
12 Authenticated Encryption & AEAD

to-do Disclaimer: This chapter is in rough draft stage.

It can be helpful to think of encryption as providing a secure logical channel between
two users who only have access to an insecure physical channel. Below are a few things
that an attacker might do to the insecure physical channel:

I An attacker may passively eavesdrop; i.e., simply observe the channel. A CPA-
secure encryption scheme provides con�dentiality and prevents the attacker from
learning anything by eavesdropping.

I An attacker may drop messages sent along the channel, resulting in a denial of
service. If the attacker can do this on the underlying physical channel, then it cannot
be overcome through cryptography.

I An attacker may try tomodifymessages that are sent along the channel, by tamper-
ing with their ciphertexts. This sounds like what CCA-secure encryption protects
against, right?

I An attacker may try to inject new messages into the channel. If successful, Bob
might receive a message and mistake it for something that Alice meant to send.
Does CCA security protect against this? If it is indeed possible to inject new mes-
sages into the channel, then an attacker can delete Alice’s ciphertexts and replace
them with their own. This would seem to fall under the category of “modifying”
messages on the channel, so message-injection and message-modi�cation are some-
what connected.

I An attacker may try to replay messages that were sent. For example, if Bob was
convinced that a ciphertext c came from Alice, then an attacker can re-send the
same c many times, and Bob may interpret this as Alice wanting to re-send the
same plaintext many times. Does CCA security protect against this?

Although it might seem that CCA-secure encryption guarantees protection against many
of these kinds of attacks, it does not!

To see why, consider the SPRP-based encryption scheme of Construction 9.3. We
proved that this scheme has CCA security. However, it never raises any errors during
decryption. Every ciphertext is interpreted as a valid encryption of some plaintext. An at-
tacker can choose an arbitrary ciphertext, and when Bob decrypts it he might think Alice
was trying to send some (presumably garbled) message. The only thing that CCA security
guarantees is that if an attacker is able to make a ciphertext that decrypts without error,
then it must decrypt to something that is unrelated to the contents of other ciphertexts.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

In order to achieve protection against message-modi�cation and message-injection
on the secure channel, we need a stronger/better security de�nition. Authenticated en-
cryption (AE) formalizes the extra property that only someone with the secret key can
�nd ciphertexts that decrypt without error. For example, encrypt-then-MAC (Construc-
tion 10.9) already has this property.

In this chapter we will discuss authenticated encryption and a closely-related concept
of encryption with associated data (AD), which is designed to help prevent message-
replay attacks. These two concepts are the “gold standard” for encryption.

12.1 Definitions

Authenticated Encryption

As with CPA and CCA �avors of security, we can de�ne AE security in both a “left-vs-
right” style or a “pseudorandom ciphertexts” style. Both are reasonable choices. To make
life simpler we will only de�ne the pseudorandom-ciphertexts-style of AE security in this
chapter.

In CCA$ security, the attacker has access to the decryption algorithm (except for ci-
phertexts generated by the library itself). This captures the idea that the result of de-
crypting adversarially-generated ciphertexts cannot help distinguish the contents of other
ciphertexts. For AE security, we want a stronger condition that Dec(k, c) = err for ev-
ery adversarially-generated ciphertext c . Using the same ideas used to de�ne security
for MACs, we express this requirement by saying that the attacker shouldn’t be able to
distinguish access to the “real” Dec algorithm, or one that always outputs err:

Definition 12.1

(AE)

Let Σ be an encryption scheme. We say that Σ has authenticated encryption (AE) security
if LΣ

ae$-real

∼∼∼ L
Σ
ae$-rand

, where:

LΣ
ae$-real

k ← Σ.KeyGen

S := ∅

ctxt(m ∈ Σ.M):
c := Σ.Enc(k,m)
S := S ∪ {c}
return c

decrypt(c ∈ Σ.C):
if c ∈ S: return err

return Σ.Dec(k, c)

LΣ
ae$-fake

ctxt(m ∈ Σ.M):
c ← Σ.C(|m |)
return c

decrypt(c ∈ Σ.C):
return err

Discussion

The two libraries are di�erent from each other in two major ways: whether the calling
program sees real ciphertexts or random strings (that have nothing to do with the given
plaintext), and whether the calling program sees the true result of decryption or an error

215

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

message. With these two di�erences, we are demanding that two conditions be true: the
calling program can’t tell whether it is seeing real or fake ciphertexts, it also cannot gener-
ate a ciphertext (other than the ones it has seen) that would cause Dec to output anything
except err.

Whenever the calling program calls decrypt(c) for a ciphertext c that was produced
by the library (in ctxt), both libraries will return err by construction. Importantly, the
di�erence in the libraries is the behavior of decrypt on ciphertexts that were not generated
by the library (i.e., generated by the attacker).

Associated Data

AE provides a secure channel between Alice and Bob that is safe from message-
modi�cation and message-injection by the attacker (in addition to providing con�den-
tiality). However, AE still does not protect from replay of messages. If Alice sends a
ciphertext c to Bob, we know that Bob will decrypt c without error. The guarantee of AE
security is that Bob can be sure that the message originated from Alice in this case. If an
attacker re-sends the same c at a later time, Bob will likely interpret that as a sign that
Alice wanted to say the same thing again, even though this was not Alice’s intent. It is
still true that Alice was the originator of the message, but just not at this time.

You may wonder how it is possible to prevent this sort of attack. If a ciphertext c is
a valid ciphertext when Alice sends it, then it will always be a valid ciphertext, right?
A clever way around this problem is for Alice to not only authenticate the ciphertext as
coming from her, but to authenticate it also to a speci�c context. For example, suppose
that Alice & Bob are exchanging encrypted messages, and the 5th ciphertext is c , sent by
Alice. The main idea is to let Alice authenticate the fact that “I meant to send c as the 5th
ciphertext in the conversation." If an attacker re-sends c later (e.g., as the 11th ciphertext,
a di�erent context), Bob will attempt to authenticate the fact that “Alice meant to send c
as the 11th ciphertext,” and this authentication will fail.

What I have called “context” is called associated data in an encryption scheme. In
order to support associated data, we modify the syntax of the encryption and decryption
algorithms to take an additional argument d . The ciphertext c = Enc(k,d,m) is an encryp-
tion of m with associated data d . In an application, d could be a sequence number of a
conversation, a hash of the entire conversation up to this point, an IP address + port num-
ber, etc. — basically, as much information as you can think of regarding this ciphertext’s
intended context. Decrypting c with the “correct” associated data d via Dec(k,d, c) should
result in the correct plaintextm. Decrypting c with any other associated data should result
in an error, since that re�ects a mismatch between the sender’s and receiver’s contexts.

The intuitive security requirement for authenticated encryption with associated
data (AEAD) is that an attacker who sees many encryptions ci of chosen plaintexts, each
authenticated to a particular associated data di , cannot generate a di�erent (c∗,d∗) that
decrypts successfully. The security de�nition rules out attempts to modify some ci under
the same di , or modify some di for the same ci , or produce a completely new (c∗,d∗).

Definition 12.2

(AEAD)

Let Σ be an encryption scheme. We write Σ.D to denote the space of supported associated
data signi�ers (“contexts”). We say that Σ has authenticated encryption with associated
data (AEAD) security if LΣ

aead$-real

∼∼∼ L
Σ
aead$-rand

, where:

216

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

LΣ
aead$-real

k ← Σ.KeyGen

S := ∅

ctxt(d ∈ Σ.D,m ∈ Σ.M):
c := Σ.Enc(k,d,m)
S := S ∪ {(d, c)}
return c

decrypt(d ∈ Σ.D, c ∈ Σ.M):
if (d, c) ∈ S: return err

return Σ.Dec(k,d, c)

LΣ
aead$-fake

ctxt(c ∈ Σ.D,m ∈ Σ.M):
c ← Σ.C(|m |)
return c

decrypt(d ∈ Σ.D, c ∈ Σ.M):
return err

Discussion

One way to “authenticate a message to some context d” is to encrypt m‖d instead of just
m (in an AE scheme). This would indeed work! Including d as part of the plaintext would
indeed authenticate it, but it would also hide it. The point of di�erentiating between plain-
text and associated data is that we assume the associated data is shared context between
both participants. In other words, we assume that the sender and receiver both already
know the context d . Therefore, hiding d is overkill — only authentication is needed. By
making a distinction between plaintext and associated data separately in AEAD, the ci-
phertext length can depend only on the length of the plaintext, and not depend on
the length of the associated data.

The fact that associated data d is public is re�ected in the fact that the calling program
chooses it in the security de�nition.

“Standard” AE corresponds to the case where d is always empty: all ciphertexts are
authenticated to the same context.

12.2 Achieving AE/AEAD

The Encrypt-then-MAC construction (Construction 10.9) has the property that the at-
tacker cannot generate ciphertexts that decrypt correctly. Even though we introduced
encrypt-then-MAC to achieve CCA security, it also achieves the stronger requirement of
AE.

Claim 12.3 If E has CPA security andM is a secure MAC, then EtM (Construction 10.9) has AE security.

to-do There is a slight mismatch here, since I de�ned AE/AEAD security as a “pseudorandom cipher-
texts” style de�nition. So you actually need CPA$+PRF instead of CPA+MAC. But CPA+MAC
is enough for the left-vs-right style of AE/AEAD security.

The security proof is essentially the same as the proof of CCA security (Claim 12.5).
In that proof, there is a hybrid in which the decrypt subroutine always returns an error.
Stopping the proof at that point would result in a proof of AE security.

217

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

Encrypt-then-MAC with Associated Data

Recall that the encrypt-then-MAC construction computes a MAC of the ciphertext. To
incorporate associated data, we simply need to compute a MAC of the ciphertext along
with the associated data.

Recall that most MACs in practice support variable-length inputs, but the length of
the MAC tag does not depend on the length of the message. Hence, this new variant of
encrypt-then-MAC has ciphertexts whose length does not depend on the length of the
associated data.

Construction 12.4

(Enc+MAC+AD)

Enc((ke,km), d ,m):
c ← E.Enc(ke,m)

t := M .MAC(km, d ‖ c)

return (c, t)

Dec((ke,km), d , (c, t)):
if t , M .MAC(km, d ‖ c):

return err

return E.Dec(ke, c)

Claim 12.5 If E has CPA security and M is a secure MAC, then Construction 12.4 has AEAD security,
when the associated data has �xed length (i.e., D = {0, 1}n for some �xed n).

to-do This construction is insecure for variable-length associated data. It is not terribly hard to �x
this; see exercises.

12.3 Carter-Wegman MACs

Suppose we construct an AE[AD] scheme using the encrypt-then-MAC paradigm. A good
choice for the CPA-secure encryption scheme would be CBC mode; a good choice for the
MAC scheme would be ECBC-MAC. Combining these two building blocks would result in
an AE[AD] scheme that invokes the block cipher twice for each plaintext block — once for
the CBC encryption (applied to the plaintext) and once more for the ECBC-MAC (applied
to that ciphertext block).

Is it possible to achieve AE[AD] with less cost? In this section we will explore a more
e�cient technique for variable-length MACs, which requires only one multiplication op-
eration per message block along with a single invocation of a block cipher.

Universal Hash Functions

The main building block in Carter-Wegman-style MACs is a kind of hash function called
a universal hash function (UHF). While the name “universal hash function” sounds like
it must be an incredibly strong primitive, a UHF actually gives a much weaker security
guarantee than a collision-resistant or second-preimage-resistant hash function.

Recall that (x ,x ′) is a collision under salt s if x , x ′ andH (s,x) = H (s,x ′). A universal
hash function has the property that it is hard to �nd such a collision . . .

. . . when x and x ′ are chosen without knowledge of the salt,

. . . and when the attacker has only one attempt at �nding a collision for a particular salt
value.

218

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

These constraints are equivalent to choosing the salt after x and x ′ are chosen, and a
collision should be negligibly likely under such circumstances.

The de�nition can be stated more formally:

Definition 12.6

(UHF)

A hash function H with set of salts S is called a universal hash function (UHF) if
LH

uhf-real

∼∼∼ L
H
uhf-fake

, where:

LH
uhf-real

test(x ,x ′ ∈ {0, 1}∗):
s ← S

b :=
[
H (s,x)

?
= H (s,x ′)

]
return (s,b)

LH
uhf-fake

test(x ,x ′ ∈ {0, 1}∗):
s ← S
return (s, false)

This de�nition is similar in spirit to the formal de�nition of collision resistance (Def-
inition 11.1). Just like that de�nition, this one is cumbersome to use in a security proof.
When using a hash function, one typically does not explicitly check for collisions, but
instead just proceeds as if there was no collision.

In the case of UHFs, there is a di�erent and helpful way of thinking about security.
Consider a “blind collision-resistance” game, where you try to �nd a collision under H
without access to the salt, and even without seeing the outputs of H ! It turns out that if H
is a UHF, then it is hard to �nd collisions in such a game:

Claim 12.7 If H is a UHF, then the following libraries are indistinguishable:

LH
bcr-real

s ← S
Hinv

:= empty assoc. array

test(x ∈ {0, 1}∗):
y := H (s,x)
if Hinv[y] de�ned and Hinv[y] , x :

return Hinv[y]
Hinv[y] := x
return false

∼∼∼

LH
bcr-fake

test(x ∈ {0, 1}∗):
return false

In these libraries, the calling program chooses inputs x to the UHF. TheLbcr-real library
maintains a private record of all of the x values and their hashes, in the form of a reverse
lookup table. Hinv[y] will hold the value x that was hashed to result in y.

If the calling program calls test(x) on a value that collides with a previous x ′, then
Lbcr-real will respond with this x ′ value (the purpose of this is just to be helpful to security
proofs that use these libraries); otherwise it will respond with false, giving no information
about s or H (s,x). The other library always responds with false. Hence, the two are
indistinguishable only if �nding collisions is hard.

to-do Proof to come. It’s not hard but tedious.

219

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

Constructing UHFs using Polynomials

UHFs have much weaker security than other kinds of hashing, and they can in fact be
constructed unconditionally. One of the mathematically simplest constructions has to do
with polynomials.

Claim 12.8 Let p be a prime and д be a nonzero polynomial with coe�cients in Zp and degree at most d .
Then д has at most d zeroes from Zp .

This observation leads to a simple UHF construction, whose idea is to interpret the
string x as the coe�cients of a polynomial, and evaluate that polynomial at point s (the
salt of the UHF). In more detail, letp be a prime withp > 2λ , and let the salt s be a uniformly
chosen element of Zp . To compute the hash of x , �rst split x into λ-bit blocks, which will
be convenient to index as xd−1‖xd−2‖ . . . ‖x0. Interpret each xi as a number mod p. Then,
the value of the hash H (s,x) is:

sd + xd−1s
d−1 + xd−2s

d−2 + · · · + x0 (mod p)

This is the result of evaluating a polynomial with coe�cients (1,xd−1,xd−2, . . . ,x0) at the
point s . A convenient way to evaluate this polynomial is by using Horner’s rule:

· · · s · (s · (s + xd−1) + xd−2) + xd−3 · · ·

Horner’s rule can be expressed visually as follows:

s

xd−1 xd−2 xd−3 · · ·

× × ×+ + + · · ·

The UHF construction is described formally below.

Construction 12.9

(Poly-UHF)

p = a prime > 2λ
S = Zp

H (s,x):
write x = xd−1‖xd−2‖ · · · ‖x0,

where each |xi | = λ

y := 1
for i = d − 1 downto 0:
y := s · y + xi % p

return y

Claim 12.10 The Poly-UHF construction is a secure UHF.

Proof It su�ces to show that, for any x , x ′, the probability that H (s,x) = H (s,x ′) (taken over
random choice of s) is negligible. Note that H (s,x) = д(s), where д is a polynomial whose
coe�cients are (1,xd−1, . . . ,x0), and H (s,x ′) = д′(s), where д′ is a similar polynomial
derived from x ′. Note that x and x ′ may be split into a di�erent number of blocks, leading
to di�erent degrees (d and d ′) for the two polynomials.

220

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

In order to have a collision H (s,x) = H (s,x ′), we must have

д(s) ≡p д
′(s)

⇐⇒ д(s) − д′(s) ≡p 0

Note that the left-hand side in this equation is a polynomial of degree at most d∗ =
max{d,d ′}. Furthermore, that polynomial д − д′ is not the zero polynomial because д
and д′ are di�erent polynomials. Even if the original strings x and x ′ di�er only in blocks
of 0s, the resulting д and д′ will be di�erent polynomials because they include an extra
leading coe�cient of 1.

A collision happens if and only if s is chosen to be one of the roots of д − д′. From
Claim 12.8, the polynomial has at most d∗ roots, so the probability of choosing one of them
is at most:

d∗/p 6 d∗/2λ .

This probability is negligible since d∗ is polynomial in λ (it is the number of blocks in a
string that was written down by the attacker, who runs in polynomial time in λ). �

to-do Fine print: this works but modular multiplication is not fast. If you want this to be fast, you
would use a binary �nite �eld. It is not so bad to describe what �nite �elds are, but doing so
involves more polynomials. Then when you make polynomials whose coe�cients are �nite
�eld elements, it runs the risk of feeling like polynomials over polynomials (because at some
level it is). Not sure how I will eventually deal with this.

Carter-Wegman UHF-based MAC

A UHF by itself is not a good MAC, even when its salt s is kept secret. This is because
the security of a MAC must hold even when the attacker sees the function’s outputs, but
a UHF provides security (blind collision-resistance) only when the attacker does not see
the UHF outputs.

The Carter-Wegman MAC technique augments a UHF by sending its output through
a PRF, so the MAC ofm is F (k,H (s,m)) where H is a UHF and F is a PRF.

Construction 12.11

(Carter-Wegman)

Let H be a UHF with n bits of output, and let F be a secure PRF with in = n. The Carter-
Wegman construction combines them as follows:

KeyGen:
k ← {0, 1}λ

s ← S
return (k, s)

MAC

(
(k, s),x

)
:

y := H (s,x)
return F (k,y)

We will show that the Carter-Wegman construction is a secure PRF. Recall that this
implies that the construction is also a secure MAC (Claim 10.4). Note that the Carter-
Wegman construction also uses a PRF as a building block. However, it uses a PRF for short
messages, to construct a PRF for arbitrary-length messages. Furthermore, it only calls the
underlying PRF once, and all other computations involving the UHF are comparitively
“cheap.”

221

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

To understand the security of Carter-Wegman, we work backwards. The output
F (k,H (s,x)) comes directly from a PRF. These outputs will look random as long as the
inputs to the PRF are distinct. In this construction, the only way for PRF inputs to repeat
is for there to be a collision in the UHF H . However, we have to be careful. We can only
reason about the collision-resistance of H when its salt is secret and its outputs are hidden
from the attacker. The salt is indeed hidden in this case (kept as part of the Carter-Wegman
key), but its outputs are being used as PRF inputs. Fortunately, the guarantee of a PRF is
that its outputs appear unrelated to its inputs. In other words, the PRF outputs leak no in-
formation about the PRF inputs (H -outputs). Indeed, this appears to be a situation where
the UHF outputs are hidden from the attacker, so we can argue that collisions in H are
negligibly likely.

Claim 12.12 If H is a secure UHF and F is a secure PRF, then the Carter-Wegman construction (Construc-
tion 12.11) is a secure PRF, and hence a secure MAC as well.

Proof We will show that LCW

prf-real

∼∼∼ L
CW

prf-rand
using a standard hybrid technique.

LCW

prf-real

k ← {0, 1}λ

s ← S

lookup(x):
y := H (s,x)
return F (k,y)

The starting point is LCW

prf-real
.

T := empty assoc. array
s ← S

lookup(x):
y := H (s,x)

if T [y] unde�ned:
T [y] ← {0, 1}out

return T [y]

We have applied the security of F , by factoring out in
terms of LF

prf-real
, replacing it with LF

prf-rand
, and inlining

the result.

222

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

cache := empty assoc. array
T := empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)
if T [y] unde�ned:
T [y] ← {0, 1}out

cache[x] := T [y]
return cache[x]

The lookup subroutine has the property that if it is called
on the same x twice, it will return the same result. It
therefore does no harm to cache the answer every time.
The second time lookup is called on the same value x ,
the previous value is loaded from cache rather than re-
computed. This change has no e�ect on the calling pro-
gram.

cache := empty assoc. array
Hinv

:= empty assoc. array
T := empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)

if Hinv[y] de�ned:
x ′ := Hinv[y]
return cache[x ′]

if T [y] unde�ned:
T [y] ← {0, 1}out

Hinv[y] := x

cache[x] := T [y]
return cache[x]

Note that if lookup is �rst called on x ′ and then later on
x , where H (s,x) = H (s,x ′), lookup will return the same
result. We therefore modify the library to keep track of
H -outputs and inputs. Whenever the library computes
y = H (s,x), it stores Hinv[y] = x . However, if Hinv[y]
already exists, it means that this x and x ′ = Hinv[y] are
a collision under H . In that case, the library directly re-
turns whatever it previously returned on input x ′. This
change has no e�ect on the calling program.

223

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

cache := empty assoc. array
Hinv

:= empty assoc. array
T := empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)
if Hinv[y] de�ned:
x ′ := Hinv[y]
return cache[x ′]

if Hinv[y] unde�ned:
T [y] ← {0, 1}out

Hinv[y] := x
cache[x] := T [y]

return cache[x]

In the previous hybrid,T [y] is set at the same timeHinv[y]
is set — on the �rst call lookup(x) such that H (s,x) =
y. Therefore, it has no e�ect on the calling program to
check whether T [y] is de�ned or check whether Hinv[y]
is de�ned.

cache := empty assoc. array
Hinv

:= empty assoc. array
s ← S

lookup(x):
if cache[x] unde�ned:
y := H (s,x)
if Hinv[y] de�ned:
x ′ := Hinv[y]
return cache[x ′]

if Hinv[y] unde�ned:
cache[x] ← {0, 1}out

Hinv[y] := x
return cache[x]

Note that if Hinv[y] is de�ned, then lookup returns
within that if-statement. The line cache[x] := T [y] is
therefore only executed in the case that Hinv[y] was not
initially de�ned. Instead of choosingT [y] only to imme-
diately assign it to cache[x], we just assign directly to
cache[x]. This change has no e�ect on the calling pro-
gram, and it does away with the T associative array en-
tirely.

The if-statements involving Hinv in this hybrid are checking whether x has collided
with any previous x ′ under H . All of this logic, including the evaluation of H , can be
factored out in terms of LH

bcr-real
. At this point in the sequence of hybrids, the output of H

is not needed, except to check whether a collision has been encountered (and if so, what
the o�ending inputs are). Again, this change has no e�ect on the calling program. The

224

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

result is:

cache := empty assoc. array

lookup(x):
if cache[x] unde�ned:

if test(x) = x ′ , false :
return cache[x ′]

else:
cache[x] ← {0, 1}out

return cache[x]

�

LH
bcr-real

s ← S
Hinv

:= empty assoc. array

test(x):
y := H (s,x)
if Hinv[y] de�ned:

return Hinv[y]
Hinv[y] := x
return false

The security of H is that we can swap LH
bcr-real

for LH
bcr-fake

, with negligible e�ect on the
calling program. Note that test algorithm in Lbcr-fake always returns false. This leads us
to simply remove the “if test(x) , false” clause, resulting in the following:

LCW

prf-rand

cache := empty assoc. array
lookup(x):

if cache[x] unde�ned:
cache[x] ← {0, 1}out

return cache[x]

Since this is exactly LCW

prf-rand
, we are done. We have shown that LCW

prf-rand

∼∼∼ L
CW

prf-rand
. �

12.4 Galois Counter Mode for AEAD

The most common block cipher mode for AEAD is called Galois Counter Mode (GCM).
GCM is essentially an instance of encrypt-then-MAC, combining CTR mode for encryption
and the polynomial-based Carter-Wegman MAC for authentication. GCM is relatively
inexpensive since it requires only one call to the block cipher per plaintext block, plus one
multiplication for each block of ciphertext + associated data.

Rather than using polynomials over Zp , GCM mode uses polynomials de�ned over a
�nite �eld with 2λ elements. Such �elds are often called “Galois �elds,” which leads to the
name Galois counter mode.

to-do More information about GCM will go here. Again, would be nice to have a crash course in
�nite �elds.

225

Draft: January 3, 2021 CHAPTER 12. AUTHENTICATED ENCRYPTION & AEAD

CTR encryption

Carter-Wegman MAC of CTR ciphertext

Fk1 Fk1 Fk1 Fk1

$

⊕ ⊕ ⊕ ⊕

m1 m2 m3 m`

c0 c1 c2 c3 c`

+1 +1 +1

· · ·

· · ·

· · ·

c`+1

Fk3
k2

× × × ×⊕ ⊕ ⊕ ⊕ ⊕· · ·

Exercises

to-do . . . more on the way . . .

12.1. Suppose Enc-then-MAC+AD is instantiated with CBC mode and any secure MAC, as de-
scribed in Construction 12.4. The scheme is secure for �xed-length associated data. Show
that if variable-length associated data is allowed, then the scheme does not provide AEAD
security.

Note: you are not attacking the MAC! Take advantage of the fact that d ‖c is ambiguous
when the length of d is not �xed and publicly known.

12.2. Suggest a way to make Construction 12.4 secure for variable-length associated data. Prove
that your construction is secure.

12.3. Show that if you know the salt s of the Poly-UHF construction (Construction 12.9), you
can e�ciently �nd a collision.

12.4. Show that if you are allowed to see only the output of Poly-UHF (i.e., the salt remains
hidden), on chosen inputs then you can compute the salt.

226

