Kalman filter update.  

This solves the problem for a single sensor, but a similar 
problem arises with multiple sensors within a single time step, 
because the sensors are coupled through the joint conditional 
distribution  (  |    ). With   sensors, there are    possible 
configurations of the    variables. To apply the argmax approx-
imation, we need to compute the most likely such configura-
tion, which requires time exponential in  . We have evaluated 
several state of the art approximate methods for this computa-
tion including Rao-Blackwellized particle filters and expecta-
tion propagation, but the most effective method is an algorithm 
we call SearchMAP. This method starts by assuming that all 
sensors are working at time   and scores the likelihood of 
this: (    

 |    
   ⃗            

   ). It then considers all one-
step “moves” that flip the status of one sensor, scores the like-
lihood of each of these, and keeps the configuration of maxi-



 

 
Figure 3. Signals from six sensors on a single tower. Solid black is the raw signal; red ticks at the base of each signal trace indicate points declared by the model 

to be anomalous; red lines with diamonds indicate the predicted values of the underlying variables. 

mum likelihood. This hill-climbing search is repeated until a 
local optimum is found.  

Figure 3 shows some of the results of applying this method 
to 30 days of raw data from a network of 18 sensors (including 
air temperature, wind speed, and solar radiation). The model 
was trained on clean-only data provided to us by a domain ex-
pert, and then used to QC a new dataset containing raw, un-
checked observations. In model training, we learn a set of con-
ditional dependencies among the sensors that explains how 
their observations are spatially and temporally correlated. Once 
the model is trained, we apply the SearchMAP algorithm to 
perform inference on new observations. Our QC approach suc-
cessfully identified a data-logger malfunction on day 51 that 
affected all air temperature sensors. It also flagged erratic 
measurements from the 3.5m air temperature sensor between 
days 36 and 50, which were caused by faulty voltage readings 
at the sensor. Though the model only produced a few false pos-
itives in the wind speed and solar radiation data, it failed to 
detect when the anemometer (wind speed sensor) froze on days 
33 and 53. 

Many challenges remain for automated data cleaning. The 
method described above only operates at a single temporal 
scale, so it misses anomalies (e.g., long-term trends) that are 
only detectable at broader scales. Multi-scale methods are 
needed that can find such anomalies and that can deal with data 
collected at widely-varying temporal and spatial scales. More-
over, our model cannot capture different weather regimes, such 
as storm systems, cold air drainage, and temperature inver-

sions, which may alter the correlations among the sensors. Fi-
nally, the model could be improved by employing non-
Gaussian distributions for quantities such as wind speed and 
precipitation, which are poorly modeled by Gaussians. 

III. FITTING MODELS TO CITIZEN SCIENCE DATA 

The second computational problem that we will consider is 
the challenge of fitting ecological models to citizen science 
data. Many important ecological phenomena occur at the scale 
of continents or the whole planet. Hence, we need to collect 
data at such scales in order to study these phenomena. Aside 
from satellite-based remote sensing, most data is collected by 
small teams of scientists working in small study areas. Citizen 
scientists can address this problem by fanning out across the 
planet to collect data.  

We are collaborating with the Cornell Lab of Ornithology’s 
eBird project (www.ebird.org), in which bird watchers report 
checklists of bird species that they observe at a particular time 
and place. Each month, eBird receives many thousands of up-
loaded checklists, and these more than one million species ob-
servations. 

Given this data, there are many different questions that we 
can ask. In this section, we describe some of the work we have 
done fitting species distribution models (SDMs) to eBird data. 
A species distribution model for a species is a function that, 
given a description of a site (e.g., vegetation type, land use, 
distance to water, human population density, distance to roads, 
elevation, annual temperature and precipitation) predicts 

http://www.ebird.org/


 
Figure 4. Left: OD model fit with log-linear component models; Right: OD model fit with boosted regression trees for the component models. Each circle is a 

site whose true occupancy probability is on the horizontal axis and whose predicted occupancy probability is on the vertical axis. A perfect model would have all 

whether the species will be found at that site.  Such models are 
useful as a first step toward understanding the habitat require-
ments and population dynamics of the species, and they can 
guide the design of conservation reserves and other policy de-
cisions for protecting threatened and endangered species. 

Citizen science data presents three major challenges. First, 
there is the potential for sampling bias, since bird watchers tend 
to go birding close to home and they tend to select locations 
where they believe the birds will be found. Second, many bird 
species are hard to detect, so the fact that the birder did not 
report the species does not mean that the species was not pre-
sent. Third, volunteers may have different levels of expertise. 
Some birders have many years of experience and can identify 
many species from their songs and calls without any visual 
information. Other birders can only reliably identify species by 
sight. 

We are pursuing research to address all three of these prob-
lems. To deal with sample selection bias, we are extending 
recent work in density ratio estimation [10]. If our goal is to 
build a map of bird species distribution across the continent, 
then we seek a model that is accurate for sites chosen uniform-
ly at random in space. Call this distribution        , since it is 

the target distribution. However, our data is collected by bird-
watchers visiting sites according to a different 
tion        . One approach to sampling bias correction is to 
reweight each source observation by the ratio  ( )  
       ( )        ( ). Estimating        and         separate-

ly is difficult, because density estimation in high-dimensional 
spaces is a challenging statistical problem. But estimating the 
ratio of two densities is much easier, and many methods are 
now available [10].  

The problem of partial detection has been studied previous-
ly by wildlife biologists. The problem can be addressed by 
making multiple independent visits to a site and combining the 
information from those visits. Specifically, let    be 1 if site   is 
occupied by the species and 0 otherwise, and let    be a vector 
of site attributes that describe the site. Then the species distri-
bution model can be written as  (  )   (  |    )  where   

are the parameters of the model.  Unfortunately, we do not di-
rectly observe   , instead in each visit   to site  , we obtain an 
observation     which is 1 if the species was detected and 0 
otherwise. Let  (   |        ) represent the detection model, 
where     is a vector of attributes describing the observation 
conditions at time    (e.g., time of day, weather, duration of the 
observation, density of the vegetation, etc.). If we assume no 
false detections, then we can write 
 (     |            )    (   ), where  ( ) is the 
probability of detecting the species given that it is present 
(   ). If    , then       with probability 1. We call this 
the Occupancy-Detection (OD) model.  

If we make multiple independent visits to the site, then if 
the site is occupied, visit   has probability  (   ) of detecting 
the species. Given the assumption of no false detections, if we 
detect the species on any one of the visits, then we know 
    . If we never detect the species, then our belief about the 
value of    depends on the probability of detection as deter-
mined by  (   ). If the species is hard to detect, then even if 
we fail to detect it in several visits, this does not provide defini-
tive evidence that the site is unoccupied.  

This model was first introduced by MacKenzie et al. [7] in 
a formulation where both   and   are assumed to be either 
constant or to have the form of a log-linear model (like logistic 
regression). The model can be fit to data of the form 
 (          )  via maximum likelihood estimation.  

The log-linear model assumption creates many practical 
difficulties for applying the OD model at continental scales. 
Log linear models assume that each attribute of the site (or the 
visit) makes an independent contribution to the log probability 
of occupancy (or detection, respectively) and that these contri-
butions scale linearly. If there are non-linearities, the data must 
be transformed to remove them. If there are interactions and 
dependencies among variables, these must be manually includ-
ed in the model. While this is possible for well-understood sit-
uations, we need a more automated approach that works on 
large data sets at continental scales.  



One of the most user-friendly machine learning models is 
based on classification and regression trees [1]. These models 
make no linearity assumptions, they automatically discover 
interactions among attributes, and they handle other imperfec-
tions (e.g., missing values) robustly. Although a single decision 
tree often has mediocre predictive accuracy, ensembles of trees 
achieve state-of-the-art performance in many domains. A 
drawback of tree methods is that they are non-probabilistic 
models. However, in 2000, Friedman showed how to incorpo-
rate trees into logistic regression classifiers via a form of boost-
ing [5]. 

Building on Friedman’s work and our own previous work 
on incorporating trees into conditional random fields [3], we 
have developed an algorithm (called OD-BRT) for integrating 
trees into the OD model. This is the first time that trees have 
been combined into a model with latent (hidden) variables. 
Figure 4 shows the results of a simulation experiment in which 
we applied OD-BRT to synthetic data where the true values of 
 (  ) and  (   ) are known. The scatterplot shows that the 
OD-BRT model provides much more accurate predictions for 
the occupancy probabilities than the standard log-linear OD 
model (denoted OD-LR) [6].  

We have also extended the OD model to include the exper-
tise of each citizen scientist, a model that we call ODE (Occu-
pancy, Detection, and Expertise). In the ODE model, there is an 
additional model component  (  |  ) that predicts the exper-
tise level of birder   from background information    about the 
birder. Then when birder   visits site   at time  , the probability 
that        depends on   ,    , and   . Using a log-linear 
approach, we found that the ODE model was better at modeling 
eBird data than the OD model [11]. 

IV. FITTING MODELS OF POPULATION DYNAMICS TO 

COUNT DATA 

The third problem we will discuss is the challenge of fitting 
a continent-scale model of bird migration to eBird observation-
al data. Bird migration is poorly understood because it takes 
place at very large scale and because most migration occurs at 
night.  

Our approach to modeling bird migration is to define a grid 
over North America and learn a Hidden Markov model (HMM) 
over the cells in this grid. Suppose we have a population of   

birds. Let   
    be the grid cell   in which bird   is located at 

time  . Then the state of the system can be represented by the 
vector    that specifies the location of each bird, and a Markov 
model of the migration dynamics can be defined by 
 (  |         ), where      is a matrix of attributes describ-
ing such things as wind speed and direction and how the wind 
aligns with the headings between pairs of cells (    ), the dis-
tance between pairs of cells, the habitat in each cell, and so on. 

Learning this model would be straightforward if we could 
put a GPS tracker on each bird. But instead, all we have are 
field observations   ( ) of the number of birds observed in cell 
  at time    Hence, we obtain an HMM with observation distri-
bution  (  |     ), where   ( ) provides attributes of the 
observation conditions and effort in cell   at time  . Learning 
and inference for HMMs is well understood. However, in this 
case, the state of the HMM consists of the location of each bird 

in the population at each time step, and there are more than a 
billion birds in North America. So applying standard HMM 
methods is completely intractable. 

Because none of the birds is tagged, we do not need to keep 
track of the location of each bird. Instead, it suffices to define a 
derived HMM that we call the Collective Hidden Markov 
Model (CHMM) [9]. Let   ( ) denote the number of birds in 
cell   at time  , and let    be the vector of these counts over all 
cells. Then we can define the transition distribution 
 (  |         )  and the observation distribution 
 (  |     ).  If we are willing to assume that each bird’s 
migration decisions are independent and identically distributed, 
then this collective model is equivalent to the original HMM, 
but its state space is much smaller. Furthermore, let        de-
note the matrix of transition counts, such that       (    ) is 
the number of birds that moved from cell   to cell    between 
time     and time  . If we know the values of the counts    
and        (or if we can estimate them via probabilistic infer-
ence in the CHMM), then these provide the sufficient statistics 
needed to estimate the transition probabilities in the original 
HMM. Hence, by reasoning in the CHMM, we can learn the 
parameters of the HMM. 

Unfortunately, exact inference in this CHMM is still intrac-
table, because we must consider all ways of partitioning   
birds among the   cells, which is still an immense state space. 
To perform approximate inference, we have developed a Gibbs 
sampling algorithm that can draw samples in time that is inde-
pendent of the population size [8]. We are currently applying 
this algorithm to fit the CHMM to eBird observations.  

Once we have the fitted CHMM, we plan to apply it in sev-
eral ways. First, we plan to provide a nightly bird migration 
forecast (a “Bird Cast”). This will be useful for managing low-
altitude air traffic and wind farms. Second, we will analyze the 
fitted model to develop and test scientific hypotheses about the 
factors that control migration. This has the potential to help us 
understand how land-use changes and global climate change 
may affect future bird populations and migration patterns.   

V. CONCLUDING REMARKS 

Robust ecosystem management requires good models of the 
dynamics of ecosystems. This paper has described initial steps 
toward three aspects of such systems. First, we considered the 
problem of observing the current values of environmental vari-
ables such as temperature, wind, and solar radiation. Our ap-
proach relies on discovering and exploiting correlations among 
multiple, spatially-distributed sensors, so that we can isolate 
and recover from anomalies caused by sensing failures. Even 
this apparently simple problem poses computational challenges 
that had to be addressed by introducing approximations. Se-
cond, we considered the problem of fitting species distribution 
models and dynamical migration models to citizen science da-
ta. Although such data provide us with unprecedented spatial 
and temporal coverage, they also raise many challenges includ-
ing spatial sampling bias, imperfect detection, and highly-
variable observer expertise. Finally, we described our work in 
progress on fitting collective hidden Markov models to under-
stand bird migration. These models promise to provide many 
scientific insights into migration phenomena. 



Of course it is not enough to have good system models. We 
also need algorithms for computing optimal control policies 
using these models. Furthermore, there are many urgent eco-
system management problems where we must act immediately, 
before we have good models of the systems. Even our very best 
models are highly imperfect and fail to capture all of the com-
plexity of these systems. Hence, in order to manage the earth’s 
ecosystems well, our control policies must address two critical 
factors. First, they must balance achieving ecological goals 
with the need to collect additional observations that allow us to 
improve our models. Second, they must be robust to both the 
known unknowns (i.e., the explicit uncertainties represented by 
our probabilistic models) and the unknown unknowns (i.e., the 
unmodeled, or not-yet-modeled, aspects of the systems). Can 
we invent optimization methods that can meet these challeng-
es? 
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