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Abstract—Topic models have been proposed to model a col-
lection of data such as text documents and images in which
each object (e.g., a document) contains a set of instances (e.g.,
words). In many topic models, the dimension of the latent topic
space (the number of topics) is assumed to be a deterministic un-
known. The number of topics significantly affects the prediction
performance and interpretability of the estimated topics. In this
paper, we propose a confidence-constrained rank minimization
(CRM) to recover the exact number of topics in topic models
with theoretical guarantees on recovery probability and mean
squared error of the estimation. We provide a computationally-
efficient optimization algorithm for the problem to further the
applicability of the proposed framework to large real world
datasets. Numerical evaluations are used to verify our theoretical
results. Additionally, to illustrate the applicability of the proposed
framework to practical problems, we provide results in image
classification for two real world datasets and text classification
for three real world datasets.

Index Terms—Topic models, Low-rank matrix recovery, Nu-
clear norm minimization, Confidence constraints, Rank estima-
tion.

I. I NTRODUCTION

In many applications of machine learning, such as text
classification, image processing, and web classification, a
multi-instance representation of objects is commonly used[1],
[2]. In multi-instance datasets, an object is represented as a set
of instances or bag of instances instead of a single instance.
For example, in a corpus of documents, a document(object)
comprises of words(instances). Often, distributions can be
considered to represent multi-instance data. For example,in a
multi-instance discrete dataset such as documents, the bag-
of-words is a representation of a histogram over a given
vocabulary. Due to the high dimensional nature of objects
in multi-instance datasets (e.g., a usual vocabulary size in a
corpus of documents can be about20, 000), it is beneficial
to simplify the representation of objects in multi-instance
datasets by exploring the inner structure of such datasets.
The framework of topic models introduces a low dimensional
structure by associating documents with a low dimensional
distributions over a small set of topics. In the generative
approach to topic models, a subset of topics is first selectedand
the document is generated based on selecting words from the
assigned topics. Some of the early well-known topic models
are latent semantic indexing (LSI) [3], probabilistic latent
semantic indexing (pLSI) [4], and latent Dirichlet allocation
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(LDA) [5]. We refer the reader to [6] for review on more recent
developed topic models.

The number of topics (dimension of the latent space) has a
significant effect on the quality of the model and interpretabil-
ity of the estimated topics [5]. Heuristically, this problem
is addressed in the literature by scanning through a range
of numbers of topics and comparing performance measures
such as perplexity on a held-out dataset or classification
accuracy across the range [4], [5], [7]. In [8], it is mentioned
that overestimating the number of topics can be remedied
by ranking the topics and removing those which are not
related to the theme of the data. Bayesian nonparametric
topic models [9]–[11] provide a solution using Hierarchical
Dirichlet Processes (HDP). The associated Bayesian inference
is often regarded as a computationally complex approach [12].
A cross validation approach for selecting the number of topics
in topic models is proposed in [13]. While this approach seems
to be efficient in number of topics selection, different choices
of held-out patterns and sizes have significant impact on the
results. Term-by-document matrix is commonly used for data
representation in topic models. The number of topics is the
rank of such a matrix. Our interest is in devising a provable and
computationally efficient method to jointly determine the rank
and recover the term-by-document probability matrix from its
noisy observation.

Constrained rank recovery of an unknown matrix has been
studied vastly in the literature in the communities of signal
processing, control system, and machine learning [14]–[16] in
problems such as matrix completion [17] and matrix decompo-
sition [18]. While for simple cases singular value decomposi-
tion (SVD) has been a common tool, in the constrained setting
rank minimization presents additional challenges. One of the
main challenges is the non-convex nature of the rank operator.
Rank minimization is heuristically replaced with a nuclear
norm minimization [19]–[23]. Nuclear norm minimization
can be formulated as a semidefinite programming (SDP) and
solved via general SDP solvers such as SDPT3 and SeDuMi.
Although the convergence of these solvers is guaranteed, they
can not be applied for a large scale problem due to the
high computational complexity of Newton direction [24]–[26].
Due to the problem of computational complexity of SDP,
several economical approaches have been developed. Most
of these approaches are based on the idea of proximal point
approximation (Moreau-Yosida regularization [27]) resulting
in a closed-form solution for nuclear norm minimization [24]–
[27]. An Augmented Lagrange multiplier (ALM) [28] is an
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alternative which proposes to minimize the nuclear norm of
the low-rank component plusl1 norm of the sparse component
with augmented Lagrange approach. These methods have been
promising in terms of computational complexity. For example,
in [28] robust PCA is implemented using only 20 iterations
of a highly economical version of SVD. The conditions
under which the low-rank matrix with missing entries can be
estimated with high probability are proposed in [18], [21].
These methods have been applied to video surveillance and
image recovery. We are interested in using rank recovery
methods to determine the number of topics in topic models.
However, we are faced with the following challenges. First,
the observed term-by-document matrix is contaminated by a
multinomial sampling noise as opposed to Gaussian noise [29],
[30] or sparse noise [18]. Our problem includes a specific set
of constraints such as positivity and sum-to-one which restrict
the search space in the optimization problem.

In this paper, we present a framework and algorithms for
a provable rank recovery in topic models. Specifically, our
contributions in this paper are as follows:1) We propose
sufficient conditions for exact rank recovery in topic models as
a rank minimization problem.2) We provide a new framework
of parameter free confidence-constrained convex optimiza-
tion as an alternative to rank minimization problem, which
can overcome the issues of Bayesian inferences such asi)
computational complexity associated with sampling methods,
ii) approximation associated with variational Bayes approach
[31], andiii) computational complexity associated with hyper-
parameter tuning [32].3) We provide an analytical evaluation
of the sufficient conditions for exact recovery of the number
of topics in topic models. Moreover, we provide a bound on
the sum of squared errors in terms of the model parameters
such as number of documents, vocabulary size, and number
of words in each document.4) We provide an accelerated
algorithm to solve the proposed convex optimization problem.
We reformulate the problem in the dual form. By evaluating
the duality gap, we are able to provide accuracy guarantees
for the algorithm.5) We evaluate our theoretical results on
synthetic datasets.6) Finally, we apply the proposed method
on two image datasets and three real world text datasets to
illustrate how the method can be applied to perform dimension
reduction.

The rest of the paper is organized as follows. In Section II,
the exact rank recovery in topic models is formulated. Sec-
tion III introduces the method of confidence-constrained rank
recovery in topic models. Section IV provides the theoreti-
cal guarantees for the proposed confidence-constrained rank
minimization. In Section V, an accelerated gradient projection
method for solving the dual form of confidence-constrained
nuclear norm minimization is proposed. In Section VI, the
evaluation of our theoretical results against the simulation
is presented. Section VII illustrates how our method can be
applied to image and text datasets. Finally, we summarize the
paper in Section VIII along with the ideas for the future work.

II. PROBLEM FORMULATION

In this section, we present the problem of determining the
number of topics in probabilistic topic models. We start with

the generative process associated with the probabilistic topic
model and then proceed with the formulation of identifying the
number of topics in topic models. The theoretical framework
for exact rank recovery proposed in this paper can be appliedto
topic models with the following properties:(i) The generative
process involves a multinomial sampling from a probability
matrix and (ii) the probability matrix can be decomposed
as a product of two probability matrices. We carry out our
derivation on the well-known LDA model.

A. Probabilistic topic models

Probabilistic topic models are generative models. Topic
probabilities provide an explicit representation of documents
in probabilistic topic models. The sampling process from this
model can be explained as follows (for a list of notation, we
refer the reader to Table I).

TABLE I
NOTATION USED IN THIS PAPER

Ψ Term-by-document matrix
Ψ̂ Sample term-by-document matrix
Ψ0 Rank minimizing term-by-document matrix
M Number of documents
L Vocabulary size
T Number of topics (Rank(Ψ))
nd Number of words in documentd
σT Smallest non-zero singular value ofΨ
θd Per-document topic proportion
Φ Topics matrix
zdj Per-word per-document topic assignment
α Dirichlet prior parameter for topic proportion
β Dirichlet prior for Topics matrix
λ Lagrangian multiplier
n min(nd), d = 1, . . . , M

Each document is drawn in an i.i.d. fashion. For thedth
document,d = {1, . . . ,M}, a random distribution of topics
p(zdj = t|θ) , θd(t), t ∈ {1, . . . , T} is drawn. In LDA,θd ∼
Dir(α). Then, forjth word in documentd, j = {1, . . . , nd}, a
topic assignmentzdj is drawn, based on the topic distribution
θd(t). Finally, word wdj is drawn based on the conditional
distribution p(wdj = l|zdj = t,Φ) , Φlt, l = {1, . . . , L}.
Note thatΦ is a topics matrix where columns corresponds to
topics {1, . . . , T} and rows correspond to vocabulary words.
The graphical representation of LDA is shown in Fig. 1 and the
precise sampling process for LDA is described in Algorithm 1.
A key observation in topic models is that the probability

W

Fig. 1. The graphical model for LDA [33].

distribution of word wdj can be obtained by marginalizing
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the joint word-topic distribution over the topic:

p(wdj = l|θd) =

T
∑

t=1

p(wdj = l|zdj = t,Φ)p(zdj = t|θd). (1)

To simplify the notation, we represent (1) in a matrix format,

Ψ = Φθ, (2)

where Ψld , p(wdj = l|θd), Ψ ∈ R
L×M ,Φ ∈ R

L×T , and
θ ∈ R

T×M . In other words, the vocabulary term-by-document
matrix Ψ can be decomposed into the product ofΦ and θ
whereΦ is the vocabulary probability per topic (topic matrix)
and θ is the topic proportion per document. Note that the
model in (2) is also applicable to pLSI. Columns of these
matrices are probability vectors satisfying non-negativity and
sum-to-one property. The introduction of latent topic variables
allows for reduced dimension representation of the term-by-
document matrixΨ. The rank of the matrixΨ is the number
of topics T . We define the sample term-by-document matrix

Algorithm 1 Generative process for LDA
for t = 1 to T do

Draw Φt ∼ Dirichlet(β)
end for
for d = 1 to M do

Draw θd ∼ Dirichlet(α)
for j = 1 to nd do

Draw zdj ∼ Discrete(θd)
Draw wdj ∼ Discrete(φzdj

)
end for

end for

Ψ̂ as follows:

Ψ̂ld =
1

nd

nd
∑

j=1

I(wdj = l). (3)

Therefore,ndΨ̂·d ∼ multinomial(Ψ·d, nd) which for nota-
tional ease we denotêΨ ∼ norm-multinomial(Ψ, n), where
n = [n1, . . . , nd].

B. Topics number recovery

Assume an unknown low-rank term-by-document matrixΨ
is obtained through the process explained in Section II-A. We
observe matrixΨ̂ ∼ norm-multinomial(Ψ, n). SinceΨ̂ could
be full-rank due to the presence of noise in the sampling
process, a straightforward examination of its singular values
may not provide an immediate indication on the rank ofΨ.
Furthermore, even if rank of the matrixΨ is available, identi-
fying a low-rank matrixΨ which is similar toΨ̂ is a nontrivial
problem. Specifically, we are interested in:1) Estimating the
term-by-document matrixΨ from its noisy observations matrix
Ψ̂. 2) Quantifying the accuracy of the estimator ofΨ in
two aspects:(i) Understanding the conditions under which
the exact rank of the true matrixΨ can be recovered.(ii)
Characterizing the estimation error of the matrixΨ associated
with the matrix reconstruction. Note that we propose the
estimation of the matrixΨ rather than the decomposition ofΨ

into the product of two probability matricesΦ and θ. While
the connection is obvious, the problem of decomposing the
estimated low-rankΨ into the products of two probability
matrices presents additional challenges which we reserve for
future work.

III. C ONFIDENCE-CONSTRAINED RANK RECOVERY

In this section, we introduce the framework of confidence-
constrained rank recovery. We start by describing the maxi-
mum likelihood (ML) solution for estimating matrixΨ from its
noisy observation̂Ψ. Then, we introduce the regularized ML
to address the problem of rank recovery. Finally, we conclude
this section with the introduction of confidence-constrained
rank minimization approach.

A. Unconstrained maximum likelihood

The log-likelihood for the probabilistic topic model in (1)
can be written as follows [4]:

L =
M
∑

d=1

L
∑

l=1

nld log Ψld. (4)

Using the fact thatnld = ndΨ̂ld, we can rewrite the negative
log-likelihood function as follows:

M
∑

d=1

ndDkl(Ψ̂·d‖Ψ·d) = −L + Υ, (5)

where Υ =
∑M

d=1 nd

∑L
l=1 Ψ̂ld log Ψ̂ld is a constant and

Dkl(p‖q) =
∑

k pk log pk

qk
. Hence, the unconstrained ML

estimate ofΨ can be obtained using the following optimization

Ψ̂ML = arg min
Ψ̃

M
∑

d=1

ndDkl(Ψ̂·d‖Ψ̃·d),

subject to Ψ̃ ≥ 0,

1T Ψ̃ = 1. (6)

Since the ML formulation does not incorporate information
on rank of the matrixΨ, its solution is the trivialΨ̂ML =
Ψ̂ solution. In other words, even though the nonnegative
∑M

d=1 ndDkl(Ψ̂·d‖Ψ̃·d) can be made zero by setting̃Ψ = Ψ̂,
the rank difference|Rank(Ψ̃) − Rank(Ψ)| may be large. The
ML approach in its unconstrained formulation advocates the
potentially full rank matrixΨ̂ as an estimate forΨ. In the
following, we show how the ML approach can be modified
to account for rank constraints using a regularization/penalty
term.

B. Penalized Maximum Likelihood

In this section, we introduce regularized ML, constrained
ML, and model order selection (MOS) that potentially can be
used to address the problem of rank recovery associated with
ML solution. For each framework, we start with the formula-
tion and then proceed with the corresponding challenges. In
contrast to confidence-constrained rank minimization approach
which we introduce in the following section, there are no
guarantees for exact rank recovery in topic models using
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penalized ML. Analogous to the use ofl1-regularizer for
sparsity, we consider the use of the nuclear norm to enforce the
rank constraint in the matrix setting. The heuristic replacement
of rank with nuclear norm has been proposed in the literature
for matrix completion [20], [29], collaborative filtering [34],
and multi-task learning [35].

In regularized ML, a regularized nuclear norm is added to
the objective function in (6) yielding:

minimize
M
∑

d=1

ndDkl(Ψ̂·d‖Ψ̃·d) + η‖Ψ̃‖∗,

subject to Ψ̃ ≥ 0,

1T Ψ̃ = 1. (7)

The regularization parameterη weighs the nuclear norm.
The regularized ML can be viewed as maximum a posteriori
(MAP) criterion using a prior distribution over matrix̃Ψ of
the formCe−η‖Ψ̃‖. This is similar to the interpretation ofl1-
regularization for sparse recovery as MAP with a Laplacian
prior. Since one can apply the Lagrange multipliers framework
to replace a constraint with a regularization term, (7) can be
formulated as constrained ML. The constrained ML formula
considers incorporating the nuclear norm as an additional
constraint to (6):

minimize
M
∑

d=1

ndDkl(Ψ̂·d‖Ψ̃·d),

subject to ‖Ψ̃‖∗ ≤ ν,

Ψ̃ ≥ 0,

1T Ψ̃ = 1, (8)

where ν ≥ 0 is a tuning parameter. For each value ofη in
(8) there is a value ofν in (7) which produces the same
solution [36]. As an alternative to (7) and (8), MOS can be
applied to rank estimation of a matrix [37], [38]. MOS offers
a way to evaluate the classical trade-off between goodness of
fit and model complexity. Forr = 1, 2, . . . ,min (L,M), a
sequence of optimization problems in the form of (6) subject
to rank= r is solved to obtaiñΨ∗(r). Then for each rankr, a
cost function including negative log-likelihood atΨ̃∗(r) plus a
penalty term pen(r) is evaluated. The penalty term corresponds
to the complexity of the model and is measured based on
an information criterion such as Akaike Information Criterion
(AIC) or Minimal Description Length (MDL) [37], [38]. Note
that in AIC the penalty term corresponds to the number of
free parameters in the model. In MDL, each model candidate
is assigned with a code length and minimum code length is
used for model selection. In some implementations of MDL,
each model is assigned with a prior probability and the model
that yields the maximum posterior probability is selected.The
use of rank minimization for model order selection in system
identification is proposed in [39], [40]. Furthermore in [39],
the authors proposed the heuristic replacement of the rank with
the nuclear norm and showed that it makes the selection of an
appropriate model order easier. In the following discussion, we
illustrate some of the challenges associated with regularized
ML, constrained ML, and MOS proposed in this section.

DiscussionOne of the challenges associated with the reg-
ularized and constrained ML is the choice of the regular-
ization parameters (η and ν, respectively). Often, a criterion
for selecting a value for the regularization parameters that
guarantees exact rank recovery of matrixΨ is unavailable.
For the problem of low-rank matrix estimation in the noisy
setting, asymptotic relationship between the regularization
parameter and estimation accuracy is proposed in [41], [42].
Such results cannot be applied directly to our problem for
the following reason. Counter to the sampling process in
Section II-A, the sampling process proposed in [42] followsan
i.i.d. model without the positivity and sum-to-one. In MOS
approach, solving the sequence of an optimization problem
with rank constraint and evaluating the cost function for
different value of rank (r = 1, 2, . . . ,min(L,M)) is compu-
tationally complex. While in the unconstrained setting SVD
provides a one-shot solution [37], in the constrained setting
rank minimization is NP-hard [43]. The heuristic replacement
of rank with nuclear norm in MOS proposed in [39], [40]
suggests a regularization parameter framework. However, no
recipe is provided for selecting the regularization parameter
to guarantee rank recovery. In the following, we define the
confidence-constrained rank minimization and show how our
formulation of the problem can address the issues associated
with parameter tuning in regularized ML and constrained ML
and exhaustive rank search for MOS stated in this section.

C. Confidence-constrained rank minimization

We consider the concept of the confidence-constrained rank
minimization for rank recovery in topic models. Using the
statistical formulation of the problem proposed in SectionII,
an in-probability bound on the objective function in (6)
can be obtained. The probability bound on data fit criterion
allows us to define a confidence set. Confidence set is a
high-dimensional generalization of the confidence interval and
restricts the search space of the problem. Search inside the
confidence set guarantees a low-rank solution. Hence, in this
approach the roles of ML objective and rank constrained are
replaced. We consider rank minimization subject to ML objec-
tive constraint. The confidence-constrained rank minimization
is given by:

minimize Rank(Ψ̃)

subject to
M
∑

d=1

ndDKL(Ψ̂d·‖Ψ̃d·) ≤ ǫ(δ),

Ψ̃ ≥ 0,

1T Ψ̃ = 1, (9)

whereǫ(δ) is an in-probability bound for the estimation error.
Note in this formulation the tuning parameterǫ(δ) can be
obtained by bounding

∑M
d=1 ndDKL(Ψ̂d·‖Ψ̃d·). Intuitively the

KL confidence-constrained set in (9) includes the matrixΨ,
and hence it is guaranteed (w.p.1 − δ) that the rank of the
solution to (9) is less than or equal to the rank of matrixΨ.
The main problem with KL divergence between two matrices
is that there is no straightforward way of translating it to the
distance between their singular values. Since singular values
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are related to the rank of a matrix, it is hard to provide the
theoretical guarantees for rank recovery in the KL version
of the confidence-constrained set. While the KL confidence-
constrained formulation is difficult to handle, the Frobenius-
norm confidence-constrained formulation provides a conve-
nient framework for proving rank recovery in topic models.
The problem of parameter tuning is elegantly addressed in this
framework by obtaining a model based in-probability uniform
bound on the confidence set. Moreover, the approach does not
require a scan through a range of rank values. In the following,
we show that in the Frobenius-norm confidence-constrained
rank minimization exact rank recovery can be guaranteed.

IV. EXACT RANK RECOVERY: THEORETICAL GUARANTEES

In this part, we introduce Frobenius-norm confidence-
constrained rank recovery and provide the theoretical guar-
antees for exact rank recovery in topic models. The KL-
divergence confidence-constrained rank recovery in (9) is
replaced with Frobenius norm confidence-constrained rank
recovery since the theoretical results can be shown for the
Frobenius-norm case while such results are unavailable for
the KL-divergence.

A. Frobenius-norm confidence-constrained rank minimization
(CRM)

For the problem defined in Section II-B, we propose the
following confidence-constrained rank minimization:

(CRM): minimize Rank(Ψ̃)

subject to ‖Ψ̃ − Ψ̂‖F ≤ ǫ(δk),

Ψ̃ ≥ 0,

1T Ψ̃ = 1. (10)

where

ǫ(δk) = ǫ∗(δk) ,

√

1

n

(

M + k

√

M

2
(1 +

3

n
)

)

,

δk =
1

1 + k2
, (11)

wherend = n for all d. In Appendix B,ǫ∗ is developed for
the general case where documentd hasnd words. Here for
simplicity, we present the case wherend = n. The parameter

k =
√

δ−1
k − 1 is the number of standard deviation away from

the mean, e.g., fork = 3, with probability1−1/(1+k2) = 0.9,

‖Ψ̃− Ψ̂‖F ≤ ǫ(δ3) whereǫ(δ3) =

√

1
n
(M + 3

√

M
2 (1 + 3

n
)).

Note that (10) is free of tuning parameters for the following
reason. Since the samples are governed by a multinomial
distribution, an in-probability bound on the estimation error
of the form ‖Ψ − Ψ̂‖F ≤ ǫ(δk) w.p. 1 − δ can be obtained.
Moreover, since the true low-rank matrixΨ satisfies the
Frobenius norm inequality constraint w.p.1 − δ, thenΨ0 the
solution to (10) is of equal or lower rank to that ofΨ. While
this result is straightforward, the following theorem shows
that in fact the CRM solutionΨ0 has the same rank asΨ.
Moreover, theorem provides a bound on the estimation error
[44].

Theorem 1:Let Ψ be aγ-distinct rankT matrix andΨ̂ ∼
norm-multinomial(Ψ, n). Assumeγ > 2ǫ, andǫ = ǫ∗ defined
in (11). Then, with probability at least1− δk, Ψ0 the solution
to (10) satisfies:

1) Ψ0 ∈ 2ǫ-neighborhood ofΨ,
2) Rank(Ψ0) = T .

Theorem 1 characterizesΨ0 the solution to CRM in (10).
First, Ψ0 is at most2ǫ away from the true matrixΨ. The-
orem 1 is formulated with specificǫ in (11) which comes
from the statistical model presented in Section II. Withǫ in
(11), the Frobenius norm of the estimation error(Ψ0 − Ψ)
is O(

√

M/n). The second property asserts that under the
hypothesis of the Theorem 1, it is guaranteed that with
probability1− δ Ψ0 has the same rank as the rank of the true
unknown matrixΨ. In other words, the exact rank of the true
matrix Ψ can be recovered by solving the CRM optimization
problem in (10). We now proceed with the proof of Theorem 1.
For this, first we provide a detail framework as follows:

Definition 2: Ψ′ is a γ-distinct rankr matrix if σ1(Ψ
′) ≥

σ2(Ψ
′) ≥ . . . ≥ σr(Ψ

′) > γ > σr+1(Ψ
′) = . . . = σL(Ψ′) =

0, whereσi is the ith largest singular value of matrixΨ′.
In other words,Ψ′ is γ-distinct if all of its non zero singular
values are greater thanγ.

Definition 3: Matrix Ψ′ is in theζ-neighborhood of matrix
Ψ if ‖Ψ − Ψ′‖F ≤ ζ.

Lemma 4:W.p. 1 − δ matrix Ψ satisfies‖Ψ − Ψ̂‖F ≤ ǫ,
whereǫ = ǫ∗ is given by (11).

Proof: See Appendix B.
Lemma 4 guarantees that w.p.1−δ the confidence-constrained
setS(Ψ̂, ǫ∗) = {Ψ′ | ‖Ψ̂ − Ψ′‖F ≤ ǫ} contains the true low-
rank matrixΨ.

Lemma 5:Let Ω be γ-distinct rankr matrix. Then there
exists no matrix in theγ-neighborhood ofΩ, with the rank
r0 < r.

Proof: Suppose∃Ω′ in the γ-neighborhood with rank
r0 < r, therefore

γ ≥ ‖Ω′ − Ω‖F

≥ min
Rank(Ω̃)=r0

‖Ω̃ − Ω‖F . (12)

By Eckart-Young theorem [45] the closestΩ̃ with rank r0

to Ω in the Frobenius norm is̃Ω = UΣ∗V T , where Ω =
UΣV T and Σ∗ = diag(σ1, . . . , σr0

, 0, . . . , 0). For suchΩ̃,

‖Ω̃−Ω‖2
F =

∑r
i=r0+1 σ2

i . Thus,γ ≥
√

∑r
i=r0+1 σ2

i ≥ σr(Ω).

By contradiction to the assumption thatσr(Ω) > γ, there
exists no suchΩ′ in γ-neighborhood with rank lower thanr.

Based on Lemma 5, theγ-distinct property of matrixΨ assures
that all the matrices inside theγ-neighborhood of matrixΨ
have a rank greater than or equal to rank of matrixΨ . Using
Definitions 2 and 3 and Lemmas 4 and 5, we proceed with
the proof of Theorem 1.

Proof: 1) Using the triangle inequality, we have

‖Ψ0 − Ψ‖F ≤ ‖Ψ0 − Ψ̂‖F + ‖Ψ̂ − Ψ‖F . (13)

Note that the first term on the RHS of (13) is less thanǫ
with probability 1, sinceΨ0 the solution to (10) satisfies the
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confidence-constraint. Thus,Ψ0 ∈ ǫ-neighborhood of̂Ψ. The
second term on the RHS of (13) is a random quantity which
can be bounded byǫ with probability 1 − δ by Lemma 4.
Therefore‖Ψ0 − Ψ‖F ≤ 2ǫ with probability 1 − δ.

Proof: 2) SinceΨ0 is in the 2ǫ-neighborhood ofΨ and
2ǫ < γ, thenΨ0 is also in theγ-neighborhood ofΨ. Hence,
based on Lemma 5 Rank(Ψ0) ≥ Rank(Ψ). On the other
hand, sinceΨ ∈ ǫ-neighborhood ofΨ̂ w.p. 1 − δk, and Ψ0

is the minimum rank solution matrix inǫ-neighborhood of̂Ψ,
then Rank(Ψ0) ≤ Rank(Ψ). The inequalities can hold only if
Rank(Ψ0) = Rank(Ψ) = T .

Discussion The basic idea of Theorem 1 relies on two
main principles.1) γ-distinct property of matrixΨ which
corresponds to the robustness ofΨ to the sampling noise. Ifγ
is large, the matrixΨ is robust enough to be rank recoverable
given a small sampling noise (for illustration see Fig. 2).2)
The second principle associates with the magnitude of the
sampling noise which controls the size of the confidence-
constrained set. Since the statistics of the sampling noiseis
known, it provides the theoretical guarantees for recovering
the exact rank of the matrixΨ.

(a)

Fig. 2. This figure shows two sets:i) ǫ-neighborhood of matrixΨ̂
(confidence-constrained set) which is defined as{Ψ|‖Ψ̂ − Ψ‖F ≤ ǫ} and
ii) γ-neighborhood of matrixΨ which is defined as{Ψ′|‖Ψ−Ψ′‖F ≤ γ}.
In this figure, matrixΨ is γ distinct andγ > 2ǫ∗

k
. Thus, the assumptions of

Theorem 1 hold. As a result,Ψ0 will have the same rank as matrixΨ.

B. Confidence-constrained nuclear norm minimization (CNM)

In general, rank minimization problems are NP hard [46].
Various algorithms have been proposed to solve the general
rank minimization problem locally (e.g., see [43], [47]). A
heuristic replacement of the rank minimization with a nuclear
norm minimization is commonly proposed [19], [20]. The
nuclear norm of a matrix is defined as‖X‖∗ =

∑

i σi

where σi ≥ 0 are the singular values of matrixX. The
nuclear norm is a special class of Schatten norm. The Schatten
norm for matrixX is defined as‖X‖p = (

∑

i σp
i )

1

p . When
p = 1, ‖X‖p is equal to the nuclear norm, which is the sum
of the singular values of matrixX. Similar to the use of
l1-regularization for sparsity, nuclear norm regularization is
used to enforce low-rank in the matrix setting. To solve the
rank minimization problem proposed in (10), we propose the
widely used approach of replacing the rank minimization with
the tractable convex optimization problem of nuclear norm
minimization. In Section VI, we provide the evaluation of
CNM only, due to the prohibitive computation complexity
associated with CRM. In the following, confidence-constrained
nuclear norm minimization (CNM) is proposed as a convex

alternative to (10):

(CNM): minimize ‖Ψ̃‖∗
subject to ‖Ψ̃ − Ψ̂‖F ≤ ǫ,

Ψ̃ ≥ 0,

1T Ψ̃ = 1. (14)

We denote the solution to (14) bỹΨ∗. Since the nuclear
norm is a convex function, and the set of the inequality and
equality constraints construct a convex set, (14) is a convex
optimization problem. This formulation targets the problem
of exact rank recovery for probability matrices under the
sampling process described in Section II-A.

V. CONFIDENCE-CONSTRAINED NUCLEAR NORM

MINIMIZATION ALGORITHM (CNMA)

The nuclear norm minimization problem can be reformu-
lated as an SDP [19]. Off-the-shelf SDP solvers such as
SDPT3 and SeDuMi are used to solve this problem. Such
software packages use the interior point method with Newton
direction which is computationally expensive [24]–[26]. The
SDP problem of CNM has(M + L) × (M + L) semidefi-
nite constraints and(ML + M + 1) equality and inequality
constraints. The computational complexity isO(min{M,L})6
and the memory requirement isO(min{M,L})4. So while
the reformulation is theoretically appealing, computational
challenges remain. In the following, we provide an accelerated
projection gradient algorithm to solve the dual formulation
of CNM. We start with the dual formulation of CNM and
then solve it with the gradient projection approach [48]. We
propose an accelerated version of our algorithm using two
point approximation [49] and a highly economical SVD-based
implementation.

A. Dual formulation background

We solve (14) through formulating the dual problem. Gen-
erally, the dual formulation of a problem in the form of

minimize f0(x)

Subject to f1(x) ≤ 0

h(x) = 0,

can be obtained first by constructing the Lagrangian
L(x, λ1, λ2) as follows:

L(x, λ1, λ2) = f0(x) + λT
1 f1(x) + λT

2 h(x),

where λ1 ≥ 0 and λ2 are the Lagrange multipliers for
the set of inequality and equality constraints, respectively.
The Lagrangian incorporates the constraints into the objective
function using the Lagrange multipliersλ1, and λ2. The
second step is to minimize the LagrangianL(x, λ1, λ2) with
respect to the primal objective variablex. Definex∗(λ1, λ2)
as:

x∗(λ1, λ2) = arg min
x

L(x, λ1, λ2).

By replacingx∗(λ1, λ2) in the Lagrangian, we obtain the dual:

g(λ1, λ2) = L(x∗(λ1, λ2), λ1, λ2).
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The dual formulation is given by the following optimization

maximize g(λ1, λ2)

Subject to λ1 ≥ 0.

The dual formulation of the optimization problem has several
advantages. First, it provides a lower bound for the primal
problem. One can show for any feasible pointx̃ in the
primal problem,g(λ1, λ2) ≤ f(x̃). If the primal problem
is convex and the set of inequalities is strictly satisfied for
some point inside the feasibility set, then based on Slater’s
condition the strong duality holds [50]. Hence, the dualitygap
f(x̃) − g(λ1, λ2) provides means of assessing convergence
of the optimization algorithm. Furthermore, the positivity
constraint in the dual formulation can be handled using a
simple projection onto the positive orthant. Note that in the
primal formulation the projection onto the set of equality and
inequality constraints could be more complex.

B. Dual formulation of CNM

We follow the steps explained in Section V-A. First, we
construct the Lagrangian of (14) to obtain the dual formulation
[51]. The LagrangianL(Ψ̃, λ1, λ2,Λ3) for problem in (14) can
be written as

L(Ψ̃, λ1, λ2,Λ3) = ‖Ψ̃‖∗ +
λ1

2
(‖Ψ̃ − Ψ̂‖2

F − ǫ2) +

λT
2 (1 − Ψ̃T 1) − tr(ΛT

3 Ψ̃), (15)

where λ1 ∈ R
+, λ2 ∈ R

M×1, and Λ3 ∈ R
+L×M . If

we minimizeL(Ψ̃, λ1, λ2,Λ3) with respect toΨ̃, we obtain
Ψ̃∗(λ1, λ2,Λ3). We start by rewriting (15) as follows:

L(Ψ̃, λ1, λ2,Λ3) = ‖Ψ̃‖∗ +
λ1

2
‖Ψ̃ − Ψ′‖2

F

+C(λ1, λ2,Λ3), (16)

whereΨ′ = Ψ̂+
1λT

2

λ1

+ Λ3

λ1

, andC(λ1, λ2,Λ3) = −λ1

2 ‖Ψ′‖2
F +

λ1

2 ‖Ψ̂‖2
F + λT

2 1 − λ1

2 ǫ2. The solution to the minimization of
(16) w.r.t. Ψ̃ is

Ψ̃∗(λ1, λ2,Λ3) = D 1

λ1

(Ψ′),

whereDτ (X) is the soft thresholding operator on the singular
value of matrixX (for proof see [24]) defined byDτ (X) =
U(S − τI)+V T , whereX = USV T is the SVD ofX. To
obtain the dual, we substitutẽΨ∗(λ1, λ2,Λ3) back into (16),
simplify and obtain

f(λ1, λ2,Λ3) = −λ1

2
‖D 1

λ1

(Ψ′)‖2
F +

λ1

2
‖Ψ̂‖2

F + λT
2 1

−λ1

2
ǫ2.

Thus the dual formulation of the CNM problem in (14) is

maximize f(λ1, λ2,Λ3)

subject to λ1 ≥ 0

Λ3 ≥ 0,

where λ1 ∈ R, λ2 ∈ R
M×1, and Λ3 ∈ R

L×M . Note
that the positivity for matrixΛ3 is elementwise. Rather than

maximizing the concave dual function, we proceed with the
convex minimization of the negative dual,̃f(λ1, λ2,Λ3) =
−f(λ1, λ2,Λ3).

C. Gradient projection algorithm for CNM

The CNM optimization problem is expressed as follows:

minimize f̃(λ1, λ2,Λ3)

subject to λ1 ≥ 0

Λ3 ≥ 0, (17)

where f̃(λ1, λ2,Λ3) = λ1

2 ‖D 1

λ1

(Ψ̂ +
1λT

2

λ1

+ Λ3

λ1

)‖2
F −

λ1

2 ‖Ψ̂‖2
F − λT

2 1 + λ1

2 ǫ2. We consider the gradient projec-
tion method to solve (17). The gradient projection method
for minimizing a continuous convex function over a closed
convex set was proposed in [52]. The modified backtracking
approach for the gradient projection method was defined in
[48]. Application of the gradient projection method to our
problem consists of the following iterations:

λk+1
1 = [λk

1 − tk∇f̃λk
1

(λ1, λ2,Λ3)]+

λk+1
2 = λk

2 − tk∇f̃λk
2

(λ1, λ2,Λ3)

Λk+1
3 = [Λk

3 − tk∇f̃Λk
3

(λ1, λ2,Λ3)]+,

where [x]+ = x for x ≥ 0, and otherwise is zero,
∇f̃λi

(λ1, λ2,Λ3) is the gradient with respect toλ1, λ2, Λ3,
and tk is the step size. Note that since the positivity ofλ1

and Λ3 can be enforced coordinatewise, the projection is
trivial. The gradient off̃(λ) with respect toλ1, λ2, andΛ3 is
respectively,

∇f̃λ1
(λ1, λ2,Λ3) =

1

2
‖D 1

λ1

(Ψ′)‖2
F +

1

λ1
‖D 1

λ1

(Ψ′)‖∗

− 1

λ1
tr((1λT

2 + Λ3)
T D 1

λ1

(Ψ′)) − 1

2
‖Ψ̂‖2

F +
ǫ2

2
,

∇f̃λ
2
(λ1, λ2,Λ3) = D 1

λ1

(Ψ′)T 1 − 1,

∇f̃Λ3
(λ1, λ2,Λ3) = D 1

λ1

(Ψ′).

The derivative of f̃ with respect to λ1 is given by
d

dλ1

(λ1

2 ‖D 1

λ1

(Ψ′)‖2
F ) − 1

2‖Ψ̂‖2
F + ǫ2

2 . The derivation of the

term d
dλ1

(λ1

2 ‖D 1

λ1

(Ψ′)‖2
F ) which leads to the explicit expres-

sion of ∇f̃λ1
(λ1, λ2,Λ3) is provided in Appendix A. Upon

convergence of the Lagrange multipliers[λ1, λ2,Λ3], one can
compute the primal objective parameters usingΨ̃ = D 1

λ1

(Ψ̂+

1λT
2

λ1

+ Λ3

λ1

). In the following, we first show how to choose
the step size for the gradient method using the backtracking
approach. Then, we provide the accelerated gradient projection
method.

1) Step size:To choose the step sizetk, we use the back-
tracking approach for gradient projection [48]. The backtrack-
ing line search for gradient projection requires the smallest
nonnegative integermk such that

f̃

(

λk
1(tk), λk

2(tk),Λk
3(tk)

)

≤ f̃(λk
1 , λk

2 ,Λk
3)

−γ

(

∇f̃λ1
∆λk

1 + ∇f̃T
λ

2

∆λk
2 + tr(∇f̃T

Λ3
∆Λk

3)

)

,
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where ∆λk
1 = λk

1 − λk
1(tk), ∆λk

2 = λk
2 − λk

2(tk), ∆Λk
3 =

Λk
3−Λk

3(tk), tk = ηmkt0, γ ∈ (0, 0.5), t0 > 0, andη ∈ (0, 1).
The proposed backtracking approach in (18) finds a step size
tk which reduces the objective function sufficiently. However
to avoid making a small step in each iteration, we start with
a large enough step sizet0 which satisfies the following
condition:

f̃

(

λk
1(t0), λk

2(t0),Λk
3(t0)

)

> f̃(λk
1 , λk

2 ,Λk
3)

−γ

(

∇f̃λ1
∆λk

1 + ∇f̃T
λ

2

∆λk
2 + tr(∇f̃T

Λ3
∆Λk

3)

)

.

Algorithm 2 Accelerated CNMA for exact rank recovery

Chooseλ0
1 = λ1

1 > 0, λ0
2 = λ1

2 = 0,Λ0
3 = Λ1

3 = 0, a0 =
a1 = 1, η ∈ (0, 1), γ ∈ (0, 0.5), µ > 1, t0 > 0, K, υ
for k = 1 to K do

λ̄k
1 = λk

1 + ak−1−1
ak

(λk
1 −λk−1

1 ), λ̄
k

2 = λk
2 + ak−1−1

ak
(λk

2 −
λk−1

2 ), Λ̄k
3 = Λk

3 + ak−1−1
ak

(Λk
3 − Λk−1

3 ){Acceleration}
Ψ′k = Ψ̂ +

1λ̄
k
2

T

λ̄k
1

+
Λ̄k

3

λ̄k
1

(U, S, V T ) = svd(Ψ′k)
Ψ̃k+1 = U(S − 1/λ̄k

1)+V T {Soft thresholding}
while f̃

(

λk
1(t0), λk

2(t0),Λk
3(t0)

)

≤ f̃(λ̄k
1 , λ̄

k

2 , Λ̄k
3) −

γ

(

∇f̃λ̄1
∆λ̄k

1 + ∇f̃T
λ̄

2

∆λ̄
k

2 + tr(∇f̃T
Λ̄3

∆Λ̄k
3)

)

do

t0 = µnk t0 {line search (wolf condition)}
end while

while f̃

(

λk
1(tk), λk

2(tk),Λk
3(tk)

)

> f̃(λ̄k
1 , λ̄

k

2 , Λ̄k
3) −

γ

(

∇f̃λ̄1
∆λ̄k

1 + ∇f̃T
λ̄

2

∆λ̄
k

2 + tr(∇f̃T
Λ̄3

∆Λ̄k
3)

)

do

tk = ηmkt0 {line search (backtracking condition)}
end while
λk+1

1 = [λ̄k
1 − tk∇f̃(λ̄1)]+, λk+1

2 = λ̄
k

2 − tk∇f̃(λ̄2),
Λk+1

3 = [Λ̄k
3 − tk∇f̃(Λ̄3)]+

ak+1 = (1 +
√

4a2
k + 1)/2, and t0 = tk. {updating the

dual variables}
if Duality-Gap≤ υ then

break
end if

end for

2) Acceleration:The general convergence rate for gradient
approach isO( 1

k
), wherek is the iteration number. In [49],

it is proved that the extrapolation step makes the convergence
faster as much asO( 1

k2 ). We define the extrapolated solution
λ̄k as follows:

λ̄k
1 = λk

1 +
ak−1 − 1

ak

(λk
1 − λk−1

1 ),

λ̄
k

2 = λk
2 +

ak−1 − 1

ak

(λk
2 − λk−1

2 ),

Λ̄k
3 = Λk

3 +
ak−1 − 1

ak

(Λk
3 − Λk−1

3 )

where ak =
1+

√
4a2

k−1
+1

2 . For the pseudo code for the
proposed CNMA see Algorithm 2. To illustrate that the

proposed acceleration improves the convergence fromO(1/k)
toO(1/k2), we present a plot of the duality gap vs. the number
of iterations for the original CNMA and accelerated CNMA
in Fig. 3. The evaluation of the SVD in each iteration is
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Fig. 3. Comparison of duality gap forM = 50, L = 80, T = 10, n = 1000,
α = 0.1, andβ = 0.01 for CNMA vs. accelerated CNMA

expensive and isO(min{M,L}3). As in [24]–[26], we use
the PROPACK package to compute a partial SVD. Because
PROPACK can not automatically calculate the singular values
which are greater than specific valueτ , we use the following
procedure. To facilitate the computation of singular value5
at a time, we setb0 = 5 and updatebl+1 for l = 0, 1, . . . as
follows:

bl+1 =

{

Rank(Ψ̃k+1) if Rank(Ψ̃k+1) < bk

Rank(Ψ̃k+1) + 5 if Rank(Ψ̃k+1) ≥ bk.

This procedure stops whenbl+1 = bl. Partial SVD calculation
reduces the cost of the computation significantly, especially in
the low-rank setting. The pseudo code for calculating SVD is
in Algorithm 3.

Algorithm 3 SVD calculation using PROPACK
Chooser0 = 0, andi = 5
in stepl
bl = rk−1 + 1
repeat

[USV ]bl
= SVD(Ψ′k)

bl = bl + i
until sk

bl−i ≤ 1
λk

1

rk = max{j : sk
j > 1

λk
1

}
Ψ̃k+1 =

∑rk

j=1(s
k
j − 1

λk
1

)uk
j vk

j

VI. EXPERIMENTAL RESULTS

We evaluate both theoretical and computational aspects of
the confidence-constrained rank minimization problem. For
the theoretical part, we provide the followings:1) Sensitivity
analysis of rank recovery accuracy as a function ofǫ, and2)
Phase diagram analysis applied to a synthetic dataset to show
that the exact rank recovery obtained by CNMA is consistent
with the sufficient conditions proposed by Theorem 1. For the
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computational part, we provide a runtime comparison between
CNMA and HDP and show the applicability of CNM for large
datasets. For HDP, we use an efficient implementation of the
algorithm in Matlab1 provided by the authors of [9]. Note
that in all of our experiments, we fixed the confidence value
1 − δk = 0.9 and consequently setk = 3.

A. Sensitivity with respect toǫ

We would like to illustrate the effect ofǫ on rank recovery.
Theorem 1 suggests that by selectingǫ = ǫ∗ (11), rank
minimization guarantees exact rank recovery with probability
1 − δ. To examine the effect of varyingǫ on rank recovery
accuracy, we consider the following setup. We consider a range
of values for ǫ = [ǫ∗/16, ǫ∗/8, ǫ∗/4, ǫ∗/2, ǫ∗, 2ǫ∗, 4ǫ∗, 8ǫ∗

, 16ǫ∗]. The value ofǫ∗ based on (11) is equal to0.2550.
We generate matrixΨ with M = 50, L = 50, T = 10,
α = 0.1, andβ = 0.01 following the model in Section II-A
and samplêΨ 10 times. For each value ofǫ, we solve CNM
in (14) for each of the ten realization of̂Ψ using CVX and
CNMA and evaluate the rank of the recovered matrixΨ̃∗.
The rank evaluation is done by counting the number of singular
value of matrixΨ̃∗ exceeding a threshold to avoid miscounting
due to numerical errors. The threshold is defined based on
the empirical distribution of the smallest nonzero singular
values of the true matrixΨ (i.e., mean minus three times
the standard deviation). We compute mean(µ) and standard
deviation (σ) of the recovered rank for matrix̃Ψ and plot the
error bar ([mean-std, mean+std]) for bothCVX and CNMA.
Rank estimates as a function ofǫ for CVX and for CNMA
are shown in Figures 4(a) and 4(b), respectively. Figures 4(a)
and 4(b) support Theorem 1 by indicating that the choice
of ǫ = ǫ∗ (11) leads to exact rank recovery, since for only
ǫ = ǫ∗ the exact rank is recovered for10 out of 10 leading
to µ = 10 and σ = 0. In other words, as we deviate from
ǫ∗ the true rank of matrixΨ can no longer be recovered.
We provide the following explanation. When we increaseǫ,
the confidence-constrained set may include low-rank matrices
which are not in theγ-neighborhood of matrixΨ. Hence, rank
minimization inside the confidence-constrained set may lead
to a recovery of a low-rank matrix. On the other hand, as we
decreaseǫ the confidence-constrained set may not include the
true matrix Ψ. Therefore, the rank of the recovered matrix
Ψ̃ may be higher than the rank of matrixΨ. By comparing
Figures 4(a) and 4(b), we can see that the performance of
CNMA is comparable to that ofCVX. To assess the effect of
the number of CNMA iterations on accuracy, we terminate the
algorithm after200, 500, and1000 iterations and present the
rank recovery results in Figures 4(b). Comparing the graphs
in Fig. 4(b), we observe that with an increased number of
iterations the results approach that ofCVX. Moreover, CNMA
with a smaller number of iterations correctly recovers the rank
at ǫ = ǫ∗. This hints at the potential reduction in computational
complexity that CNMA can provide by reducing the number
of iterations. For the relaxed CNMA graph in Fig. 4(b), we
removed the positivity and sum to one constraints to assess the
importance of the probability matrix constraints. We observe

1http://www.gatsby.ucl.ac.uk/ ywteh/research/software.html

an increase in variation from the true rank atǫ = ǫ∗ (11). This
suggests that including the probability constraints can improve
the rank recovery accuracy.
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Fig. 4. This figure shows the sensitivity of rank recovery to the value ofǫ.
We scan through a range of values ofǫ and plot the mean of the recovered
rank including the confidence intervals for (a) CVX and (b) CNMA.

B. Phase diagram analysis

We use the notion of phase diagram as proposed in [53]
to evaluate probability of exact rank recovery using CNMA
for a wide range of matrices of different dimensions (i.e.,
vocabulary size terms× number of documents) and different
number of topics and compare it with the sufficient conditions
proposed by Theorem 1. We would like to show that the
condition proposed in Theorem 1 for rank recovery is still valid
when rank minimization is replaced with nuclear norm mini-
mization. We generateN = 50 i.i.d realizations ofΨ using the
sampling process in Section II-A withM = 500, n = 1000,
α = 0.01, β = 0.001, over a grid of(L, T ), with L ranging
through40 equispaced points in the interval[100, 4000], andT
ranging through24 equispaced points in the interval[5, 120].
In Fig. 5(a), each pixel intensity corresponds to the empirical
estimate ofP (σT > 2ǫ), i.e.,

∑N
i=1 I(σ

(i)
T > 2ǫ)/N , where

σT is the smallest non-zero singular value. To evaluate correct
rank recovery probability, for each pixel in phase diagram we
produce20 realization of the pair(Ψ, Ψ̂). We run CNMA for
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each of the20 realizations ofΨ̂ and compared the rank of the
recovered matrix̃Ψ∗ with the true rank of matrixΨ. The rank
of matrix Ψ̃∗ is computed following the procedure described
in Section VI-A. In Fig. 5(a), the white area corresponds
to success region2 (the region where the rank recovery is
guaranteed with high probability based on Theorem 1). In
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Fig. 5. (a) P (σT > 2ǫ) for M = 1000, n = 1000, α = 0.01, and
β = 0.001 (b) P̂ (exact rank recovery) obtained by CNMA.

Fig. 5(b), the white area corresponds to exact rank recovery
obtained by CNMA. Since the area for exact rank recovery
probability obtained by CNMA covers the success region, the
sufficient condition proposed by Theorem 1 appear to hold
for the heuristic replacement of nuclear norm minimization.
Comparing Figures 5(a), and 5(b) suggests that the sufficient
condition for exact rank recovery proposed in Theorem 1
can be further improved. This could be attributed to the fact
that the proposed sufficient conditions for exact rank recovery
involve several bounds.

The LDA model in Section II depends on two hyperparame-
tersα andβ. Whenα is small the effective number of topics
per document is small. Similarly, whenβ is small the effective
number of words per topic is small. Intuitively, with smallα
andβ the model is simpler (i.e., fewer topics and fewer words
per topic). We are interested in evaluating the impact ofα and
β on the rank recovery rate. In Fig. 6, the left hand column
shows the phase diagram for exact rank recovery obtained
by CNMA for different values ofα, andβ. As we decrease

2This notation is used in [53]

the value of hyperparameters, the wider area for exact rank
recovery can be covered by CNMA in phase diagram. The
middle and left hand side graphs show the singular value scree
plot of matrix Ψ̂ for the point indicated by darker and lighter
pointer on the phase diagram, respectively. The scree plots
illustrate the fact that as we decreaseα andβ, Ψ becomes more
distinct, i.e., the gap between the smallest non zero singular
value and the following one is more distinguished. Hence, its
rank is easier to recover. Moreover, by comparing the scree
plots in the middle and left hand columns, it is clear that when
the exact rank cannot be recovered by CNMA, the gap in the
singular values of matrix̂Ψ cannot be found easily. We would
like to emphasize that although the scree plot can be use to
study the rank of a matrix, it does not provide a complete
solution to the problem, i.e., it fails to suggest an admissible
estimate forΨ. Without probability constraints, an SVD can
be use to obtain a low-rank estimate forΨ. However, in the
presence of probability constraint the problem is NP-hard [43].

C. Computational complexity comparison

We compare the CPU runtime of CNMA with HDP. We
consider(M,L) = [(80, 60) (100, 90) (150, 120) (200, 150)
(300, 200) (600, 500)]. We compute the CPU runtime using
a MATLAB built in function {cputime}. CNMA and HDP
algorithm run on a standard desktop computer with2.5 GHz
CPU (dual core) and4 GB of memory. Figure 7(a) shows the
CPU runtime comparison for CNMA vs. HDP. In Fig. 7(a), the
x-axis shows the dimension of the matrixL×M and they-axis
shows the elapsed CPU time in seconds. Figure 7(a) shows that
the runtime of HDP is longer than that of CNMA by at least
an order of magnitude. Note that we compared the runtime
of CVX (using SDPT3 as an SDP solver) with that of CNMA
and observed that the runtime of CVX is longer than that of
CNMA by over two orders of magnitude. This suggests that
CNMA, i.e., our proposed algorithmic implementing of CNM,
provides a fast and feasible solution to practical size problems
and diminishes the computational limitations associated with
generic solvers.
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Fig. 7. Runtime comparison between CNMA and HDP.
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Fig. 6. This figure shows the effect of the value of the hyperparametersα andβ on rank recovery rate. The first column is the phase diagram ofP (σT > 2ǫ)
as a function of the number of topics and the vocabulary size. Each row corresponds to a different setup of the hyperparameters α andβ. (a) α = 1, β = 1
(d) α = 0.5, andβ = 0.1 (g) α = 0.1, andβ = 0.01. The second column is the plot of the singular values for the setting indicated by black arrows. The
last column is the plot of the singular values indicated by white arrows. Note that the black arrow in the phase diagram corresponds to the success region
proposed by Theorem 1 and the white arrow corresponds to the fail region.

VII. A PPLICATIONS

As the previous section suggests, the proposed
computationally-efficient algorithmic implementation of
CNM can be used to solve problem of realistic dimensions.
In this section, we would like to illustrate that the low-rank
solution obtained by CNMA provides competitive results
to that of LDA, HDP, and the optimal low-rank SVD
approximation of matrix̂Ψ in terms of classification accuracy
on two real image datasets and three real text datasets.

A. Image datasets

We consider two image datasets MSRCv23, and Corel10004.
MSRCv2 image dataset contains591 images in23 object
classes. We perform a multiclass classification for MSRCv2
using the8 row classes:’book’, ’grass, cow’, ’tree, grass,

3http://research.microsoft.com/en-us/projects/objectclassrecognition/default.htm
4http://wang.ist.psu.edu/docs/related/

sky’, ’bike, building’, ’sign’, ’water, boat’, ’aeroplane, grass,
sky’, ’road, building’ resulting in a dataset with240 images
in 8 different classes. Corel1000 image dataset contains1000
images in10 different classes each includes100 images. We
consider7 classes:’buildings’, ’buses’, ’flowers’, ’elephants’,
’horses’, ’food’ and ’mountains’in our simulation. Note that
we excluded the classes which contained images with different
format of RGB representations. We randomly sampled50
images in each class resulting in350 images in7 classes.

To obtain matrixΨ̂, we take the approach of representing
each image as a collection of blocks and mapping each block
to a discrete index associated with the closest dictionary
template. We separate each image to several10 × 10 × 3
blocks. To construct the dictionary, we runk-means on the
collection of blocks from all images to obtainL cluster
centroids. TheL centroids are used as the dictionary templates
and each block is mapped to the index of the closest dictionary
template. We run CNMA, LDA, and HDP to obtain matrix
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Ψ̃∗
CNMA, Ψ̃∗

LDA, andΨ̃∗
HDP , respectively. To find the optimal

low-rank approximation ofΨ̂, we project the columns of
Ψ̂ into its top d-largest left singular vectors whered scans
through the dimension of matrix̂Ψ. We use multi class SVM
with Gaussian kernel for classification [54]. ParametersC and
γ of SVM model are learned byk-fold cross validation where
k = 5.
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Fig. 8. Multiclass classification accuracy for MSRCv2 dataset with number
of clusters (a)200 (b) 500.

In Figures 8 and 9, the classification accuracies obtained
by running SVM onΨ̃∗

CNMA, Ψ̃∗
LDA, and Ψ̃∗

HDP as well as
on different low-rank SVD-based approximations of matrix
Ψ̂ are shown. The classification accuracy provided by matrix
Ψ̃∗

CNMA is competitive with that of the others. Since CNMA
and HDP determine the number of topics in an automated
fashion, the accuracy for each was computed without the
need to scan through the different number of topics. The
number of dimensions is only relevant for the LDA and SVD
approaches, in which the number of topics is an additional
input to the algorithm. In both Figures 8 and 9, the vertical
line shows the rank of the recovered matrixΨ̃∗. We observe
that the classification accuracy for the SVD based dimension
reducedΨ̂ remains stable for ranks greater than Rank(Ψ∗).
This suggests that the number of rank proposed by CNMA can
be considered for dimension reduction of matrixΨ̂. Moreover,
Ψ̃∗

CNMA produces competitive performance results to that of
Ψ̃∗

LDA and Ψ̃∗
HDP .

In [55], supervised LDA was run on MSRCv2 dataset. The
highest classification accuracy obtained by running variational

Bayes on LDA in [55] is69%, which is 5% percent below
the results obtained by CNMA. We have to emphasize that
since CNM is an unsupervised approach for dimension re-
duction, its classification accuracy can be further improved
by introducing class label information to CNM. We also
ran similar simulations using the SIFT representation of the
features proposed by [56] instead of blocks. The sparsity of
matrix Ψ̂ obtained by SIFT representation is lower than the
sparsity ofΨ̂ obtained using a block representation. The theory
we present in this paper and the numerical evaluations in
Section VI-B suggest that whenα and β are large (lower
sparsity), the rank recovery success region is diminished.This
is consistent with the decrease in performance we observed.
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Fig. 9. Multiclass classification accuracy for Corel1000 dataset with number
of clusters (a)200 (b) 500.

B. Text datasets

We evaluate the classification accuracy of the proposed
CNMA approach with HDP, LDA and SVD approaches on
TDT25, Reuters6, and 20Newsgroup7 datasets. The TDT2 cor-
pus consists of data collected during the first half of 1998 and
taken from 6 sources including 2 newswires (APW, NYT), 2
radio programs (VOA, PRI), and 2 television programs (CNN,
ABC), total 11201 documents in 96 different categories. The
20 Newsgroups dataset is a collection of approximately 20,000

5http://www.nist.gov/speech/tests/tdt/tdt98/index.htm
6http://www.daviddlewis.com/resources/testcollections/reuters21578/
7http://people.csail.mit.edu/jrennie/20Newsgroups/
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newsgroup documents, partitioned (nearly) evenly across 20
different newsgroups. Reuters-21578 corpus contains 21578
documents in 135 categories. We use here the ModApte ver-
sion of the Reuters dataset. Documents with multiple category
labels are discarded leaving 8293 documents in 65 categories.
In our experiments we removed documents with low number
of words. Table II shows the summary of each dataset that
we use in our analysis. We compare CNMA with HDP, LDA,

TABLE II
TEXT DATASET SUMMARY

TDT2 20Newsgroup Reuters
No. of documents 3807 4342 3228
Vocabulary size 4350 4612 3071
No. of category 30 20 10
Minimum no. of words per
document (nd)

180 150 50

and low-rank SVD approximation of matrix̂Ψ. We use multi-
class liblinear SVM8, which is well suited for document
classification. We use5-fold cross validation to optimize the
parameterC of the SVM algorithm. Figure 10 shows the
results of classification for different datasets. We omitted the
legend of Fig. 10(a) and Fig. 10(b) which are identical to the
legend of Fig. 10(c). By comparing the results in Fig. 10, we
observe that the performance of CNMA is competitive with
HDP, LDA, and SVD. Moreover, the number of topics found
by both CNMA and HDP algorithms is quite similar. This
suggests that the dimension of the latent space discovered by
HDP can be recovered by CNMA as well.

VIII. C ONCLUSION

In this paper, we provided the framework of confidence-
constrained rank minimization to recover the true number of
topics (rank of the term-by-document matrix) in topic models
and defined the problem as a parameter free convex opti-
mization. We proposed the conditions under which the exact
rank of the probability matrixΨ can be recovered . Moreover,
we showed that the reconstruction error isO(

√

M/n), where
M/n is the ratio of the number of document to the number
of words per document. We devised a fast and accurate
algorithms to solve CNM which enhances the applicability
of CNM for a large real datasets.

As future research direction, one can consider the following.
The rank minimization problem was replaced heuristically
with the nuclear norm minimization. Obtaining the conditions
for which both rank and nuclear norm provide the same
results can be considered. Our approach is an unsupervised
technique in dimension reduction. Developing a new model
which accounts for the useful discriminative information in
the dataset is another future research direction.

APPENDIX A
DERIVATIVE OF λ1

2 ‖D 1

λ1

(Ψ′)‖2
F WITH RESPECT TOλ1

The derivative ofλ1

2 ‖D 1

λ1

(Ψ′)‖2
F with respect toλ1 is

dλ1

2 ‖D 1

λ1

(Ψ′)‖2
F

dλ1
=

1

2
‖D 1

λ1

(Ψ′)‖2
F +

1

λ1
‖D 1

λ1

(Ψ′)‖∗

8http://www.csie.ntu.edu.tw/cjlin/liblinear/
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Fig. 10. Classification accuracy for (a) TDT2, b) 20Newsgroup, and (c)
Reuters

− 1

λ1
tr((1λ2

2 + Λ3)
T D 1

λ1

(Ψ′))). (18)

Proof:
Using the product rule, the derivative ofλ1

2 ‖D 1

λ1

(Ψ′)‖2
F

with respect toλ1 can be expressed as:

dλ1

2 ‖D 1

λ1

(Ψ′)‖2
F

dλ1
=

1

2
‖D 1

λ1

(Ψ′)‖2
F +

λ1

2

d‖D 1

λ1

(Ψ′)‖2
F

dλ1
. (19)

SinceD 1

λ1

(Ψ′) = U(S− 1
λ1

I)+V T , we have‖D 1

λ1

(Ψ′)‖2
F =

tr
(

D 1

λ1

(Ψ′)T D 1

λ1

(Ψ′)
)

= tr
(

(S − 1
λ1

I)2+

)

. Therefore, the
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second term on the RHS of (19) is

λ1

2

d

dλ1
(‖D 1

λ1
(Ψ′)‖2

F ) =
λ1

2

d

dλ1
tr

(

(S − 1

λ1
I)2+

)

= λ1tr

(

d(S − 1
λ1

I)

dλ1
(S − 1

λ1
I)+

)

= λ1tr

(

dS

dλ1
(S − 1

λ1
I)+

)

+
1

λ1
tr

(

(S − 1

λ1
I)+

)

= λ1tr

(

dS

dλ1
(S − 1

λ1
I)+

)

+
1

λ1
‖D 1

λ1

(Ψ′)‖∗. (20)

Since tr
(

dS
dλ1

(S − 1
λ1

I)+

)

= tr
(

(dΨ′

dλ1

)T D 1

λ1

(Ψ′)
)

[57], we have λ1tr
(

dS
dλ1

(S − 1
λ1

I)+

)

= − 1
λ1

tr((1λT
2 +

Λ3)
T D 1

λ1

(Ψ′))) and consequently

λ1

2

d‖D 1

λ1

(Ψ′)‖2
F

dλ1
= − 1

λ1
tr((1λT

2 + Λ3)
T D 1

λ1

(Ψ′)))

+
1

λ1
‖D 1

λ1

(Ψ′)‖∗. (21)

Substituting (21) into (19), we obtain (18).

APPENDIX B
PROOF OF PROBABILITY BOUND FOR ESTIMATION ERROR

To prove the probability bound for the estimation error of
rank recovery in CRM, we defined two random quantities
Q =

∑M
d=1 ndQd and Q′ =

∑M
d=1 Qd, where Qd =

∑L
l=1(Ψld − Ψ̂ld)

2. We use the one-tailed Chebyshev’s in-
equality for random variableX as following:

P
(

X ≥ E(X) + k
√

V ar(X)
)

≤ 1

1 + k2
. (22)

To compute the Chebyshev bound, we need to evaluate mean
and variance of random quantityQd. First we start with
calculation of the expected value of random variableQd.

E(Qd) =

L
∑

l=1

E(Ψ̂ld − Ψld)
2 = Var(Ψ̂ld) =

L
∑

l=1

Ψld(1 − Ψld)

nd

=
1

nd

(1 −
L
∑

l=1

Ψ2
ld) (23)

Note that Var(Ψ̂d) = Ψld(1−Ψld)
nd

.
1) V ar(Qd): The variance ofQd can be calculated as

follows (for notational ease we defineIij = I(Xi = j)):

Var(Qd) =

L
∑

l=1

L
∑

m=1

(

E

[(

1

nd

nd
∑

i=1

Iil − Ψld

)2(
1

nd

nd
∑

j=1

Ijm − Ψmd

)2]

−E

[(

1

nd

nd
∑

i=1

Iil − Ψld

)2]

×

E

[(

1

nd
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∑

j=1

Ijm − Ψmd

)2]
)

(24)

We compute the second term on the RHS of (24) as follows:

E

[(

1

nd

nd
∑

i=1

Iil − Ψld

)2]

E

[(

1

nd

nd
∑

i=1

Ijm − Ψmd

)2]

=
Ψld(1 − Ψld)

nd

× Ψmd(1 − Ψmd)

nd

For the first term on the RHS of (24), we have:

E

[(

1

nd

nd
∑

i=1

Iil − Ψld

)2(
1

nd

nd
∑

j=1

Ijm − Ψmd

)2]

=

1

n4
d

(

∑
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∑
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∑

k

∑

t

E

[(

Iil − Ψld

)(

Ijl − Ψld

)

(

Ikm − Ψmd

)(

Itm − Ψmd

)])

To evaluate E[(Iil − Ψld) (Ijl − Ψld) (Ikm − Ψmd) (Itm−
Ψmd)], we consider all the alternatives ofi, j, k, l as fol-
lows (the enumeration of each alternative is specified in the
bracket):

1) [nd] i = j = k = t

(Iil − Ψld)
2

= Iil (1 − 2Ψld) + Ψ2
ld

E[
(

Iil (1 − 2Ψld) + Ψ2
ld

)

(Iim (1 − 2Ψmd) +

Ψ2
md)] = δlmΨld (1 − 2Ψld)

2
+ Ψld (1 − 2Ψld)

Ψ2
md + Ψ2

ldΨmd (1 − 2Ψmd) + Ψ2
ldΨ

2
md

2) [4nd(nd−1)] (i = j = k 6= t, i = j = t 6= k, i = k = t
6= j, j = k = t 6= i)

E
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2
(Iim − Ψmd) (Itm − Ψmd)

]

= 0

3) [nd(nd − 1)] i = j 6= k = t

E
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2
]

E
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2
]
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4) [2nd(nd − 1)] (i = k 6= j = t, i = t 6= j = k)

2E [(Iil − Ψld) (Ijm − Ψmd)]
2

= 2[δlmΨld −
ΨldΨmd − ΨldΨmd + ΨldΨmd]

2

= 2 (δlmΨld − ΨldΨmd)
2

= 2(δlmΨ2
ld (1 − 2Ψld)

+Ψ2
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2
md)

5) [6nd(nd − 1)(nd − 2)] (i = j 6= k 6= t,
and all the combinations of 3 out of 4)

E[(Iil − Ψld)
2
(Ikm − Ψmd) (Itm −

Ψmd)] = 0

6) [nd(nd − 1)(nd − 2)(nd − 3)] i 6= j 6= k 6= t

E[(Iil − Ψld) (Ijl − Ψld) (Ikm − Ψmd) (Itm −
Ψmd)] = 0
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By adding all the alternatives from one to six and organizing
them, we get the following expression forV ar(Qd):

V ar(Qd) =
2

n2
d

L
∑

l=1

L
∑

m=1

(

δlmΨ2
ld (1 − 2Ψld) + Ψ2
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)

(25)

The first component on RHS of (25) can be bounded us-
ing Cauchy-Schwartz as

(
∑

Ψ1.5
ld Ψ0.5
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l Ψ
3
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∑

l Ψld.
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,

wheret =
∑L
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ld. For the second component term on RHS

of (25) since
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ld, we have
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The mean ofQ andQ′ can be bounded as follows:

E(Q) =

M
∑

d=1

ndE(Qd) = M −
M
∑

d=1

L
∑
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Ψ2
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,

since−∑M
d=1

∑L
l=1 Ψ2

ld ≤ 0. Note thatQd, d = 1, . . . ,M
arei.i.d. random variables, thus the variance ofQ andQ′ can

be computed as the sum of variance ofQd.
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.

Using the one-tailed Chebyshev inequality, we have the fol-
lowing probability bound forQ andQ′:
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Q ≥ M + k

√

√

√

√

M

2

(

1 + 3/M

M
∑

d=1

1

nd

)

)

≤ 1

1 + k2
,

P

(

Q′ ≥
M
∑

d=1

1

nd

+ k

√

√

√

√

(

M
∑

d=1

1

2n2
d

+

M
∑

d=1

3

2n3
d

)

)

≤ 1

1 + k2
.

Alternatively, we say w.p.1 − δk, ,δk = 1
1+k2 , we haveQ =

∑M
d=1

∑L
l=1 nd

(

Ψ̂ld − Ψld

)2

≤ ǫ2(δk), where

ǫ2(δk) = ǫ∗2(δk) = M + k

√

√

√

√

M

2

(

1 + 3/M

M
∑

d=1

1

nd

)

,

andQ′ =
∑M

d=1

∑L
l=1

(

Ψ̂ld − Ψld

)2

≤ ǫ′
2
(δk), where

ǫ′
2
(δk) = ǫ′∗

2
(δk) =

M
∑

d=1

1

nd

+ k

√

√

√

√

( M
∑

d=1

1

2n2
d

+
M
∑

d=1

3

2n3
d

)

.
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