
0 Review of Concepts & Notation

The material in this section is meant as a review. Despite that, many students report
that they �nd this review useful for the rest of the book.

0.1 Logs & Exponents

You probably learned (and then forgot) these identities in middle school or high school:

(xa)(xb) = xa+b

(xa)b = xab

logx (ab) = logx a + logx b
a logx b = logx (b

a)

Well, it’s time to get reacquainted with them again.
In particular, never ever write (xa)(xb) = xab . If you write this, your cryptography

instructor will realize that life is too short, immediately resign from teaching, and join a
traveling circus. But not before changing your grade in the course to a zero.

0.2 Modular Arithmetic

We write the set of integers as:

Z
def
= {. . . ,−2,−1, 0, 1, 2, . . .},

and the set of natural numbers (nonnegative integers) as:

N
def
= {0, 1, 2, . . .}.

Note that 0 is considered a natural number.

Definition 0.1 For x ,n ∈ Z, we say that n divides x (or x is a multiple of n), and write n | x , if there exists
an integer k such that x = kn.

Remember that the de�nitions apply to both positive and negative numbers (and to
zero). We generally only care about this de�nition in the case where n is positive, but it is
common to consider both positive and negative values of x .

Example 7 divides 84 because we can write 84 = 12 · 7.
7 divides 0 because we can write 0 = 0 · 7.
7 divides −77 because we can write −77 = (−11) · 7.
−7 divides 42 because we can write 42 = (−6) · (−7).
1 divides every integer (so does −1). The only integer that 0 divides is itself.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Definition 0.2

(% operator)

Let n be a positive integer, and let a be any integer. The expression a % n (usually read as “a
mod n”) represents the remainder after dividing a by n. More formally, a % n is the unique
r ∈ {0, . . . ,n − 1} such that n | (a − r).1

Pay special attention to the fact that a %n is always a nonnegative number, even if a is
negative. A good way to remember how this works is:

a is (a % n) more than a multiple of n.

Example 21 % 7 = 0 because 21 = 3 · 7 + 0.
20 % 7 = 6 because 20 = 2 · 7 + 6.
−20 % 7 = 1 because −20 = (−3) · 7 + 1. (−20 is one more than a multiple of 7.)
−1 % 7 = 6 because −1 = (−1) · 7 + 6.

Unfortunately, some programming languages de�ne % for negative numbers as (−a)%
n = −(a % n), so they would de�ne −20 % 7 to be −(20 % 7) = −6. This is madness, and
it’s about time we stood up to these programming language designers and smashed them
over the head with some mathematical truth! For now, if you are using some programming
environment to play around with the concepts in the class, be sure to check whether it
de�nes % in the correct way.

Definition 0.3

(Zn)

For positive n, we write Zn
def
= {0, . . . ,n − 1} to denote the set of integers modulo n. These

are the possible remainders one obtains by dividing by n.2

Definition 0.4

(≡n)

For positive n, we say that integers a and b are congruent modulo n, and write a ≡n b, if
n | (a − b). An alternative de�nition is that a ≡n b if and only if a % n = b % n.

You’ll be in a better position to succeed in this class if you can understand the (subtle)
distinction between a ≡n b and a = b % n:

a ≡n b: In this expression, a and b can be integers of any size, and any sign. The left
and right side have a certain relationship modulo n.

a = b % n: This expression says that two integers are equal. The “=” rather than “≡” is
your clue that the expression refers to equality over the integers. “b % n” on
the right-hand side is an operation performed on two integers that returns an
integer result. The result of b % n is an integer in the range {0, . . . ,n − 1}.

Example “99 ≡10 19” is true. Applying the de�nition, you can see that 10 divides 99 − 19.
On the other hand, “99 = 19 % 10” is false. The right-hand side evaluates to the integer 9,

but 99 and 9 are di�erent integers.
1The fact that only one value of r has this property is a standard fact proven in most introductory courses

on discrete math.
2Mathematicians may recoil at this de�nition in two ways: (1) the fact that we call it Zn and not Z/(nZ);

and (2) the fact that we say that this set contains integers rather than congruence classes of integers. If you
appreciate the distinction about congruence classes, then you will easily be able to mentally translate from
the style in this book; and if you don’t appreciate the distinction, there should not be any case where it makes
a di�erence.

2

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

In short, expressions like a ≡n b make sense for any a,b (including negative!), but
expressions like a = b % n make sense only if a ∈ Zn .

Most other textbooks will use notation “a ≡ b (mod n)” instead of “a ≡n b.” I dislike
this notation because “(mod n)” is easily mistaken for an operation or action that only
a�ects the right-hand side, when in reality it is like an adverb that modi�es the entire
expression a ≡ b. Even though ≡n is a bit weird, I think the weirdness is worth it.

If d | x and d | y, then d is a common divisor of x and y. The largest possible such d
is called the greatest common divisor (GCD), denoted gcd(x ,y). If gcd(x ,y) = 1, then
we say that x and y are relatively prime. The oldest “algorithm” is the recursive process
that Euclid described for computing GCDs (ca. 300 bce):

gcd(x ,y): // Euclid’s algorithm
if y = 0 then return x
else return gcd(y,x % y)

Tips & Tricks

You may often be faced with some complicated expression and asked to �nd the value of
that expression mod n. This usually means: �nd the unique value in Zn that is congruent
to the result. The straightforward way to do this is to �rst compute the result over the
integers, and then reduce the answer mod n (i.e., with the % n operator).

While this approach gives the correct answer (and is a good anchor for your under-
standing), it’s usually advisable to simplify intermediate values mod n. Doing so will
result in the same answer, but will usually be easier or faster to compute:

Example We can evaluate the expression 6 · 7 · 8 · 9 · 10 % 11 without ever calculating that product over
the integers, by using the following reasoning:

6 · 7 · 8 · 9 · 10 = (42) · 8 · 9 · 10
≡11 9 · 8 · 9 · 10
= (72) · 9 · 10
≡11 6 · 9 · 10
= (54) · 10
≡11 10 · 10
= 100
≡11 1

In the steps that only work mod 11, we write “≡11”. We can write “=” when the step holds over
the integers, although it wouldn’t be wrong to write “≡11” in those cases too. If two expressions
represent the same integer, then they surely represent values that are congruent mod 11.

My advice is to simplify intermediate values modn, but “simplify” doesn’t always mean
“reduce mod n with the % n operation.” Sometimes an expression can by “simpli�ed” by
substituting a value with something congruent, but not in the range {0, . . . ,n − 1}:

3

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Example I can compute 7500 % 8 in my head, by noticing that 7 ≡8 −1 and simplifying thusly:

7500 ≡8 (−1)500 = 1.

Similarly, I can compute 892%99 in my head, although I have not memorized the integer
892. All I need to do is notice that 89 ≡99 −10 and compute this way:

892 ≡99 (−10)2 = 100 ≡99 1

You can compute either of these examples the “hard way” to verify that these shortcuts lead
to the correct answer.

Since addition, subtraction, and multiplication are de�ned over the integers (i.e.,
adding/subtracting/multiplying integers always results in an integer), these kinds of tricks
can be helpful.

On the other hand, dividing integers doesn’t always result in an integer. Does it make
sense to use division when working mod n, where the result always has to lie in Zn? We
will answer this question later in the book.

0.3 Strings

We write {0, 1}n to denote the set of n-bit binary strings, and {0, 1}∗ to denote the set
of all (�nite-length) binary strings. When x is a string of bits, we write |x | to denote the
length (in bits) of that string, and we write x to denote the result of �ipping every bit in x .
When it’s clear from context that we’re talking about strings instead of numbers, we write
0n and 1n to denote strings of n zeroes and n ones, respectively (rather than the result of
raising the integers 0 or 1 to the n power). As you might have noticed, I also try to use a
di�erent font and color for characters (including bits, anything that could be used to build
a string through concatenation) vs. integers.

Definition 0.5

(⊕, xor)

When x and y are strings of the same length, we write x ⊕y to denote the bitwise exclusive-or
(xor) of the two strings. The expression x ⊕ y is generally not de�ned when the strings are
di�erent lengths, but in rare occasions it is useful to consider the shorter string being padded
with 0s. When that’s the case, we must have an explicit convention about whether the shorter
string is padded with leading 0s or trailing 0s.

For example, 0011 ⊕ 0101 = 0110. The following facts about the xor operation are
frequently useful:

x ⊕ x = 000· · · xor’ing a string with itself results in zeroes.
x ⊕ 000· · · = x xor’ing with zeroes has no e�ect.
x ⊕ 111· · · = x xor’ing with ones �ips every bit.

x ⊕ y = y ⊕ x xor is symmetric.
(x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) xor is associative.

See if you can use these properties to derive the very useful fact below:

a = b ⊕ c ⇐⇒ b = a ⊕ c ⇐⇒ c = a ⊕ b .

There are a few ways to think about xor that may help you in this class:

4

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

I Bit-�ipping: Note that xor’ing a bit with 0 has no e�ect, while xor’ing with 1 �ips
that bit. You can think of x ⊕ y as: “starting with x , �ip the bits at all the positions
where y has a 1.” So if y is all 1’s, then x ⊕ y gives the bitwise-complement of x . If
y = 1010· · · then x ⊕ y means “(the result of) �ipping every other bit in x .”

Many concepts in this course can be understood in terms of bit-�ipping. For exam-
ple, we might ask “what happens when I �ip the �rst bit of x and send it into the
algorithm?” This kind of question could also be phrased as “what happens when I
send x ⊕ 1000· · · into the algorithm?” Usually there is nothing special about �ip-
ping just the �rst bit of a string, so it will often be quite reasonable to generalize the
question as “what happens when I send x ⊕ y into the algorithm, for an arbitrary
(not-all-zeroes) string y?”

I Addition mod-2: xor is just addition mod 2 in every bit. This way of thinking
about xor helps to explain why “algebraic” things like (x ⊕ y) ⊕ z = x ⊕ (y ⊕ z) are
true. They are true for addition, so they are true for xor.

This also might help you remember why x ⊕ x is all zeroes. If instead of xor we
used addition, we would surely write x + x = 2x . Since 2 ≡2 0, we get that 2x is
congruent to 0x = 0.

Definition 0.6

(‖, concatenation)

We write x ‖y to denote the result of concatenating x and y.

0.4 Functions

Let X and Y be �nite sets. A function f : X → Y is:

injective (1-to-1) if it maps distinct inputs to distinct outputs. Formally: x , x ′ ⇒
f (x) , f (x ′). If there is an injective function from X to Y , then we must have
|Y | > |X |.

surjective (onto) if every element in Y is a possible output of f . Formally: for all y ∈ Y
there exists an x ∈ X with f (x) = y. If there is a surjective function from X to
Y , then we must have |Y | 6 |X |.

bijective (1-to-1 correspondence) if f is both injective and surjective. If there is a bijec-
tive function from X to Y , then we must have |X | = |Y |.

0.5 Probability

Definition 0.7

(Distribution)

A (discrete) probability distribution over a set X of outcomes is usually written as a
function “Pr” that associates each outcome x ∈ X with a probability Pr[x]. We often say that
the distribution assigns probability Pr[x] to outcome x .

For each outcome x ∈ X , the probability distribution must satisfy the condition 0 6
Pr[x] 6 1. Additionally, the sum of all probabilities

∑
x ∈X Pr[x] must equal 1.

Definition 0.8

(Uniform)

A special distribution is the uniform distribution over a �nite set X , in which every x ∈ X
is assigned probability Pr[x] = 1/|X |.

5

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

We also extend the notation Pr to events, which are collections of outcomes. If you
want to be formal, an event A is any subset of the possible outcomes, and its probability
is de�ned to be Pr[A] =

∑
x ∈A Pr[x]. We always simplify the notation slightly, so instead

of writing Pr[{x | x satis�es some condition}], we write Pr[condition].

Example A 6-sided die has faces numbered {1, 2, . . . , 6}. Tossing the die (at least for a mathemati-
cian) induces a uniform distribution over the choice of face. Then Pr[3 is rolled] = 1/6, and
Pr[an odd number is rolled] = 1/2 and Pr[a prime is rolled] = 1/2.

Tips & Tricks

Knowing one of the probabilities Pr[A] and Pr[¬A] (which is “the probability thatA doesn’t
happen”) tells you exactly what the other probability is, via the relationship

Pr[A] = 1 − Pr[¬A].

This is one of the most basic facts about probability, but it can be surprisingly useful since
one of Pr[A] and Pr[¬A] is often much easier to calculate than the other. If you get stuck
trying to come up with an expression for Pr[A], try working out an expression for Pr[¬A]
instead.

Example I roll a six-sided die, six times. What is the probability that there is some repeated value?
Let’s think about all the ways of getting a repeated value. Well, two of the rolls could be 1, or
three of rolls could be 1, or all of them could be 1, two of them could be 1 and the rest could
be 2, etc. Oh no, am I double-counting repeated 2s and repeated 1s? Uhh. . .

An easier way to attack the problem is to realize that the probability we care about is
actually 1−Pr[all 6 rolls are distinct]. This complementary event (all 6 rolls distinct) happens
exactly when the sequence of dice rolls spell out a permutation of {1, . . . , 6}. There are 6! =
720 such permutations, out of 66 = 46656 total possible outcomes. Hence, the answer to the
question is

1 −
6!
66
= 1 −

720
46656

=
45936
46656

≈ 0.9846

Another trick is one I like to call setting breakpoints on the universe. Imagine stop-
ping the universe at a point where some random choices have happened, and others have
not yet happened. This is best illustrated by example:

Example A classic question asks: when rolling two 6-sided dice what is the probability that the dice
match? Here is a standard (and totally correct way) to answer the question:

When rolling two 6-sided dice, there are 62 = 36 total outcomes (a pair of num-
bers), so each has probability 1/36 under a uniform distribution. There are 6
outcomes that make the dice match: both dice 1, both dice 2, both dice 3, and so
on. Therefore, the probability of rolling matching dice is 6/36 = 1/6.

A di�erent way to arrive at the answer goes like this:

6

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Imagine I roll the dice one after another, and I pause the universe (set a break-
point) after rolling the �rst die but before rolling the second one. The universe
has already decided the result of the �rst die, so let’s call that value d . The dice
will match only if the second roll comes up d . Rolling d on the second die (indeed,
rolling any particular value) happens with probability 1/6.

This technique of setting breakpoints is simple but powerful and frequently useful.
Some other closely related tricks are: (1) postponing a random choice until the last possible
moment, just before its result is used for the �rst time, and (2) switching the relative order
of independent random choices.

Precise Terminology

It is tempting in this course to say things like “x is a random string.” But a statement like
this is sloppy on several accounts.

First, is 42 a random number? Is “heads” a random coin? What is even being asked by
these questions? Being “random” is not a property of an outcome (like a number or a side
of a coin) but a property of the process that generates an outcome.3 Instead of saying “x is
a random string,” it’s much more precise to say “x was chosen randomly.”

Second, usually when we use the word “random,” we don’t mean any old probability
distribution. We usually mean to refer to the uniform distribution. Instead of saying “x
was chosen randomly,” it’s much more precise to say “x was chosen uniformly” (assuming
that really is what you mean).

Every cryptographer I know (yes, even your dear author) says things like “x is a ran-
dom string” all the time to mean “x was chosen uniformly [from some set of strings].”
Usually the meaning is clear from context, at least to the other cryptographers in the
room. But all of us could bene�t by having better habits about this sloppy language. Stu-
dents especially will bene�t by internalizing the fact that randomness is a property of
the process, not of the individual outcome.

0.6 Notation in Pseudocode

We’ll often describe algorithms/processes using pseudocode. In doing so, we will use sev-
eral di�erent operators whose meanings might be easily confused:

← WhenD is a probability distribution, we write “x ← D” to mean “sample x accord-
ing to the distribution D.”

IfA is an algorithm that takes input and also makes some internal random choices,
then it is natural to think of its output A(y) as a distribution — possibly a di�erent
distribution for each input y. Then we write “x ← A(y)” to mean the natural thing:
“run A on input y and assign the output to x .”

3There is something called Kolmogorov complexity that can actually give coherent meaning to statements
like “x is a random string.” But Kolmogorov complexity has no relevance to this book. The statement “x is
a random string” remains meaningless with respect to the usual probability-distribution sense of the word
“random.”

7

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

We overload the “←” notation slightly, writing “x ← X ” when X is a �nite set to
mean that x is sampled from the uniform distribution over X .

:= We write x := y for assignments to variables: “take the value of expression y and
assign it to variable x .”

?
= We write comparisons as ?

= (analogous to “==” in your favorite programming lan-
guage). So x ?

= y doesn’t modify x (ory), but rather it is an expression which returns
true if x and y are equal.

You will often see this notation in the conditional part of an if-statement, but also
in return statements as well. The following two snippets are equivalent:

return x
?
= y ⇔

if x ?
= y:

return true

else:
return false

In a similar way, we write x
?
∈ S as an expression that evaluates to true if x is in the

set S .

Subroutine conventions

We’ll use mathematical notation to de�ne the types of subroutine arguments:

foo (x ∈ {0, 1}∗):
· · ·

means “void foo(string x) { ... }′′

0.7 Asymptotics (Big-O)

Let f : N→ N be a function. We characterize the asymptotic growth of f in the following
ways:

f (n) is O(д(n))
def
⇔ lim

n→∞

f (n)

д(n)
< ∞

⇔ ∃c > 0 : for all but �nitely many n : f (n) < c · д(n)

f (n) is Ω(д(n))
def
⇔ lim

n→∞

f (n)

д(n)
> 0

⇔ ∃c > 0 : for all but �nitely many n : f (n) > c · д(n)

f (n) is Θ(д(n))
def
⇔ f (n) is O(д(n)) and f (n) is Ω(д(n))

⇔ 0 < lim
n→∞

f (n)

д(n)
< ∞

⇔ ∃c1, c2 > 0 : for all but �nitely many n :
c1 · д(n) < f (n) < c2 · д(n)

8

Draft: January 3, 2021 CHAPTER 0. REVIEW OF CONCEPTS & NOTATION

Exercises

0.1. Rewrite each of these expressions as something of the form 2x .

(a) (2n)n = ??

(b) 2n + 2n = ??

(c) (2n)(2n) = ??

(d) (2n)/2 = ??

(e)
√
2n = ??

(f) (2n)2 = ??

0.2. (a) What is 0 + 1 + 2 + · · · + (n − 2) + (n − 1) % n, when n is an odd integer? Prove your
answer!

(b) What is 0 + 1 + 2 + · · · + (n − 2) + (n − 1) % n, when n is even? Prove your answer!

0.3. What is (−99) % 10?

0.4. Without using a calculator, what are the last two digits of 3579986?

0.5. Without using a calculator, what is 1000! % 427? (That’s not me being excited about the
number one thousand, it’s one thousand factorial!)

0.6. Which values x ∈ Z11 satisfy x2 ≡11 5? Which satisfy x2 ≡11 6?

0.7. What is the result of xor’ing every n bit string? For example, the expression below is the
xor of every 5-bit string:

00000 ⊕ 00001 ⊕ 00010 ⊕ 00011 ⊕ · · · ⊕ 11110 ⊕ 11111

Give a convincing justi�cation of your answer.

0.8. Consider rolling several d-sided dice, where the sides are labeled {0, . . . ,d − 1}.

(a) When rolling two of these dice, what is the probability of rolling snake-eyes (a pair of
1s)?

(b) When rolling two of these dice, what is the probability that they don’t match?
(c) When rolling three of these dice, what is the probability that they all match?
(d) When rolling three of these dice, what is the probability that they don’t all match

(including the case where two match)?
(e) When rolling three of these dice, what is the probability that at least two of them match

(including the case where all three match)?
(f) When rolling three of these dice, what is the probability of seeing at least one 0?

0.9. When rolling two 6-sided dice, there is some probability of rolling snake-eyes (two 1s).
You determined this probability in the previous problem. In some game, I roll both dice
each time it is my turn. What is the smallest value t such that:

Pr[I have rolled snake-eyes in at least one of my �rst t turns] > 0.5?

In other words, how many turns until my probability of getting snake-eyes exceeds 50%?

9

