
1 One-Time Pad & Kerckho�s’

Principle

You can’t learn about cryptography without meeting Alice, Bob, and Eve. This chapter
is about the classic problem of private communication, in which Alice has a message
that she wants to convey to Bob, while also keeping the contents of the message hidden
from an eavesdropper1 Eve. You’ll soon learn that there is more to cryptography than just
private communication, but it is the logical place to start.

1.1 What Is [Not] Cryptography?

“To de�ne is to limit.”
—Oscar Wilde

Cryptography is not a magic spell that solves all security problems. Cryptography
can provide solutions to cleanly de�ned problems that often abstract away important but
messy real-world concerns. Cryptography can give guarantees about what happens in
the presence of certain well-de�ned classes of attacks. These guarantees may not apply if
real-world attackers “don’t follow the rules” of a cryptographic security model.

Always keep this in mind as we de�ne (i.e., limit) the problems that we solve in this
course.

Encryption Basics & Terminology

Let’s begin to formalize our scenario involving Alice, Bob, and Eve. Alice has a message
m that she wants to send (privately) to Bob. We call m the plaintext. We assume she
will somehow transform that plaintext into a value c (called the ciphertext) that she will
actually send to Bob. The process of transformingm into c is called encryption, and we will
use Enc to refer to the encryption algorithm. When Bob receives c , he runs a corresponding
decryption algorithm Dec to recover the original plaintextm.

We assume that the ciphertext may be observed by the eavesdropper Eve, so the (in-
formal) goal is for the ciphertext to be meaningful to Bob but meaningless to Eve.

Enc Dec

m c m

1“Eavesdropper” refers to someone who secretly listens in on a conversation between others. The term
originated as a reference to someone who literally hung from the eaves of a building in order to hear conver-
sations happening inside.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Secrets & Kerckho�s’ Principle

Something important is missing from this picture. If we want Bob to be able to decrypt c ,
but Eve to not be able to decrypt c , then Bob must have some information that Eve doesn’t
have (do you see why?). Something has to be kept secret from Eve.

You might suggest to make the details of the Enc and Dec algorithms secret. This
is how cryptography was done throughout most of the last 2000 years, but it has major
drawbacks. If the attacker does eventually learn the details of Enc and Dec, then the only
way to recover security is to invent new algorithms. If you have a system with many users,
then the only way to prevent everyone from reading everyone else’s messages is to invent
new algorithms for each pair of users. Inventing even one good encryption method is
already hard enough!

The �rst person to articulate this problem was Auguste Kerckho�s. In 1883 he for-
mulated a set of cryptographic design principles. Item #2 on his list is now known as
Kerckho�s’ principle:

Kerckho�s’ Principle:

“Il faut qu’il n’exige pas le secret, et qu’il puisse sans inconvénient tomber entre
les mains de l’ennemi.”

Literal translation: [The method] must not be required to be secret, and it
must be able to fall into the enemy’s hands without causing inconvenience.

Bottom line: Design your system to be secure even if the attacker has com-
plete knowledge of all its algorithms.

If the algorithms themselves are not secret, then there must be some other secret infor-
mation in the system. That information is called the (secret) key. The key is just an extra
piece of information given to both the Enc and Dec algorithms. Another way to interpret
Kerckho�s’ principle is that all of the security of the system should be concentrated in the
secrecy of the key, not the secrecy of the algorithms. If a secret key gets compromised,
you only need to choose a new one, not reinvent an entirely new encryption algorithm.
Multiple users can all safely use the same encryption algorithm but with independently
chosen secret keys.

The process of choosing a secret key is called key generation, and we write KeyGen

to refer to the (randomized) key generation algorithm. We call the collection of three algo-
rithms (Enc, Dec, KeyGen) an encryption scheme. Remember that Kerckho�s’ principle
says that we should assume that an attacker knows the details of the KeyGen algorithm.
But also remember that knowing the details (i.e., source code) of a randomized algorithm
doesn’t mean you know the speci�c output it gave when the algorithm was executed.

KeyGen

Enc Dec

m c m

k

11

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Excuses, Excuses

Let’s practice some humility. Here is just a partial list of issues that are clearly important
for the problem of private communication, but which are not addressed by our de�nition
of the problem.

I We are not trying to hide the fact that Alice is sending something to Bob, we only
want to hide the contents of that message. Hiding the existence of a communication
channel is called steganography.

I We won’t consider the question of how c reliably gets from Alice to Bob. We’ll just
take this issue for granted.

I For now, we are assuming that Eve just passively observes the communication be-
tween Alice & Bob. We aren’t considering an attacker that tampers with c (causing
Bob to receive and decrypt a di�erent value), although we will consider such attacks
later in the book.

I We won’t discuss how Alice and Bob actually obtain a common secret key in the real
world. This problem (known as key distribution) is clearly incredibly important,
and we will discuss some clever approaches to it much later in the book.

In my defense, the problem we are solving is already rather non-trivial: once two
users have established a shared secret key, how can they use that key to communi-
cate privately?

I We won’t discuss how Alice and Bob keep their key secret, even after they have
established it. One of my favorite descriptions of cryptography is due to Lea Kissner
(former principal security engineer at Google): “cryptography is a tool for turning lots
of di�erent problems into key management problems.”

I Throughout this course we simply assume that the users have the ability to uni-
formly sample random strings. Indeed, without randomness there is no cryptogra-
phy. In the real world, obtaining uniformly random bits from deterministic com-
puters is extremely non-trivial. John von Neumann famously said, “Any one who
considers arithmetical methods of producing random digits is, of course, in a state of
sin.” Again, even when we take uniform randomness for granted, we still face the
non-trivial question of how to use that randomness for private communication (and
other applications), and also how to use only a manageable amount of randomness.

Not Cryptography

People use many techniques to try to hide information, but many are “non-cryptographic”
since they don’t follow Kerckho�s’ principle:

I Encoding/decoding methods like base64 . . .

joy of cryptography ↔ b25seSBuZXJkcyB3aWxsIHJlYWQgdGhpcw==

12

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

. . . are useful for incorporating arbitrary binary data into a structured �le format
that supports limited kinds of characters. But since base64 encoding/decoding in-
volves no secret information, it adds nothing in terms of security.

I Sometimes the simplest way to describe an encryption scheme is with operations on
binary strings (i.e., 0s and 1s) data. As we will see, one-time pad is de�ned in terms
of plaintexts represented as strings of bits. (Future schemes will require inputs to
be represented as a bitstring of a speci�c length, or as an element of Zn , etc.)
In order to make sense of some algorithms in this course, it may be necessary to
think about data being converted into binary representation. Just like with base64,
representing things in binary has no e�ect on security since it does not involve any
secret information. Writing something in binary is not a security measure!

1.2 Specifics of One-Time Pad

People have been trying to send secret messages for roughly 2000 years, but there are really
only 2 useful ideas from before 1900 that have any relevance to modern cryptography.
The �rst idea is Kerckho�s’ principle, which you have already seen. The other idea is
one-time pad (OTP), which illustrates several important concepts, and can even still be
found hiding deep inside many modern encryption schemes.

One-time pad is sometimes called “Vernam’s cipher” after Gilbert Vernam, a telegraph
engineer who patented the scheme in 1919. However, an earlier description of one-time
pad was rather recently discovered in an 1882 text by Frank Miller on telegraph encryp-
tion.2

In most of this book, secret keys will be strings of bits. We generally use the variable λ
to refer to the length (# of bits) of the secret key in a scheme, so that keys are elements of
the set {0, 1}λ . In the case of one-time pad, the choice of λ doesn’t a�ect security (λ = 10
is “just as secure” as λ = 1000); however, the length of the keys and plaintexts must be
compatible. In future chapters, increasing λ has the e�ect of making the scheme harder to
break. For that reason, λ is often called the security parameter of the scheme.

In one-time pad, not only are the keys λ-bit strings, but plaintexts and ciphertexts
are too. You should consider this to be just a simple coincidence, because we will soon
encounter schemes in which keys, plaintexts, and ciphertexts are strings of di�erent sizes.

The speci�c KeyGen, Enc, and Dec algorithms for one-time pad are given below:

Construction 1.1

(One-time pad)

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m ∈ {0, 1}λ):
return k ⊕m

Dec(k, c ∈ {0, 1}λ):
return k ⊕ c

Recall that “k ← {0, 1}λ” means to sample k uniformly from the set of λ-bit strings. This
uniform choice of key is the only randomness in all of the one-time pad algorithms. As we
will see, all of its security stems from this choice of using the uniform distribution; keys
that are chosen di�erently do not provide equivalent security.

2See the article Steven M. Bellovin: “Frank Miller: Inventor of the One-Time Pad.” Cryptologia 35 (3),
2011.

13

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Example Encrypting the following 20-bit plaintextm under the 20-bit key k using OTP results in the
ciphertext c below:

11101111101111100011 (m)
⊕ 00011001110000111101 (k)

11110110011111011110 (c = Enc(k,m))

Decrypting the following ciphertext c using the key k results in the plaintextm below:

00001001011110010000 (c)
⊕ 10010011101011100010 (k)

10011010110101110010 (m = Dec(k, c))

Note that Enc and Dec are essentially the same algorithm (return the xor of the two
arguments). This results in some small level of convenience and symmetry when imple-
menting one-time pad, but it is more of a coincidence than something truly fundamental
about encryption (see Exercises 1.12 & 2.5). Later on you’ll see encryption schemes whose
encryption & decryption algorithms look very di�erent.

Correctness

The �rst property of one-time pad that we should con�rm is that the receiver does indeed
recover the intended plaintext when decrypting the ciphertext. Without this property, the
thought of using one-time pad for communication seems silly. Written mathematically:

Claim 1.2 For all k,m ∈ {0, 1}λ , it is true that Dec(k, Enc(k,m)) =m.

Proof This follows by substituting the de�nitions of OTP Enc and Dec, then applying the prop-
erties of xor listed in Chapter 0.3. For all k,m ∈ {0, 1}λ , we have:

Dec(k, Enc(k,m)) = Dec(k,k ⊕m)

= k ⊕ (k ⊕m)

= (k ⊕ k) ⊕m

= 0λ ⊕m

=m.

Example Encrypting the following plaintextm under the key k results in ciphertext c , as follows:

00110100110110001111 (m)
⊕ 11101010011010001101 (k)

11011110101100000010 (c)

Decrypting c using the same key k results in the originalm:

11011110101100000010 (c)
⊕ 11101010011010001101 (k)

00110100110110001111 (m)

14

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Security

Suppose Alice and Bob are using one-time pad but are concerned that an attacker sees
their ciphertext. They can’t presume what an attacker will do after seeing the ciphertext.
But they would like to say something like, “because of the speci�c way the ciphertext was
generated, it doesn’t reveal any information about the plaintext to the attacker, no matter
what the attacker does with the ciphertext.”

We must �rst precisely specify how the ciphertext is generated. The Enc algorithm
already describes the process, but it is written from the point of view of Alice and Bob.
When talking about security, we have to think about what Alice and Bob do, but from the
eavesdropper’s point of view! From Eve’s point of view, Alice uses a key that was chosen
in a speci�c way (uniformly at random), she encrypts a plaintext with that key using OTP,
and �nally reveals only the resulting ciphertext (and not the key) to Eve.

More formally, from Eve’s perspective, seeing a ciphertext corresponds to receiving
an output from the following algorithm:

eavesdrop(m ∈ {0, 1}λ):
k ← {0, 1}λ

c := k ⊕m
return c

.

It’s crucial that you appreciate what this eavesdrop algorithm represents. It is meant
to describe not what the attacker does, but rather the process (carried out by Alice
and Bob!) that produces what the attacker sees. We always treat the attacker as some
(unspeci�ed) process that receives output from this eavesdrop algorithm. Our goal is to
say something like “the output of eavesdrop doesn’t reveal the inputm.”

eavesdrop is a randomized algorithm — remember that “k ← {0, 1}λ” means to sample
k from the uniform distribution on λ-bit strings. If you call eavesdrop several times,
even on the same input, you are likely to get di�erent outputs. Instead of thinking of
“eavesdrop(m)” as a single string, you should think of it as a probability distribution over
strings. Each time you call eavesdrop(m), you see a sample from that distribution.

Example Let’s take λ = 3 and work out by hand the distributions eavesdrop(010) and eavesdrop(111).
In each case eavesdrop chooses a value of k uniformly in {0, 1}3 — each of the possible
values with probability 1/8. For each possible choice of k , we can compute what the output of
eavesdrop (c) will be:

eavesdrop(010):

Pr k output c = k ⊕ 010

1⁄8 000 010
1⁄8 001 011
1⁄8 010 000
1⁄8 011 001
1⁄8 100 110
1⁄8 101 111
1⁄8 110 100
1⁄8 111 101

eavesdrop(111):

Pr k output c = k ⊕ 111

1⁄8 000 111
1⁄8 001 110
1⁄8 010 101
1⁄8 011 100
1⁄8 100 011
1⁄8 101 010
1⁄8 110 001
1⁄8 111 000

15

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

So the distribution eavesdrop(010) assigns probabilty 1/8 to 010, probability 1/8 to 011, and
so on.

In this example, notice how every string in {0, 1}3 appears exactly once in the c column
of eavesdrop(010). This means that eavesdrop assigns probability 1/8 to every string in
{0, 1}3, which is just another way of saying that the distribution is the uniform distribu-
tion on {0, 1}3. The same can be said about the distribution eavesdrop(111), too. Both
distributions are just the uniform distribution in disguise!

There is nothing special about 010 or 111 in these examples. For any λ and any m ∈
{0, 1}λ , the distribution eavesdrop(m) is the uniform distribution over {0, 1}λ .

Claim 1.3 For every m ∈ {0, 1}λ , the distribution eavesdrop(m) is the uniform distribution on
{0, 1}λ . Hence, for allm,m′ ∈ {0, 1}λ , the distributions eavesdrop(m) and eavesdrop(m′)
are identical.

Proof Arbitrarily �x m, c ∈ {0, 1}λ . We will calculate the probability that eavesdrop(m) pro-
duces output c . That event happens only when

c = k ⊕m ⇐⇒ k =m ⊕ c .

The equivalence follows from the properties of xor given in Section 0.3. That is,

Pr[eavesdrop(m) = c] = Pr[k =m ⊕ c],

where the probability is over uniform choice of k ← {0, 1}λ .
We are considering a speci�c choice for m and c , so there is only one value of k that

makes k =m ⊕ c true (causesm to encrypt to c), and that value is exactlym ⊕ c . Since k is
chosen uniformly from {0, 1}λ , the probability of choosing the particular value k =m ⊕ c
is 1/2λ .

In summary, for every m and c , the probability that eavesdrop(m) outputs c is ex-
actly 1/2λ . This means that the output of eavesdrop(m), for any m, follows the uniform
distribution. �

One way to interpret this statement of security in more down-to-earth terms:

If an attacker sees a single ciphertext, encrypted with one-time pad, where the
key is chosen uniformly and kept secret from the attacker, then the ciphertext
appears uniformly distributed.

Why is this signi�cant? Taking the eavesdropper’s point of view, suppose someone
chooses a plaintextm and you get to see the resulting ciphertext — a sample from the distri-
bution eavesdrop(m). But this is a distribution that you can sample from yourself, even if
you don’t knowm! You could have chosen a totally di�erentm′ and run eavesdrop(m′) in
your imagination, and this would have produced the same distribution as eavesdrop(m).
The “real” ciphertext that you see doesn’t carry any information aboutm if it is possible to
sample from the same distribution without even knowingm!

16

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Discussion

I Isn’t there a paradox? Claim 1.2 says that c can always be decrypted to get m,
but Claim 1.3 says that c contains no information about m! The answer to this
riddle is that Claim 1.2 talks about what can be done with knowledge of the key
k (Alice & Bob’s perspective). Claim 1.3 talks about the output distribution of the
eavesdrop algorithm, which doesn’t include k (Eve’s perspective). In short, if you
know k , then you can decrypt c to obtain m; if you don’t know k , then c carries no
information aboutm (in fact, it looks uniformly distributed). This is becausem, c,k
are all correlated in a delicate way.3

I Isn’t there another paradox? Claim 1.3 says that the output of eavesdrop(m)
doesn’t depend on m, but we can see the eavesdrop algorithm literally using its
argument m right there in the last line! The answer to this riddle is perhaps best
illustrated by the previous illustrations of the eavesdrop(010) and eavesdrop(111)
distributions. The two tables of values are indeed di�erent (so the choice of m ∈
{010, 111} clearly has some e�ect), but they represent the same probability distribu-
tion (since order doesn’t matter). Claim 1.3 considers only the resulting probability
distribution.

I You probably think about security in terms of a concrete “goal” for the attacker:
recover the key, recover the plaintext, etc. Claim 1.3 doesn’t really refer to attackers
in that way, and it certainly doesn’t specify a goal. Rather, we are thinking about
security by comparing to some hypothetical “ideal” world. I would be satis�ed if the
attacker sees only a source of uniform bits, because in this hypothetical world there
are no keys and no plaintexts to recover! Claim 1.3 says that when we actually use
OTP, it looks just like this hypothetical world, from the attacker’s point of view. If
we imagine any “goal” at all for the attacker in this kind of reasoning, it’s to detect
that ciphertexts don’t follow a uniform distribution. By showing that the attacker
can’t even achieve this modest goal, it shows that the attacker couldn’t possibly
achieve other, more natural, goals like key recovery and plaintext recovery.

Limitations

One-time pad is incredibly limited in practice. Most notably:

I Its keys are as long as the plaintexts they encrypt. This is basically unavoidable (see
Exercise 2.11) and leads to a kind of chicken-and-egg dilemma in practice: If two
users want to privately convey a λ-bit message, they �rst need to privately agree on
a λ-bit string.

I A key can be used to encrypt only one plaintext (hence, “one-time” pad); see Exer-
cise 1.6. Indeed, we can see that the eavesdrop subroutine in Claim 1.3 provides no
way for a caller to guarantee that two plaintexts are encrypted with the same key,
so it is not clear how to use Claim 1.3 to argue about what happens in one-time pad
when keys are intentionally reused in this way.

3This correlation is explored further in Chapter 3.

17

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

Despite these limitations, one-time pad illustrates fundamental ideas that appear in
most forms of encryption in this course.

Exercises

1.1. The one-time pad encryption of plaintext mario (when converted from ascii to binary in
the standard way) under key k is:

1000010000000111010101000001110000011101.

What is the one-time pad encryption of luigi under the same key?

1.2. Alice is using one-time pad and notices that when her key is the all-zeroes string k = 0λ ,
then Enc(k,m) = m and her message is sent in the clear! To avoid this problem, she
decides to modify KeyGen to exclude the all-zeroes key. She modi�es KeyGen to choose
a key uniformly from {0, 1}λ \ {0λ}, the set of all λ-bit strings except 0λ . In this way, she
guarantees that her plaintext is never sent in the clear.

Is it still true that the eavesdropper’s ciphertext distribution is uniformly distributed on
{0, 1}λ? Justify your answer.

1.3. When Alice encrypts the key k itself using one-time pad, the ciphertext will always be the
all-zeroes string! So if an eavesdropper sees the all-zeroes ciphertext, she learns that Alice
encrypted the key itself. Does this contradict Claim 1.3? Why or why not?

1.4. What is so special about de�ning OTP using the xor operation? Suppose we use the
bitwise-and operation (which we will write as ‘&’) and de�ne a variant of OTP as follows:

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m ∈ {0, 1}λ):
return k &m

Is this still a good choice for encryption? Why / why not?

1.5. Describe the �aw in this argument:

Consider the following attack against one-time pad: upon seeing a ciphertext c ,
the eavesdropper tries every candidate key k ∈ {0, 1}λ until she has found the
one that was used, at which point she outputs the plaintextm. This contradicts
the argument in Section 1.2 that the eavesdropper can obtain no information
aboutm by seeing the ciphertext.

1.6. Suppose Alice encrypts two plaintextsm andm′ using one-time pad with the same key k .
What information aboutm andm′ is leaked to an eavesdropper by doing this (assume the
eavesdropper knows that Alice has reused k)? Be as speci�c as you can!

1.7. You (Eve) have intercepted two ciphertexts:

c1 = 1111100101111001110011000001011110000110

18

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

c2 = 1111101001100111110111010000100110001000

You know that both are OTP ciphertexts, encrypted with the same key. You know that
either c1 is an encryption of alpha and c2 is an encryption of bravo or c1 is an encryption
of delta and c2 is an encryption of gamma (all converted to binary from ascii in the standard
way).

Which of these two possibilities is correct, and why? What was the key k?

1.8. A known-plaintext attack refers to a situation where an eavesdropper sees a ciphertext
c = Enc(k,m) and also learns/knows what plaintextm was used to generate c .

(a) Show that a known-plaintext attack on OTP results in the attacker learning the key k .

(b) Can OTP be secure if it allows an attacker to recover the encryption key? Is this a
contradiction to the security we showed for OTP? Explain.

1.9. Suppose we modify the subroutine discussed in Claim 1.3 so that it also returns k :

eavesdrop′(m ∈ {0, 1}λ):
k ← {0, 1}λ

c := k ⊕m
return (k , c)

.

Is it still true that for every m, the output of eavesdrop′(m) is distributed uniformly in
({0, 1}λ)2? Or is the output distribution di�erent for di�erent choice ofm?

1.10. In this problem we discuss the security of performing one-time pad encryption twice:

(a) Consider the following subroutine that models the result of applying one-time pad
encryption with two independent keys:

eavesdrop′(m ∈ {0, 1}λ):
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

c := k2 ⊕ (k1 ⊕m)
return c

.

Show that the output of this subroutine is uniformly distributed in {0, 1}λ .

(b) What security is provided by performing one-time pad encryption twice with the same
key?

1.11. We mentioned that one-time pad keys can be used to encrypt only one plaintext, and how
this was re�ected in the eavesdrop subroutine of Claim 1.3. Is there a similar restriction
about re-using plaintexts in OTP (but with independently random keys for di�erent cipher-
texts)? If an eavesdropper knows that the same plaintext is encrypted twice (but doesn’t
know what the plaintext is), can she learn anything? Does Claim 1.3 have anything to say
about a situation where the same plaintext is encrypted more than once?

19

Draft: January 3, 2021 CHAPTER 1. ONE-TIME PAD & KERCKHOFFS’ PRINCIPLE

1.12. There is nothing exclusively special about strings and XOR in OTP. We can get the same
properties using integers mod n and addition mod n.

This problem considers a variant of one-time pad, in which the keys, plaintexts, and ci-
phertexts are all elements of Zn instead of {0, 1}λ .

(a) What is the decryption algorithm that corresponds to the following encryption algo-
rithm?

Enc(k,m ∈ Zn):
return (k +m) % n

.

(b) Show that the output of the following subroutine is uniformly distributed in Zn :

eavesdrop′(m ∈ Zn):
k ← Zn
c := (k +m) % n
return c

.

(c) It’s not just the distribution of keys that is important. The way that the key is combined
with the plaintext is also important. Show that the output of the following subroutine
is not necessarily uniformly distributed in Zn :

eavesdrop′(m ∈ Zn):
k ← Zn
c := (k ·m) % n
return c

.

20

