
10 Message Authentication Codes

The challenge of CCA-secure encryption is dealing with ciphertexts that were generated
by an adversary. Imagine there was a way to “certify” that a ciphertext was not adversar-
ially generated — i.e., it was generated by someone who knows the secret key. We could
include such a certi�cation in the ciphertext, and the Dec algorithm could raise an error
if it asked to decrypt something with invalid certi�cation.

What we are asking for is not to hide the ciphertext but to authenticate it: to ensure
that it was generated by someone who knows the secret key. The tool for the job is called
a message authentication code. One of the most important applications of a message
authentication code is to transform a CPA-secure encryption scheme into a CCA-secure
one.

As you read this chapter, keep in mind that privacy and authentication are indeed
di�erent properties. It is possible to have one or the other or indeed both simultaneously.
But one does not imply the other, and it is crucial to think about them separately.

10.1 Definition

A MAC is like a signature that can be added to a piece of data, which certi�es that someone
who knows the secret key attests to this particular data. In cryptography, the term “signa-
ture” means something speci�c, and slightly di�erent than a MAC. Instead of calling the
output of a MAC algorithm a signature, we call it a “tag” (or, confusingly, just “a MAC”).

Our security requirement for a MAC scheme is that only someone with the secret key
can generate a valid tag. To check whether a tag is valid, you just recompute the tag
for a given message and see whether it matches the claimed tag. This implies that both
generating and verifying a MAC tag requires the secret key.

Definition 10.1

(MAC scheme)

A message authentication code (MAC) scheme for message spaceM consists of the fol-
lowing algorithms:

I KeyGen: samples a key.

I MAC: takes a key k and message m ∈ M as input, and outputs a tag t . The MAC

algorithm is deterministic.

How to Think About Authenticity Properties

Every security de�nition we’ve seen so far is about hiding information, so how do we
make a formal de�nition about authenticity?

Before we see the security de�nition for MACs, let’s start with a much simpler (poten-
tially obvious?) statement: “an adversary should not be able to guess a uniformly chosen
λ-bit value.” We can formalize this idea with the following two libraries:

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

Lle�

r ← {0, 1}λ

guess(д):

return д ?
= r

Lright

guess(д):
return false

The left library allows the calling program to attempt to guess a uniformly chosen “target”
string. The right library doesn’t even bother to verify the calling program’s guess — in fact
it doesn’t even bother to sample a random target string!

The guess subroutines of these libraries give the same output on nearly all inputs.
There is only one input r on which they disagree. If a calling program can manage to �nd
the value r , then it can easily distinguish the libraries. Therefore, by saying that these
libraries are indistinguishable, we are really saying that it’s hard for an adversary to
�nd/generate this special value! That’s the kind of property we want to express.

Indeed, in this case, an adversary who makes q queries to the guess subroutine
achieves an advantage of at most q/2λ . For polynomial-time adversaries, this is a neg-
ligible advantage (since q is a polynomial function of λ).

More generally, suppose we have two libraries, and a subroutine in one library checks
some condition (and could return either true or false), while in the other library this
subroutine always returns false. If the two libraries are indistinguishable, the calling
program can’t tell whether the library is actually checking the condition or always saying
false. This means it must be very hard to �nd an input for which the “correct” answer is
true.

The MAC Security Definition

We want to say that only someone who knows the secret key can come up with valid MAC
tags. In other words, the adversary cannot come up with valid MAC tags.

Actually, that property is not quite enough to be useful. A more useful property is:
even if the adversary knows valid MAC tags corresponding to various messages, she cannot
produce a valid MAC tag for a di�erent message. We call it a forgery if the adversary can
produce a “new” valid MAC tag.

To translate this security property to a formal de�nition, we de�ne two libraries that
allow the adversary to request MAC tags on chosen messages. The libraries also provide
a mechanism to let the adversary check whether it has successfully found a forgery (since
there is no way of checking this property without the secret key). One library will actually
perform the check, and the other library will simply assume that forgeries are impossible.
The two libraries are di�erent only in how they behave when the adversary calls this veri-
�cation subroutine on a forgery. By demanding that the two libraries be indistinguishable,
we are actually demanding that it is di�cult for the calling program to generate a forgery.

Definition 10.2

(MAC security)

Let Σ be a MAC scheme. We say that Σ is a secure MAC if LΣ
mac-real

∼∼∼ L
Σ
mac-fake

, where:

183

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

LΣ
mac-real

k ← Σ.KeyGen

gettag(m ∈ Σ.M):
return Σ.MAC(k,m)

checktag(m ∈ Σ.M, t):

return t
?
= Σ.MAC(k,m)

LΣ
mac-fake

k ← Σ.KeyGen

T := ∅

gettag(m ∈ Σ.M):
t := Σ.MAC(k,m)

T := T ∪ {(m, t)}
return t

checktag(m ∈ Σ.M, t):

return (m, t)
?
∈ T

Discussion:

I The adversary can see valid tags of chosen messages, from the gettag subroutine.
However, these tags shouldn’t count as a successful forgery. The way this is enforced
is in the checktag subroutine of Lmac-fake — instead of always responding false, it
gives the correct answer (true) for any tags generated by gettag.

In order for the two libraries to behave di�erently, the adversary must call checktag
on input (m, t) such that m was never used as an argument to gettag (so that
Lmac-fake responds false) but where the tag is actually correct (so that Lmac-real

responds true).

I The adversary can successfully distinguish if it �nds any forgery — a valid MAC
tag of any “fresh” message. The de�nition doesn’t care whether it’s the tag of any
particular meaningful message.

MAC Applications

Although MACs are less embedded in public awareness than encryption, they are ex-
tremely useful. A frequent application of MACs is to store some information in an un-
trusted place, where we don’t intend to hide the data, only ensure that the data is not
changed.

I A browser cookie is a small piece of data that a webserver stores in a user’s web
browser. The browser presents the cookie data to the server upon each request.

Imagine a webserver that stores a cookie when a user logs in, containing that user’s
account name. What stops an attacker from modifying their cookie to contain a
di�erent user’s account name? Adding a MAC tag of the cookie data (using a key
known only to the server) ensures that such an attack will not succeed. The server
can trust any cookie data whose MAC tag is correct.

I When Alice initiates a network connection to Bob, they must perform a TCP hand-
shake:

184

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

1. Alice sends a special SYN packet containing her initial sequence number A. In
TCP, all packets from Alice to Bob include a sequence number, which helps the
parties detect when packets are missing or out of order. It is important that
the initial sequence number be random, to prevent other parties from injecting
false packets.

2. Bob sends a special SYN+ACK packet containingA+1 (to acknowledge Alice’s
A value) and the initial sequence number B for his packets.

3. Alice sends a special ACK packet containing B + 1, and then the connection is
established.

When Bob is waiting for step 3, the connection is considered “half-open.” While
waiting, Bob must remember B so that he can compare to the B + 1 that Alice is
supposed to send in her �nal ACK. Typically the operating system allocates only a
very limited amount of resources for these half-open connections.
In the past, it was possible to perform a denial of service attack by starting a huge
number of TCP connections with a server, but never sending the �nal ACK packet.
The server’s queue for half-open connections �lls up, which prevents other legiti-
mate connections from starting.
A clever backwards-compatible solution to this problem is called SYN cookies. The
idea is to let Bob choose his initial sequence number B to be a MAC of the client’s
IP address, port number, and some other values. Now there is nothing to store for
half-open connections. When Alice sends the �nal ACK of the handshake, Bob can
recompute the initial sequence number from his MAC key.

These are all cases where the person who generates the MAC is the same person who later
veri�es the MAC. You can think of this person as choosing not to store some information,
but rather leaving the information with someone else as a “note to self.”

There are other useful settings where one party generates a MAC while the other
veri�es.

I In two-factor authentication, a user logs into a service using something they know
(e.g., a password) and something they have (e.g., a mobile phone). The most common
two-factor authentication mechanism is called timed one-time passwords (TOTP).
When you (as a user) enable two-factor authentication, you generate a secret key
k and store it both on your phone and with the service provider. When you wish
to log in, you open a simple app on your phone which computes p = MAC(k,T),
whereT is the current date + time (usually rounded to the nearest 30 seconds). The
value p is the “timed one-time password.” You then log into the service using your
usual (long-term) password and the one-time password p. The service provider has
k and also knows the current time, so can verify the MAC p.
From the service provider’s point of view, the only other place k exists is in the
phone of this particular user. Intuitively, the only way to generate a valid one-time
password at timeT is to be in posession of this phone at timeT . Even if an attacker
sees both your long-term and one-time password over your shoulder, this does not
help him gain access to your account in the future (well, not after 30 seconds in the
future).

185

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

10.2? A PRF is a MAC

The de�nition of a PRF says (more or less) that even if you’ve seen the output of the
PRF on several chosen inputs, all other outputs look independently & uniformly random.
Furthermore, uniformly chosen values are hard to guess, as long as they are su�ciently
long (e.g., λ bits).

In other words, after seeing some outputs of a PRF, any other PRF output will be hard
to guess. This is exactly the intuitive property we require from a MAC. And indeed, we
will prove in this section that a PRF is a secure MAC. While the claim makes intuitive
sense, proving it formally is a little tedious. This is due to the fact that that in the MAC
security game, the adversary can make many veri�cation queries checktag(m, t) before
asking to see the correct MAC ofm. Dealing with this event is the source of all the technical
di�culty in the proof.

We start with a technical claim that captures the idea that “if you can blindly guess
at uniformly chosen values and can also ask to see the values, then it is hard to guess a
random value before you have seen it.”

Claim 10.3 The following two libraries are indistinguishable:

Lguess-L

T := empty assoc. array

guess(m ∈ {0, 1}in,д ∈ {0, 1}λ):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return д ?
= T [m]

reveal(m ∈ {0, 1}in):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Lguess-R

T := empty assoc. array

guess(m ∈ {0, 1}in,д ∈ {0, 1}λ):

// returns false if T [m] unde�ned

return д ?
= T [m]

reveal(m ∈ {0, 1}in):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Both libraries maintain an associative arrayT whose values are sampled uniformly the �rst
time they are needed. Calling programs can try to guess these values via the guess subrou-
tine, or simply learn them via reveal. Note that the calling program can call guess(m, ·)
both before and after calling reveal(m).

Intuitively, since the values inT are λ bits long, it should be hard to guessT [m] before
calling reveal(m). That is exactly what we formalize in Lguess-R. In fact, this library
doesn’t bother to even choose T [m] until reveal(m) is called. All calls to guess(m, ·)
made before the �rst call to reveal(m) will return false.

Proof Let q be the number of queries that the calling program makes to guess. We will show
that the libraries are indistinguishable with a hybrid sequence of the form:

Lguess-L ≡ Lhyb-0 ∼∼∼ Lhyb-1 ∼∼∼ · · · ∼∼∼ Lhyb-q ≡ Lguess-R

186

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

The hth hybrid library in the sequence is de�ned as:

Lhyb-h

count := 0
T := empty assoc. array

guess(m,д):
count := count + 1
if T [m] unde�ned and count > h :
T [m] ← {0, 1}λ

return д ?
= T [m]

// returns false if T [m] unde�ned

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

This hybrid library behaves like Lguess-R for the �rst h queries to guess, in the sense
that it will always just return falsewhenT [m] is unde�ned. After h queries, it will behave
like Lguess-L by actually sampling T [m] in these cases.

In Lhyb-0, the clause “count > 0 ” is always true so this clause can be removed from
the if-condition. This modi�cation results in Lguess-L, so we have Lguess-L ≡ Lhyb-0.

In Lhyb-q , the clause “count > q ” in the if-statement is always false since the call-
ing program makes only q queries. Removing the unreachable if-statement it results in
Lguess-R, so we have Lguess-R ≡ Lhyb-q .

It remains to show that Lhyb-h
∼∼∼ Lhyb-(h + 1) for all h. We can do so by rewriting these

two libraries as follows:

Lhyb-h

count := 0
T := empty assoc. array

guess(m,д):
count := count + 1
if T [m] unde�ned and count > h :
T [m] ← {0, 1}λ

if д = T [m] and count = h + 1:
bad := 1

return д ?
= T [m]

// returns false if T [m] unde�ned

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Lhyb-(h + 1)

count := 0
T := empty assoc. array

guess(m,д):
count := count + 1
if T [m] unde�ned and count > h :
T [m] ← {0, 1}λ

if д = T [m] and count = h + 1:
bad := 1; return false

return д ?
= T [m]

// returns false if T [m] unde�ned

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

187

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

The library on the left is equivalent to Lhyb-h since the only change is the highlighted
lines, which don’t actually a�ect anything. In the library on the right, ifT [m] is unde�ned
during the �rst h + 1 calls to guess, the subroutine will return false (either by avoiding
the if-statement altogether or by triggering the highlighted lines). This matches the be-
havior ofLhyb-(h + 1), except that the library shown above samples the valueT [m]which in
Lhyb-(h + 1) would not be sampled until the next call of the form guess(m, ·) or reveal(m).
But the method of sampling is the same, only the timing is di�erent. This di�erence has
no e�ect on the calling program.

So the two libraries above are indeed equivalent to Lhyb-h and Lhyb-(h + 1). They di�er
only in code that is reachable when bad = 1. From Lemma 4.8, we know that these two
libraries are indistinguishable if Pr[bad = 1] is negligible. In these libraries there is only
one chance to set bad = 1, and that is by guessing/predicting uniformT [m] on the (h+1)th
call to guess. This happens with probability 1/2λ , which is indeed negligible.

This shows that Lhyb-h
∼∼∼ Lhyb-(h + 1), and completes the proof. �

We now return to the problem of proving that a PRF is a MAC.

Claim 10.4 Let F be a secure PRF with input length in and output length out = λ. Then the scheme
MAC(k,m) = F (k,m) is a secure MAC for message space {0, 1}in.

Proof We show that LF
mac-real

∼∼∼ L
F
mac-fake

, using a standard sequence of hybrids.

LF
mac-real

k ← {0, 1}λ

gettag(m):
return F (k,m)

checktag(m, t):

return t
?
= F (k,m)

The starting point is the
Lmac-real library, with the
details of this MAC scheme
�lled in.

gettag(m):
return lookup(m)

checktag(m, t):

return t
?
= lookup(m)

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return F (k,x)

We have factored out the PRF
operations in terms of the li-
brary Lprf-real from the PRF se-
curity de�nition.

gettag(m):
return lookup(m)

checktag(m, t):

return t
?
= lookup(m)

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

We have applied the PRF-
security of F and replaced
Lprf-real with Lprf-rand.

188

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

gettag(m):
return reveal(m)

checktag(m, t):
return guess(m, t)

�

Lguess-L

T := empty assoc. array

guess(m,д):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

We can express the previous
hybrid in terms of the Lguess-L

library from Claim 10.3. The
change has no e�ect on the
calling program.

gettag(m):
return reveal(m)

checktag(m, t):
return guess(m, t)

�

Lguess-R

T := empty assoc. array

guess(m,д):

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

We have applied Claim 10.3 to
replace Lguess-L with Lguess-R.
This involves simply removing
the if-statement from guess.
As a result, guess(m,д) will re-
turn false ifT [m] is unde�ned.

T := ∅

gettag(m):
t := reveal(m)
T := T ∪ {(m, t)}
return t

checktag(m, t):
return guess(m, t)

�

Lguess-R

T := empty assoc. array

guess(m,д):

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

Extra bookkeeping informa-
tion is added, but not used
anywhere. There is no e�ect
on the calling program.

Consider the hybrid experiment above, and suppose the calling program makes a call to
checktag(m, t). There are two cases:

I Case 1: there was a previous call to gettag(m). In this case, the valueT [m] is de�ned
in Lguess-R and (m,T [m]) already exists in T . In this case, the result of guess(m, t)
(and hence, of checktag(m, t)) will be t ?

= T [m].

I Case 2: there was no previous call to gettag(m). Then there is no value of the form
(m,?) in T . Furthermore,T [m] is unde�ned in Lguess-R. The call to guess(m, t) will

189

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

return false, and so will the call to checktag(m, t) that we consider.

In both cases, the result of checktag(m, t) is true if and only if (m, t) ∈ T .

T := ∅

gettag(m):
t := reveal(m)
T := T ∪ {(m, t)}
return t

checktag(m, t):

return (m, t)
?
∈ T

�

Lguess-R

T := empty assoc. array

guess(m,д):

return д ?
= T [m]

reveal(m):
if T [m] unde�ned:
T [m] ← {0, 1}λ

return T [m]

We have modi�ed checktag ac-
cording to the discussion above.

T := ∅

gettag(m):
t := lookup (m)
T := T ∪ {(m, t)}
return t

checktag(m, t):

return (m, t)
?
∈ T

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

In the previous hybrid, the guess
subroutine is never called. Remov-
ing that unused subroutine and re-
naming reveal to lookup results in
theLprf-ideal library from the PRF se-
curity de�nition.

T := ∅

gettag(m):
t := lookup(m)
T := T ∪ {(m, t)}
return t

checktag(m, t):

return (m, t)
?
∈ T

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return F (k,x)

We have applied the PRF security
of F again, replacing Lprf-ideal with
Lprf-real.

Inlining Lprf-real in the �nal hybrid, we see that the result is exactly LF
mac-fake

. Hence, we
have shown that LF

mac-real

∼∼∼ L
F
mac-fake

, which completes the proof. �

Discussion

If PRFs areMACs, why dowe even need a de�nition forMACs? The simplest answer
to this question is that the concepts of PRF and MAC are indeed di�erent:

I Not every PRF is a MAC. Only su�ciently long random values are hard to
guess, so only PRFs with long outputs (out > λ) are MACs. It is perfectly reasonable
to consider a PRF with short outputs.

190

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

I Not every MAC is a PRF. Just like not every encryption scheme has pseudorandom
ciphertexts, not every MAC scheme has pseudorandom tags. Imagine taking a se-
cure MAC scheme and modifying it as MAC

′(k,m) = MAC(k,m)‖0λ . Adding 0s to
every tag prevents the tags from looking pseudorandom, but does not make the tags
any easier to guess. Something doesn’t have to be uniformly random in order
to be hard to guess.

It is true that in the vast majority of cases we will encounter MAC schemes with random
tags, and PRFs with long outputs (out > λ). But it is good practice to know whether you
really need something that is pseudorandom or hard to guess.

10.3 MACs for Long Messages

Using a PRF as a MAC is useful only for short, �xed-length messages, since most PRFs that
exist in practice are limited to such inputs. Can we somehow extend a PRF to construct a
MAC scheme for long messages, similar to how we used block cipher modes to construct
encryption for long messages?

How NOT to do it

To understand the challenges of constructing a MAC for long messages, we �rst explore
some approaches that don’t work. The things that can go wrong in an insecure MAC are
quite di�erent in character to the things that can go wrong in a block cipher mode, so pay
attention closely!

Example Let F be a PRF with in = out = λ. Below is a MAC approach for messages of length 2λ. It is
inspired by ECB mode, so you know it’s going to be a disaster:

ECBMAC(k,m1‖m2):
t1 := F (k,m1)

t2 := F (k,m2)

return t1‖t2

One problemwith this approach is that, although the PRF authenticates each blockm1,m2
individually, it does nothing to authenticate thatm1 is the �rst block butm2 is the second one.
Translating this observation into an attack, an adversary can ask for the MAC tag ofm1‖m2
and then predict/forge the tag form2‖m1:

A:

t1‖t2 := gettag(0λ ‖1λ)
return checktag(1λ ‖0λ , t2‖t1)

WhenA is linked to Lmac-real, it always return true, since we can tell that t2‖t1 is indeed the
valid tag for 1λ ‖0λ . When A is linked to Lmac-fake, it always return false, since the calling
program never called gettag with input 1λ ‖0λ . Hence, A distinguishes the libraries with
advantage 1.

191

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

This silly MAC construction treats bothm1 andm2 identically, and an obvious way to
try to �x the problem is to treat the di�erent blocks di�erently somehow:

Example Let F be a PRF with in = λ + 1 and out = λ. Below is another MAC approach for messages of
length 2λ:

ECB++MAC(k,m1‖m2):
t1 := F (k, 0‖m1)

t2 := F (k, 1‖m2)

return t1‖t2

This MAC construction does better, as it treats the two message blocks m1 and m2 dif-
ferently. Certainly the previous attack of swapping the order of m1 and m2 doesn’t work
anymore. (Can you see why?)

The construction authenticates (in some sense) the fact thatm1 is the �rst message block,
and m2 is the second block. However, this construction doesn’t authenticate the fact that
this particular m1 and m2 belong together. More concretely, we can “mix and match”
blocks of the tag corresponding to di�erent messages:

A:

t1‖t2 := gettag(02λ)
t ′1‖t

′
2 := gettag(12λ)

return checktag(0λ ‖1λ , t1‖t ′2)

In this attack, we combine the t1 block from the �rst tag and the t2 block from the second tag.

We are starting to see the challenges involved in constructing a MAC scheme for long
messages. A secure MAC should authenticate each message block, the order of the mes-
sage blocks, and the fact that these particular message blocks are appearing in a single mes-
sage. In short, it must authenticate the entirety of the message.

Think about how authentication is signi�cantly di�erent than privacy/hiding in this
respect. At least for CPA security, we can hide an entire plaintext by hiding each in-
dividual piece of the plaintext separately (encrypting it with a CPA-secure encryption).
Authentication is fundamentally di�erent.

How to do it: CBC-MAC

We have seen some insecure ways to construct a MAC for longer messages. Now let’s see
a secure way. A common approach to constructing a MAC for long messages involves the
CBC block cipher mode.

Construction 10.5

(CBC-MAC)

Let F be a PRF with in = out = λ. CBC-MAC refers to the following MAC scheme:

192

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

cbcmacF (k,m1 · · ·m`):
t := 0λ

for i = 1 to `:
t := F (k,mi ⊕ t)

return t

Fk Fk Fk

⊕ ⊕

m1 m2 m`

t

· · ·

· · ·

Unlike CBC encryption, CBC-MAC uses no initialization vector (or, you can think of
it as using the all-zeroes IV), and it outputs only the last block.

Theorem 10.6 If F is a secure PRF with in = out = λ, then for any �xed `, CBC-MAC is a secure MAC when
used with message spaceM = {0, 1}λ` .

Pay close attention to the security statement. It says that if you only ever authenticate
4-block messages, CBC-MAC is secure. If you only ever authenticate 24-block messages,
CBC-MAC is secure. However, if you want to authenticate both 4-block and 24-block
messages (i.e., under the same key), then CBC-MAC is not secure. In particular, seeing
the CBC-MAC of several 4-block messages allows an attacker to generate a forgery of a
24-block message. The exercises explore this property.

More Robust CBC-MAC

If CBC-MAC is so fragile, is there a way to extend it to work for messages of mixed lengths?
One approach is called ECBC-MAC, and is shown below. It works by treating the last
block di�erently — speci�cally, it uses an independent PRF key for the last block in the
CBC chain.

Construction 10.7

(ECBC-MAC)

Let F be a PRF with in = out = λ. ECBC-MAC refers to the following scheme:

ecbcmacF
(
(k1,k2),m1 · · ·m`

)
:

t := 0λ

for i = 1 to ` − 1 :
t := F (k1 ,mi ⊕ t)

return F (k2 ,m` ⊕ t)

Fk1 Fk1 Fk2

⊕ ⊕

m1 m2 m`

t

· · ·

· · ·

Theorem 10.8 If F is a secure PRF with in = out = λ, then ECBC-MAC is a secure MAC for message space
M = ({0, 1}λ)∗.

In other words, ECBC-MAC is safe to use with messages of any length (that is a mul-
tiple of the block length).

193

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

To extend ECBC-MAC to messages of any length (not necessarily a multiple of the
block length), one can use a padding scheme as in the case of encryption.1

10.4 Encrypt-Then-MAC

Our motivation for studying MACs is that they seem useful in constructing a CCA-secure
encryption scheme. The idea is to add a MAC to a CPA-secure encryption scheme. The
decryption algorithm can raise an error if the MAC is invalid, thereby ensuring that
adversarially-generated (or adversarially-modi�ed) ciphertexts are not accepted. There
are several natural ways to combine a MAC and encryption scheme, but not all are secure!
(See the exercises.) The safest way is known as encrypt-then-MAC:

Construction 10.9

(Enc-then-MAC)

Let E denote an encryption scheme, and M denote a MAC scheme where E.C ⊆ M .M (i.e.,
the MAC scheme is capable of generating MACs of ciphertexts in the E scheme). Then let EtM
denote the encrypt-then-MAC construction given below:

K = E.K ×M .K
M = E.M
C = E.C ×M .T

KeyGen:
ke ← E.KeyGen

km ← M .KeyGen

return (ke,km)

Enc((ke,km),m):
c := E.Enc(ke,m)
t := M .MAC(km, c)
return (c, t)

Dec((ke,km), (c, t)):
if t , M .MAC(km, c):

return err

return E.Dec(ke, c)

Importantly, the scheme computes a MAC of the CPA ciphertext, and not of the plain-
text! The result is a CCA-secure encryption scheme:

Claim 10.10 If E has CPA security andM is a secure MAC, then EtM (Construction 10.9) has CCA security.

Proof As usual, we prove the claim with a sequence of hybrid libraries:

1Note that if the message is already a multiple of the block length, then padding adds an extra block.
There exist clever ways to avoid an extra padding block in the case of MACs, which we don’t discuss further.

194

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

LEtM
cca-L

ke ← E.KeyGen

km ← M .KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t ← M .MAC(km, c)

S := S ∪ { (c, t) }
return (c, t)

dec(c, t):
if (c, t) ∈ S return null
if t , M .MAC(km, c):

return err

return E.Dec(ke, c)

The starting point is LEtM
cca-L

, shown here with the details of
the encrypt-then-MAC construction highlighted. Our goal is
to eventually swap mL with mR . But the CPA security of E
should allow us to do just that, so what’s the catch?

To apply the CPA-security of E, we must factor out the rel-
evant call to E.Enc in terms of the CPA library LE

cpa-L
. This

means that ke becomes private to the Lcpa-L library. But ke

is also used in the last line of the library as E.Dec(ke, c). The
CPA security library for E provides no way to carry out such
E.Dec statements!

ke ← E.KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := gettag(c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if not checktag(c, t) :

return err

return E.Dec(ke, c)

�

LM
mac-real

km ← M .KeyGen

gettag(c):
return M .MAC(km, c)

checktag(c, t):

return t
?
= M .MAC(km, c)

The operations of the
MAC scheme have been
factored out in terms of
LM

mac-real
. Notably, in the

dec subroutine the condi-
tion “t , M .MAC(km, c)”
has been replaced with
“not checktag(c, t).”

195

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

ke ← E.KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := gettag(c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if not checktag(c, t):

return err

return E.Dec(ke, c)

�

LM
mac-fake

km ← M .KeyGen

T := ∅

gettag(c):
t := M .MAC(km, c)

T := T ∪ {(c, t)}
return t

checktag(c, t):
return (c, t)

?
∈ T

We have applied the security of the
MAC scheme, and replaced Lmac-real

with Lmac-fake.

ke ← E.KeyGen

km ← M .KeyGen

T := ∅
S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := M .MAC(km, c)

T := T ∪ {(c, t)}
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if (c, t) < T :

return err

return E.Dec(ke, c)

We have inlined the Lmac-fake library. This library keeps track
of a set S of values for the purpose of the CCA interface, but
also a set T of values for the purposes of the MAC. However, it
is clear from the code of this library that S and T always have
the same contents.

Therefore, the two conditions “(c, t) ∈ S” and “(c, t) < T ” in the
dec subroutine are exhaustive! The �nal line of dec is unreach-
able. This hybrid highlights the intuitive idea that an adversary
can either query dec with a ciphertext generated by eavesdrop
(the (c, t) ∈ S case) — in which case the response is null — or
with a di�erent ciphertext — in which case the response will be
err since the MAC will not verify.

196

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

ke ← E.KeyGen

km ← M .KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := E.Enc(ke,mL)

t := M .MAC(km, c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if (c, t) < S :

return err

// unreachable

The unreachable statement has been removed and the redundant
variables S and T have been uni�ed. Note that this hybrid li-
brary never uses E.Dec, making it possible to express its use of
the E encryption scheme in terms of Lcpa-L.

km ← M .KeyGen

S := ∅

eavesdrop(mL,mR):
if |mL | , |mR |

return null
c := cpa.eavesdrop(mL,mR)

t := M .MAC(km, c)
S := S ∪ {(c, t)}
return (c, t)

dec(c, t):
if (c, t) ∈ S

return null
if (c, t) < S:

return err

�

LE
cpa-L

ke ← E.KeyGen

cpa.eavesdrop(mL,mR):
c := E.Enc(ke,mL)

return c

The statements in-
volving the encryption
scheme E have been
factored out in terms
of Lcpa-L.

We have now reached the half-way point of the proof. The proof proceeds by re-
placing Lcpa-L with Lcpa-R (so that mR rather than mL is encrypted), applying the same
modi�cations as before (but in reverse order), to �nally arrive at Lcca-R. The repetitive
details have been omitted, but we mention that when listing the same steps in reverse,
the changes appear very bizarre indeed. For instance, we add an unreachable statement
to the dec subroutine; we create a redundant variable T whose contents are the same as
S; we mysteriously change one instance of S (the condition of the second if-statement in
dec) to refer to the other variable T . Of course, all of this is so that we can factor out the
statements referring to the MAC scheme (along with T) in terms of Lmac-fake and �nally

197

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

replace Lmac-fake with Lmac-real. �

Exercises

10.1. Consider the following MAC scheme, where F is a secure PRF with in = out = λ:

KeyGen:
k ← {0, 1}λ

return k

MAC(k,m1‖ · · · ‖m`): // eachmi is λ bits
m∗ := 0λ

for i = 1 to `:
m∗ :=m∗ ⊕mi

return F (k,m∗)

Show that the scheme is not a secure MAC. Describe a distinguisher and compute its
advantage.

10.2. Consider the following MAC scheme, where F is a secure PRF with in = out = λ:

KeyGen:
k ← {0, 1}λ

return k

MAC(k,m1‖ · · · ‖m`): // eachmi is λ bits
t := 0λ

for i = 1 to `:
t := t ⊕ F (k,mi)

return t

Show that the scheme is not a secure MAC. Describe a distinguisher and compute its
advantage.

10.3. Suppose MAC is a secure MAC algorithm. De�ne a new algorithm MAC
′(k,m) =

MAC(k,m)‖MAC(k,m). Prove that MAC
′ is also a secure MAC algorithm.

Note: MAC
′ cannot be a secure PRF. This shows that MAC security is di�erent than PRF

security.

10.4. Suppose MAC is a secure MAC scheme, whose outputs are ` bits long. Show that there is
an e�cient adversary that breaks MAC security (i.e., distinguishes the relevant libraries)
with advantage Θ(1/2`). This implies that MAC tags must be reasonably long in order to
be secure.

10.5. Suppose we use CBC-MAC with message spaceM = ({0, 1}λ)∗. In other words, a single
MAC key will be used on messages of any length that is an exact multiple of the block
length. Show that the result is not a secure MAC. Construct a distinguisher and compute
its advantage.

Hint: RequestaMAContwosingle-blockmessages,thenusetheresulttoforgetheMACofatwo-block
message.

? 10.6. Here is a di�erent way to extend CBC-MAC for mixed-length messages, when the length
of each message is known in advance. Assume that F is a secure PRF with in = out = λ.

newmacF (k,m1‖ · · · ‖m`):
k∗ := F (k, `)

return cbcmacF (k∗ ,m1‖ · · · ‖m`)

198

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

Prove that this scheme is a secure MAC for message spaceM = ({0, 1}λ)∗. You can use
the fact that CBC-MAC is secure for messages of �xed-length.

10.7. Let E be a CPA-secure encryption scheme andM be a secure MAC. Show that the following
encryption scheme (called encrypt & MAC) is not CCA-secure:

E&M .KeyGen:
ke ← E.KeyGen

km ← M .KeyGen

return (ke,km)

E&M .Enc((ke,km),m):
c := E.Enc(ke,m)
t := M .MAC(km,m)
return (c, t)

E&M .Dec((ke,km), (c, t)):
m := E.Dec(ke, c)
if t , M .MAC(km,m):

return err

returnm

Describe a distinguisher and compute its advantage.

10.8. Let E be a CPA-secure encryption scheme andM be a secure MAC. Show that the following
encryption scheme Σ (which I call encrypt-and-encrypted-MAC) is not CCA-secure:

Σ.KeyGen:
ke ← E.KeyGen

km ← M .KeyGen

return (ke,km)

Σ.Enc((ke,km),m):
c := E.Enc(ke,m)
t := M .MAC(km,m)
c ′← E.Enc(ke, t)
return (c, c ′)

Σ.Dec((ke,km), (c, c
′)):

m := E.Dec(ke, c)
t := E.Dec(ke, c

′)

if t , M .MAC(km,m):
return err

returnm

Describe a distinguisher and compute its advantage.

? 10.9. In Construction 7.4, we encrypt one plaintext block into two ciphertext blocks. Imagine
applying the Encrypt-then-MAC paradigm to this encryption scheme, but (erroneously)
computing a MAC of only the second ciphertext block.

In other words, let F be a PRF with in = out = λ, and let M be a MAC scheme for message
space {0, 1}λ . De�ne the following encryption scheme:

KeyGen:
ke ← {0, 1}

λ

km ← M .KeyGen

return (ke,km)

Enc((ke,km),m):
r ← {0, 1}λ

x := F (ke, r) ⊕m
t := M .MAC(km,x)
return (r ,x , t)

Dec((ke,km), (r ,x , t)):
if t , M .MAC(km,x):

return err

else return F (ke, r) ⊕ x

Show that the scheme does not have CCA security. Describe a successful attack and com-
pute its advantage.

Hint:

Suppose(r,x,t)and(r
′
,x
′
,t
′
)arevalidencryptions,andconsiderDec((ke,km),(r

′
,x,t))⊕x⊕x

′
.

10.10. When we combine di�erent cryptographic ingredients (e.g., combining a CPA-secure en-
cryption scheme with a MAC to obtain a CCA-secure scheme) we generally require the
two ingredients to use separate, independent keys. It would be more convenient if the entire
scheme just used a single λ-bit key.

(a) Suppose we are using Encrypt-then-MAC, where both the encryption scheme and
MAC have keys that are λ bits long. Refer to the proof of security of Claim 12.5 and

199

Draft: January 3, 2021 CHAPTER 10. MESSAGE AUTHENTICATION CODES

describewhere it breaks downwhen we modify Encrypt-then-MAC to use the same
key for both the encryption & MAC components:

KeyGen:

k ← {0, 1}λ

return k

Enc(k ,m):
c := E.Enc(k ,m)

t := M .MAC(k , c)
return (c, t)

Dec(k , (c, t)):
if t , M .MAC(k , c):

return err

return E.Dec(k , c)

(b) While Encrypt-then-MAC requires independent keys ke and km for the two compo-
nents, show that they can both be derived from a single key using a PRF.
In more detail, let F be a PRF with in = 1 and out = λ. Prove that the following
modi�ed Encrypt-then-MAC construction is CCA-secure:

KeyGen:

k∗ ← {0, 1}λ

return k∗

Enc(k∗ ,m):

ke
:= F (k∗, 0)

km
:= F (k∗, 1)

c := E.Enc(ke,m)
t := M .MAC(km, c)
return (c, t)

Dec(k∗ , (c, t)):

ke
:= F (k∗, 0)

km
:= F (k∗, 1)

if t , M .MAC(km, c):
return err

return E.Dec(ke, c)

You should not have to re-prove all the tedious steps of the Encrypt-then-MAC security
proof. Rather, you should apply the security of the PRF in order to reach the original
Encrypt-then-MAC construction, whose security we already proved (so you don’t have
to repeat).

200

