|8 RSA & Digital Signatures

RSA was among the first public-key cryptography developed. It was first described in
1978, and is named after its creators, Ron Rivest, Adi Shamir, and Len Adleman.! RSA
can be used as a building block for public-key encryption and digital signatures. In this
chapter we discuss only the application of RSA for digital signatures.

13.1 “Dividing” Mod n

Please review the material from Section 0.2, to make sure your understanding of ba-
sic modular arithmetic is fresh. You should be comfortable with the definitions of Z,,
congruence (=,), the modulus operator (%), and how to do addition, multiplication, and
subtraction mod n.

Note that we haven’t mentioned division mod n. Does it even make sense to talk about
division mod n?

Example Consider the following facts which hold mod 15:

2-8=51 10-8=155
4-8=152 12-8=156
6-8=53 14 -8 =157
8§-8=154

Now imagine replacing “- 8” with “+ 2” in each of these examples:

2+2 =151 10 2 =55
4+2 =152 1222 =56
6+2 =153 14 22 =157
8§+2 =54

LClifford Cocks developed an equivalent scheme in 1973, but it was classified since he was working for
British intelligence.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Definition 13.1
(x~! mod n)

Example

Definition 13.2
Zy)

Everything still makes sense! Somehow, multiplying by 8 mod 15 seems to be the same thing
as “dividing by 2” mod 15.

The previous examples all used x - 8 (x + 2) where x was an even number. What happens
when x is an odd number?

3:8=159 & “3+25159”??

This might seem non-sensical, but if we make the substitutions 3 =15 —12 and 9 =15 —6, then
we do indeed get something that makes sense:

—12-8=15 -6 & —-12+2=15 -6

This example shows that there is surely some interesting relationship among the num-
bers 2, 8, and 15. It seems reasonable to interpret “multiplication by 8” as “division by 2”
when working mod 15.

Is there a way we can do something similar for “division by 3” mod 15? Can we find
some y where “multiplication by y mod 15” has the same behavior as “division by 3 mod
15?7 In particular, we would seek a value y that satisfies 3 - y =;5 1, but you can check for
yourself that no such value of y exists.

Why can we “divide by 2” mod 15 but we apparently cannot “divide by 3” mod 15? We
will explore this question in the remainder of this section.

Multiplicative Inverses

We usually don’t directly use the terminology of “division” with modular arithmetic. In-
stead of saying “division by 2”, we say “multiplication by 271", where 27! is just another
name for 8.

The multiplicative inverse of x mod n is the integer y that satisfies x - y =, 1 (if such a

¢« —1 »

number exists). We usually refer to the multiplicative inverse of x as “x

Contuining to work mod 15, we have:

> 471 =5 4since4d -4 = 16 =5 1. Hence 4 is its own multiplicative inverse! You can also
understand this as:

gl =) T =02 =582 =64=54
» 71 =513 since7-13 = 91 =5 1.
We are interested in which numbers have a multiplicative inverse mod n.
The multiplicative group’ modulo n is defined as:

Z, = {x € Z, | x has a multiplicative inverse mod n}

2“Group” is a technical term from abstract algebra.

228

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Theorem 13.3

Theorem 13.4
(Bezout’s Theorem)

Proof
(of Theorem 13.3)

Example

Example

For example, we have seen that Z; contains the numbers 2, 4, and 7 (and perhaps
others), but it doesn’t contain the number 3 since 3 does not have a multiplicative inverse.

So which numbers have a multiplicative inverse mod n, in general? (Which numbers
belong to Zx*,?) The answer is quite simple:

x has a multiplicative inverse mod n if and only if gcd(x, n) = 1. In other words, Z, = {x €
Z, | ged(x,n) = 1}.

We prove the theorem using another fact from abstract algebra which is often useful:

For all integers x and y, there exist integers a and b such that ax + by = ged(x,y). In fact,
ged(x, y) is the smallest positive integer that can be written as an integral linear combination

of x and y.

We won’t prove Bezout’s theorem, but we will show how it is used to prove Theo-
rem 13.3:

(<) Suppose ged(x, n) = 1. We will show that x has a multiplicative inverse mod n. From
Bezout’s theorem, there exist integers a, b satisfying ax + bn = 1. By reducing both sides
of this equation modulo n, we have

l=ax+bn=,ax+b-0=ax.

Thus the integer a that falls out of Bezout’s theorem is the multiplicative inverse of x
modulo n.

(=) Suppose x has a multiplicative inverse mod n, so xx™! =, 1. We need to show
that ged(x, n) = 1. From the definition of =, we know that n divides xx™! — 1, so we can
write xx~! — 1 = kn (as an expression over the integers) for some integer k. Rearranging,
we have xx~! — kn = 1. Since we can write 1 as an integral linear combination of x and n,

Bezout’s theorem says that we must have ged(x, n) = 1. [

Zys = {0,1,...,14}, and to obtain Z}, we exclude any of the numbers that share a common
factor with 15. In other words, we exclude the multiples of 3 and multiples of 5. The remaining
numbers are Z;, = {1,2,4,7,8,11,13,14}.

Since 11 is a prime, 0 is the only number in Z1; that shares a common factor with 11. All
the rest satisfy ged(x, 11) = 1. Hence, Z}, = {1,2,---,10}.

We can use Sage’ to play around with these concepts. Sage supports the % operator for mod-
ulus:

sage: 2x8 % 15
1

It also supports a convenient way to generate “Z,-objects,” or Mod-objects as they are called.
An object likeMod (2, 15) represents the value 2 € Zys, and all of its operations are overloaded
to be the mod-15 operations:

3https://www.sagemath.org

229

https://www.sagemath.org

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

sage: Mod(2,15)*8

1

sage: Mod(2,15)+31415926
3

sage: Mod(-1,15)

14

In Sage, you can compute multiplicative inverses in a few different ways:

sage: Mod(2,15)"-1

8

sage: 1/Mod(2,15)

8

sage: 2.inverse_mod(15)
8

sage: (1/2) % 15

8

Sage is smart enough to know when a multiplicative inverse doesn’t exist:

sage: Mod(3,15)"-1
ZeroDivisionError: inverse of Mod(3, 15) does not exist

Sage supports huge integers, with no problem:

sage: n = 3141592653589793238462643383279502884197169399375105820974944
sage: x = 1234567890123456789012345678901234567890123456789012345678901
sage: 1/Mod(x,n)
2234412539909122491686747985730075304931040310346724620855837

The relationship between multiplicative inverses and GCD goes even farther than The-
orem 13.3. Recall that we can compute ged(x, n) efficiently using Euclid’s algorithm. There
is a relatively simple modification to Euclid’s algorithm that also computes the corresop-
nding Bezout coefficients with little extra work. In other words, given x and n, it is possible
to efficiently compute integers a, b, and d such that

ax + bn = d = ged(x, n)

In the case where ged(x,n) = d = 1, the integer a is a multiplicative inverse of x mod n.
The “extended Euclidean algorithm” for GCD is given below:

EXTGCD(X,):
// returns (d, a, b) such that ged(x,y) = d = ax + by
ify=0:
return (x, 1, 0)
else:
(d, a,b) := ExTGCD(Y, X %)
return (d, b,a — b|x/y])

230

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example

Theorem 13.5
(Euler’s Theorem)

Example

Sage implements the extended Euclidean algorithm as “xgcd”:

sage: xgcd(427,529)

(1, 223, -180)

sage: 223x427 + (-180)x529
1

You can then see that 223 and 427 are multiplicative inverses mod 529:

sage: 427x223 % 529
1

The Totient Function

Euler’s totient function is defined as ¢(n) def |Z},|; that is, the number of elements of Z,
that have multiplicative inverses.

As an example, if n is a prime, then Z; = Z, \ {0} because every integer in Z, apart
from zero is relatively prime to n. Therefore, ¢(n) = n — 1 in this case.

RSA involves a modulus n that is the product of two distinct primes n = pq. In that
case, ¢(n) = (p — 1)(q — 1). To see why, let’s count how many elements in Z,, share a
common divisor with pq (i.e., are notin Zj,).

» The multiples of p share a common divisor with pgq. These include
0,p,2p,3p,...,(q — 1)p. There are g elements in this list.

» The multiples of g share a common divisor with pq. These include
0,9,2q,3q,...,(p—1)q. There are p elements in this list.

We have clearly double-counted element 0 in these lists. But no other element is double
counted. Any item that occurs in both lists would be a common multiple of both p and g,
but since p and q are relatively prime, their least common multiple is pq, which is larger
than any item in these lists.

We count p + g — 1 elements of Z,, which share a common divisor with pg. The rest
belong to Z;,,, and there are pqg — (p + ¢ — 1) = (p — 1)(q — 1) of them. Hence ¢(pq) =
(p-1g-1).

General formulas for ¢(n) exist, but they typically rely on knowing the prime factor-
ization of n. We will see more connections between the difficulty of computing ¢(n) and
the difficulty of factoring n later in this part of the course.

The reason we consider ¢(n) at all is this fundamental theorem from abstract algebra:

Ifx € Z* then x?™ =, 1.

Using the formula for ¢(n), we can see that ¢(15) = ¢(3-5) = (3 —1)(5 - 1) = 8. Euler’s
theorem says that raising any element of Z], to the 8 power results in 1: We can use Sage to
verify this:

231

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

sage: for i in range(15):

A if gcd(i,15) ==

cee print("%d”8 mod 15 = %d" % (i, i"8 % 15))
178 mod 15
2”8 mod 15
478 mod 15
778 mod 15
878 mod 15
1178 mod 15
1378 mod 15
1478 mod 15

Il
O I R

[| B ||
=R e

13.2 The RSA Function

The RSA function is defined as follows:

» Let p and q be distinct primes (later we will say more about how they are chosen),
and let N = pq. N is called the RSA modulus.

> Let e and d be integers such that ed =4) 1. That is, e and d are multiplicative
inverses mod ¢(N) — not mod N!

» The RSA function is: x — x¢ % N, where x € Zy.
» The inverse RSA function is: y — y¢ % N, where x € Zy.

Essentially, the RSA function (and its inverse) is a simple modular exponentiation. The
most confusing thing to remember about RSA is that e and d “live” in ZZ(Ny while x and
y “live” in Zy.

raise to e power (mod N)

T\

x y

\/

raise to d power (mod N)
Let’s make sure the function we called the “inverse RSA function” is actually an inverse
of the RSA function. Let’s start with an example:

Example In Sage, we can sample a random prime between 1 and k by using random_prime(k). We use
it to sample the prime factors p and q:

sage: p = random_prime(10”5)
sage: q = random_prime(1075)
sage: N = pxqQ

sage: N

36486589

232

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Then we can compute the exponents e and d. Recall that they must be multiplicative inverses
mod ¢(N), so they cannot share any common factors with ¢(N). An easy way to ensure this
is to choose e to be a prime:

sage: phi = (p-1)*(g-1)
sage: e = random_prime(phi)
sage: e

28931431

sage: d = 1/Mod(e,phi)
sage: d

31549271

We can now raise something to the e power and again to the d power:

sage: X = 31415926
sage: y = x™e % N
sage: y

1798996

sage: y™d % N
31415926

As you can see, raising to the e power and then d power (mod N) seems to bring us back to
where we started (x).

We can argue that raising-to-the-e-power and raising-to-the-d-power are inverses in
general: Since ed =4(n) 1, we can write ed = t¢(N) + 1 for some integer ¢. Then:

(xe)d — xed — xt¢(N)+1 — (x¢(N))tx =N 1tx — 5
Note that we have used the fact that x™) =5 1 from Euler’s theorem.*

How [Not] to Exponentiate Huge Numbers

When you see an expression like “x¢ % N”, you might be tempted to implement it with the
following algorithm:

NAIVEEXPONENTIATE(X, €, N):

result =1

for i = 1 to e: // compute x°¢
result = result X x

return result % N

While this algorithm would indeed give the correct answer, it is a really bad way of doing
it. In practice, we use RSA with numbers that are thousands of bits long. Suppose we
run the NAIVEEXPONENTIATE algorithm with arguments x, e, and N which are around a
thousand bits each (so the magnitude of these numbers is close to 21°°)

4However, see Exercise 13.15.

233

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

1. The algorithm will spend approximately 2!°% iterations in the for-loop!

2. The algorithm computes x¢ as an integer first, and then reduces that integer mod
N. Observe that x? is roughly 2000 bits long, x* is roughly 3000 bits long, etc. So it
would take about 21°%° . 1000 bits just to write down the integer x°.

As you can see, there is neither enough time nor storage capacity in the universe to use
this algorithm. So how can we actually compute values like x¢ % N on huge numbers?

1. Suppose you were given an integer x and were asked to compute x'7. You can com-
pute it as:

X17= X XXX

~—_——
16 multiplications

But a more clever way is to observe that:

x17 — x16 Sx = (((XZ)Z)Z)Z - x.
This expression can be evaluated with only 5 multiplications (squaring is just muli-
plying a number by itself).

More generally, you can compute an expression like x¢ by following the recurrence
below. The method is called exponentiation by repeated squaring, for reasons
that are hopefully clear:

BETTEREXP(x, e):

if e = 0: return 1

1 ife=0 if e even:
x¢ =102’ if e even return BETTERExXP(x, £)?
(xeT_l)2 -x ifeodd if e odd:

return BETTEREXP(x, <31)? - x

BeETTEREXP divides the e argument by two (more or less) each time it recurses, until
reaching the base case. Hence, the number of recursive calls is O(loge). In each
recursive call there are only a constant number of multiplications (including squar-
ings). So overall this algorithm requires only O(log e) multiplications (compared to
e — 1 multiplications by just multiplying m by itself e times). In the case where
e ~ 2199 this means only a few thousand multiplications.

2. We care about only x¢ % N, not the intermediate integer value x®. One of the most
fundamental features of modular arithmetic is that you can reduce any interme-
diate values mod N if you care about the final result only mod N.

Revisiting our previous example:
7T %aN=x"%x%N=(((x*%N)?*%N)*%N)*-x%N.

More generally, we can reduce all intermediate value mod N:

234

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example

MopExp(x, e, N): // compute x¢ % N
if e = 0: return 1
if e even:
return MODEXP(x, £, N 2 %N
if e odd:
return MopExp(x, 32, N)? - x % N

This algorithm avoids the problem of computing the astronomically huge integer
x®. It never needs to store any value (much) larger than N.

Warning: Even this MODExP algorithm isn’t an ideal way to implement exponentiation for
cryptographic purposes. Exercise 13.10 explores some unfortunate properties of this exponen-
tiation algorithm.

Most math libraries implement exponentiation using repeated squaring. For example, you
can use Sage to easily calculate numbers with huge exponents:

sage: 427731415926 % 100
89

However, this expression still tells Sage to compute 427°14159%6 as an integer, before reducing
it mod 100. As such, it takes some time to perform this computation.

If you try an expression like x e % N with a larger exponent, Sage will give a memory
error. How can we tell Sage to perform modular reduction at every intermediate step during
repeated squaring? The answer is to use Sage’s Mod objects, for example:

sage: Mod(427,100)"314159265358979
63

This expression performs repeated squaring on the object Mod (427, 100). Since a Mod-object’s
operations are all overloaded (to give the answer only mod n), this has the result of doing a
modular reduction after every squaring and multiplication. This expression runs instanta-
neously, even with very large numbers.

Security Properties & Discussion
RSA is what is called a trapdoor function.

» One user generates the RSA parameters (primarily N, e, and d) and makes N and e
public, while keeping d private.

» Functionality properties: Given only the public information N and e, it is easy to
compute the RSA function (x + x¢% N). Given the private information (d) it clearly
easy to compute the RSA inverse (y > y? % N).

» Security property: Given only the public information, it should be hard to compute
the RSA inverse (y — y“ % N) on randomly chosen values. In other words, the only
person who is able to compute the RSA inverse function is the person who generated
the RSA parameters.

235

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example

Currently the best known attacks against RSA (i.e., ways to compute the inverse RSA
function given only the public information) involve factoring the modulus. If we want to
ensure that RSA is secure as a trapdoor function, we must understand the state of the art
for factoring large numbers.

Before discussing the performance of factoring algorithms, remember that we measure
performance as a function of the length of the input — how many bits it takes to write
the input. In a factoring algorithm, the input is a large number N, and it takes roughly
n = log, N bits to write down that number. We will discuss the running time of algorithms
as a function of n, not N. Just keep in mind the difference in cost between writing down a
1000-bit number (n = 1000) vs counting up to a 1000-bit number (N = 210%0)

Everyone knows the “trial division” method of factoring: given a number N, check
whether i divides N, for every i € {2,...VN}. This algorithm requires VN = 2"/? divi-
sions in the worst case. It is an exponential-time algorithm since we measure performance
in terms of the bit-length n.

If this were the best-known factoring algorithm, then we would need to make N only
as large as 22°° to make factoring require 2'?® effort. But there are much better factoring
algorithms than trial division. The fastest factoring algorithm today is called the General-

1
ized Number Field Sieve (GNFS), and its complexity is something like O(n(m)3) This is
not a polynomial-time algorithm, but it’s much faster than trial division.

Sage can easily factor reasonably large numbers. Factoring the following 200-bit RSA modulus
on my modest computer takes about 10 seconds:

sage: p = random_prime(2°100)

sage: q = random_prime(27100)

sage: N = pxq

sage: factor(N)

206533721079613722225064934611 * 517582080563726621130111418123

As of January 2020, the largest RSA modulus that has been (publically) factored is a
795-bit modulus.’ Factoring this number required the equivalent of 900 CPU-core-years,
or roughly 2% total clock cycles.

All of this is to say, the numbers involved in RSA need to be quite large to resist
factoring attacks (i.e., require 2'?% effort for state-of-the-art factoring algorithms). Current
best practices suggest to use 2048- or 4096-bit RSA moduli, meaning that p and q are each
1024 or 2048 bits.

Shttps://en.wikipedia.org/wiki/RSA_numbers#RSA-240

236

https://en.wikipedia.org/wiki/RSA_numbers#RSA-240

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.3 Digital Signatures

Definition 13.6

MAC:s are a cryptographic primitive that provide authenticity. A valid MAC tag on m is
“proof” that someone who knows the key has vouched for m. MACs are a symmetric-key
primitive, in the sense that generating a MAC tag and verifying a MAC tag both require
the same key (in fact, a tag is verified by re-computing it).

Digital signatures are similar to MACs, but with separate keys for signing and veri-
fication. A digital signature scheme consists of the following algorithms:

» KeyGen: outputs a pair of keys (sk, vk), where sk is the signing key and vk is the
verification key.

» Sign: takes the signing key sk and a message m as input, and outputs a signature
o.

» Ver: takes the verification key vk, message m, and a potential signature ¢ as input;
outputs a boolean.

If indeed o is an output of Sign(sk, m), then Ver(vk, m, o) should output true. Intuitively,
it should be hard for an attacker to find any other (m, o) pairs that cause Ver to output
true.

The idea behind digital signatures is to make vk public. In other words, anyone (even
the attacker) should be able to verify signatures. But only the holder of sk (the person who
generated vk and sk) should be able to generate valid signatures. Furthermore, this guar-
antee should hold even against an attacker who sees many examples of valid signatures.
The attacker should not be able to generate new valid signatures.

We formalize this security property in a similar way that we formalized the security
of MACs: “only the secret-key holder can generate valid tags, even after seeing chosen
examples of valid tags”

Let 3 be a signature scheme. We say that ¥ is a secure signature if.[:ig_real ~ Lig—fake’
where:
s
Lsig—fake
Lsiég-real (vk, sk) « >.KeyGen
S:=0
(vk, sk) < X.KeyGen
GETVK():
M return vk
return vk
GETSIG(m):
GETSIG(m): o = X.Sign(sk, m)
return X.Sign(sk, m) S =S U {(m. o)}
VERSIG(m, 0): return o
return X.Ver(vk, m, o) VERSIG(m, 0):

?
return (m,0) € S

237

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Construction 13.7
(Textbook RSA)

Similar to the security definition for MACs, the libraries differ only in how they ver-
ify signatures provided by the attacker (VERsIG). If the attacker can generate a message-
signature pair (m, o) that (1) verifies correctly, but (2) was not generated previously by the
library itself, then VERSIG from the Lgig real library will return true, while the Lgig fake li-
brary would return false. By asking for the libraries to be indistinguishable, we are really
asking that the attacker cannot find any such message-signature pair (forgery).

The main difference to the MAC definition is that, unlike for the MAC setting, we
intend to make a verification key public. The library can run (vk, sk) < KeyGen, but these
values remain private by default. To make vk public, we explicitly provide an accessor
GETVK to the attacker.

“Textbook” RSA Signatures

Signatures have an asymmetry: everyone should be able to verify a signature, but only the
holder of the signing key should be able to generate a valid signature. The RSA function
has a similar asymmetry: if N and e are public, then anyone can raise things to the e power,
but only someone with d can raise things to the d power.

This similarity suggests that we can use RSA for signatures in the following way:

» The verification key is (N, e) and the signing key is (N, d), where these values have
the appropriate RSA relationship.

» A signature of message m (here m is an element of Zy) is the value ¢ = m? % N.
Intuitively, only someone with the signing key can generate this value for a given
m.

» To verify a signature o on a message m, our goal is to check whether ¢ =5 m¢.

However, we are given only N and e, not d. Consider raising both sides of this
equation to the e power:

d)e =y m

o =N (m

The second equality is from the standard RSA property. Now this check can be done
given only the public information N and e.

A formal description of this scheme is given below:

The key generation algorithm is not listed here, but N, e, d are generated in the usual way for
RSA. The signing key is sk = (N, d) and the verification key is vk = (N, e).

Sign(sk = (N), m); Ver(vk = (N, ¢).m. o):

7 m =0c°%N
return m* % N ?
returnm=m

Unfortunately, textbook RSA signatures are useful only as a first intuition. They are
not secure! A simple attack is the following:

Suppose an attacker knows the verification key (N, e) and sees a valid signature o =y

2

m? for some message m. Then ¢ is also a valid signature for the message m?, since:

0_2 =, (md)Z — (mZ)d

238

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Construction 13.8
(Textbook RSA)

The attacker can easily generate a forged signature on a new message m?, making the
scheme insecure.

Hashed RSA Signatures

The problem with textbook RSA signatures is that the signatures and plaintexts had a
very strong algebraic relationship. Squaring the signature had the effect of squaring the
underlying message. One way to fix the problem is to “break” this algebraic relationship.
Hashed RSA signatures break the algebraic structure by applying the RSA function not to
m directly, but to H(m), where H is a suitable hash function (with outputs interpreted as
elements of Zy).

Ver(vk =(N,e),m, 0'):

Sign(sk = (N, d), m):

return H(m)? % N

y:==0°%N

return H(m) z y

Let’s see how this change thwarts the attack on textbook signatures. If ¢ is a valid
signature of m, we have o =y H(m)?. Squaring both sides leads to ¢ =y (H(m)*)%. Is
this the valid signature of any m’? An attacker would have to identify some m’ that has
H(m’) = H(m)?2. If the hash function is a good one, then this should be hard.

Of course, this is not a formal proof. It is possible to formally prove the security of
hashed RSA signatures. The precise statement of security is: “if RSA is a secure trap-
door function and H is modeled as a random oracle, then hashed RSA signatures are a
secure signature scheme.” Since we have not given formal definitions for either trapdoor
functions or random oracles, we won'’t see the proof in this book.

239

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.4

=) SV
HEpd>

T VIR DGR R

Theorem 13.9
(CRT)

Proof

Chinese Remainder Theorem

When doing arithmetic mod N, we can sometimes use knowledge of the factors N = pq
to speed things up. This section discusses the math behind these speedups.

History. In the Sunzi Suanjing, written some time around the 4th century cg, Chinese
mathematician Sunzi posed an interesting puzzle involving remainders:

“We have a number of things, but we do not know exactly how many. If we count
them by threes we have two left over. If we count them by fives we have three
left over. If we count them by sevens we have two left over. How many things are
there?”

Sunzi’s puzzle is the first known instance of a system of simultaneous equations involving
modular arithmetic: In our notation, he is asking us to solve for x in the following system

of congruences:
X =32
X =53
X =72

We can solve such systems of equations using what is called (in the West) the Chinese
Remainder Theorem (CRT). Below is one of the simpler formations of the Chinese Re-
mainder Theorem, involving only two equations/moduli (unlike the example above, which
has three moduli 3, 5, and 7):

Suppose ged(r,s) = 1. Then for all integers u, v, there is a solution for x in the following
system of equations:

X=ru

X =50
Furthermore, this solution is unique modulo rs.

Since ged(r, s) = 1, we have by Bezout’s theorem that 1 = ar + bs for some integers a and
b. Furthermore, b and s are multiplicative inverses modulo r. Now choose x = var + ubs.
Then,

x = var + ubs =, (va)0 + u(s"s) = u

So x =, u, as desired. Using similar reasoning mod s, we can see that x =5 v, so x is a
solution to both equations.

Now we argue that this solution is unique modulo rs. Suppose x and x’ are two solu-
tions to the system of equations, so we have:

x=x'"=u

SChinese text is from an old manuscript of Sunzi Suanjing, but my inability to speak the language prevents
me from identifying the manuscript more precisely. English translation is from Joseph Needham, Science and
Civilisation in China, vol. 3: Mathematics and Sciences of the Heavens and Earth, 1959.

240

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example

Claim 13.10

Example

x=x = v

Since x =, x” and x = x’, it must be that x — x” is a multiple of r and a multiple of s. Since
r and s are relatively prime, their least common multiple is rs, so x — x” must be a multiple
of rs. Hence, x =,5 x’. So any two solutions to this system of equations are congruent
mod rs. []

Sage implements the crt function to solve for x in these kinds of systems of equations. Suppose
we want to solve for x:

X =427 42

X =599 123
In Sage, the solution can be found as follows:

sage: crt(42,123, 427,529)
32921

We can check the solution:

sage: 32921 % 427
42
sage: 32921 % 529
123

CRT Encodings Preserve Structure

Let’s call (u,v) € Z, X Zs the CRT encoding of x € Z,; if they satisfy the usual relation-
ship:

X=ru

X =50

We can convert any x € Z,, into its CRT encoding quite easily, via x — (x % r,x % s).
The Chinese Remainder Theorem says that any (u,v) € Z, X Z; is a valid CRT encoding
of a unique x € Z,s; and the proof of the theorem shows how to convert from the CRT
encoding into the “usual Z,; encoding”

The amazing thing about these CRT encodings is that they preserve all sorts of arith-
metic structure.

If(u, v) isthe CRT encoding of x, and (u’,v") is the CRT encoding of x’, then (u+u’%r, v+v’%s)
is the CRT encoding of x + x’ % rs.

Taking r = 3 and s = 5, let’s write down the CRT encodings of every element in Z;s. In this
table, every column contains x and its CRT encoding (u, v):

x|o 12 3 45 6 7 8 9 10 11 12 13 14
ulo 1 2 01 2 01 2 0 1 2 0 1 2
vlo 1 2 3 4 01 2 3 4 0 1 2 3 4

Draft: January 3, 2021

CHAPTER 13. RSA & DIGITAL SIGNATURES

Claim 13.11

Example

Highlight the columns for x = 3 and x” = 7 and their sum x + x’ = 10.

by ‘ 0o 1 2 3 4 5 6 7 & 9 10 11 12 13 14
u|l0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
v| 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

Focusing on only the highlighted cells, the top row shows a true addition expression 3 +7 =15
10; the second row shows a true addition expression 0 + 1 =5 1; the third row shows a true
addition expression 3 + 2 =5 0.

This pattern holds for any x and x’, and I encourage you to try it!

As if that weren’t amazing enough, the same thing holds for multiplication:

If(u,v) is the CRT encoding of x, and (u’, v") is the CRT encoding of x’, then (u-u’%r,v-v’ %s)
is the CRT encoding of x - x” % rs.

Let’s return to ther = 3, s = 5 setting for CRT and highlight x = 6, x’ = 7, and their product
x - x' =5 12.

by ‘ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u|l0 1 2 0 1 2 0 1 2 0 1 2 0 1 2
v|0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

The top row shows a true multiplication expression 6 - 7 =15 12; the second row shows a true
multiplication expression 0 - 1 =3 0; the third row shows a true multiplication expression
1-2=52.

This pattern holds for any x and x’, and I encourage you to try it!

The CRT suggests a different, perhaps more indirect, way to do things mod rs. Suppose
x has CRT encoding (u, v) and x” has CRT encoding (u’, v"), and we want to compute x +y
mod rs. One wild idea is to first directly compute the CRT encoding of this answer, and then
convert that encoding to the normal integer representation in Z,.

In this case, we know that the answer x +x” has the CRT encoding (u+u’%r, v+v’ %s).
But this is the same as (x +x’ % r, x + x’ %s) — do you see why? So, to add x +x” mod rs, we
just need to add x + x” mod r, and then add x + x” mod s. This gives us the CRT encoding
of the answer we want, and we can convert that CRT encoding back into a normal Z,-
integer.

The same idea works for multiplication as well, giving us the following:

CRT method for doing some operation[s] mod rs

1. Do the operation[s] you want, but mod r instead of mod rs.
2. Do the operation[s] you want, but mod s instead of mod rs.

3. Those two results are the CRT encoding of the final answer, so convert them
back to the normal representation.

242

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Example

Example

Let’s take the exampler = 3359 and s = 2953, which are relatively prime (so the CRT applies).
Suppose we want to compute 3141592 + 6535897 % rs. Doing it the usual way in Sage looks
like this:

sage: r = 3359

sage: s = 2953

sage: (3141592 + 6535897) % (rxs)
9677489

Doing it in the CRT way looks like this.

sage: u (3141592 + 6535897) % r
sage: Vv (3141592 + 6535897) % s
sage: crt(u,v, r,s)

9677489

Both methods give the same answer!

Application to RSA

You might be wondering what the point of all of this is.” The CRT method seems like a
very indirect and wasteful way to compute anything. This impression might be true for
simple operations like addition and single multiplications. However, the CRT method is
faster for exponentiation mod N, which is the main operation in RSA!

In Sage, we can do basic exponentiation mod n as follows:

sage: def modexp(x,e,n): # x™e mod n
et return Mod(x,n)"e

If we are working over an RSA modulus and know its factorization p X q, then we use the CRT
method for exponentiation mod pq as follows. We simply do the exponentiation mod p and
(separately) mod q, then use the crt function to convert back to Z,q.

sage: def crtmodexp(x,e,p,q): # x~e mod pq, using CRT speedup
ceat u = Mod(x,p)”~e

R v = Mod(x,q)"e

ceat return crt(u.lift(),v.lift(),p,q)

We need to use u. 1ift() and v.lift() to convert u and v from Mod-objects into integers,
because that is what crt expects.

We can use both methods to perform an exponentiation, and measure how long it takes
with the timeit function. In this example, N is about 2000 bits long, and the difference in
speed is noticeable:

"I'm talking about the CRT method for arithmetic mod rs, not life in general.

243

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.5

Theorem 13.12

sage: p = random_prime(2°1000)

sage: q = random_prime(2°1000)

sage: N = pxq

sage: x = 12345678901234567

sage: e = randint(0,N) # random integer between 0 & N-1

sage: timeit(’'modexp(x,e,N)’")

125 loops, best of 3: 5.34 ms per loop
sage: timeit('crtmodexp(x,e,p,q)’)

125 loops, best of 3: 2.86 ms per loop

And just for good measure, we can check that both approaches give the same answer:

sage: modexp(x,e,N) == crtmodexp(x,e,p,q)
True

To understand why the CRT method is faster, it’s important to know that the cost
of standard modular exponentiation over a k-bit modulus is O(k®). For simplicity, let’s
pretend that exponentiation takes exactly k* steps. Suppose p and g are each k bits long,
so that the RSA modulus N is 2k bits long. Hence, a standard exponentiation mod N takes
(2k)® = 8Kk steps.

With the CRT method, we do an exponentiation mod p and an exponentiation mod q.
Each of these exponentiations takes k> steps, since p and q are only k bits long. Overall,
we are only doing 2k® steps in this approach, which is 4x faster than the standard expo-
nentiation mod N. In this simple analysis, we are not counting the cost of converting the
CRT encoding back to the typical mod-N representation. But this cost is much smaller
than the cost of an exponentiation (both in practice and asymptotically).

It’s worth pointing out that this speedup can only be done for RSA signing, and not
verification. In order to take advantage of the CRT method to speed up exponentiation
mod N, it’s necessary to know the prime factors p and q. Only the person who knows the
signing key knows these factors.

The Hardness of Factoring N

As previously mentioned, the best known way to break the security of RSA as a trapdoor
function (i.e., to compute the inverse RSA function given only the public information N
and e) involves factoring the RSA modulus.

Factoring integers (or, more specifically, factoring RSA moduli) is believed to be a hard
problem for classical computers. In this section we show that some other problems related
to RSA are “as hard as factoring” What does it mean for a computational problem to be
“as hard as factoring?” More formally, in this section we will show the following:

Either all of the following problems can be solved in polynomial-time, or none of them can:
1. Given an RSA modulus N = pq, compute its factors p and q.

2. Given an RSA modulus N = pq compute $(N) = (p — 1)(q — 1).

244

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Definition 13.13
(Sqrt of unity)

Claim 13.14

Proof

3. Given an RSA modulus N = pq and value e, compute the corresponding d (satisfying
ed =4(N) 1).

4. Given an RSA modulus N = pq, find any x #n +1 such that x* =y 1.

To prove the theorem, we will show:

» if there is an efficient algorithm for (1), then we can use it as a subroutine to con-
struct an efficient algorithm for (2). This is straight-forward: if you have a subrou-
tine factoring N into p and g, then you can call the subroutine and then compute

(p-1(g-1.

» if there is an efficient algorithm for (2), then we can use it as a subroutine to con-
struct an efficient algorithm for (3). This is also straight-forward: if you have a
subroutine computing ¢(N) given N, then you can compute d exactly how it is
computed in the key generation algorithm.

» if there is an efficient algorithm for (3), then we can use it as a subroutine to con-
struct an efficient algorithm for (4).

» if there is an efficient algorithm for (4), then we can use it as a subroutine to con-
struct an efficient algorithm for (1).

Below we focus on the final two implications.

Using square roots of unity to factor N

Problem (4) of Theorem 13.12 concerns a new concept known as square roots of unity:

x is a square root of unity modulo N ifx* =y 1. If x #x 1 and x #N —1, then we say
that x is a non-trivial square root of unity.

Since (£1)? = 1 over the integers, it is also true that (+1)? =y 1. In other words, +1 are
always square roots of unity modulo N, for any N. But some values of N have even more
square roots of unity. If N is the product of distinct odd primes, then N has 4 square roots
of unity: two trivial and two non-trivial ones (and you are asked to prove this fact in an
exercise).

Suppose there is an efficient algorithm for computing nontrivial square roots of unity mod-
ulo N. Then there is an efficient algorithm for factoring N. (This is the (4) = (1) step in
Theorem 13.12.)

The reduction is rather simple. Suppose NTSRU is an algorithm that on input N returns
a non-trivial square root of unity modulo N. Then we can factor N with the following
algorithm:

FACTOR(N):
x := NTSRU(N)
return gcd(N, x + 1) and ged(N, x — 1)

245

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

Claim 13.15

Proof

The algorithm is simple, but we must argue that it is correct. When x is a nontrivial square
root of unity modulo N, we have the following:

xzzpql zpq|x2—1 =pq| (x+1)(x-1)
X #pq 1 =pgt(x-1)
X #Fpg —1 =pgt(x+1).

The prime factorization of (x 4+ 1)(x — 1) contains a factor of p and a factor of ¢. But neither
x + 1 nor x — 1 contain factors of both p and q. Hence x + 1 and x — 1 must each contain

factors of exactly one of {p, q}. In other words, {gcd(pg, x — 1), ged(pg, x + 1)} = {p,q}.m

Finding square roots of unity

If there is an efficient algorithm for computing d =4n) €' given N and e, then there is an
efficient algorithm for computing nontrivial square roots of unity modulo N. (This is the (3)
= (4) step in Theorem 13.12.)

Suppose we have an algorithm FIND_D that on input (N, e) returns the corresponding
exponent d. Then consider the following algorithm which uses FIND_D as a subroutine:

SRU(N):

choose e as a random n-bit prime

d := FIND_D(N, e)

write ed — 1 = 25r, with r odd

// i.e., factor out as many 2s as possible

W ZN

if ged(w,N) # 1: //w ¢ Z,
use ged(w, N) to factor N = pg
compute a nontrivial square root of unity using p & q

x=w %N

if x =n5 1 then return 1

fori=0tos:
if x? =5 1 then return x
x:=x*%N

There are several return statements in this algorithm, and it should be clear that all of
them indeed return a square root of unity. Furthermore, the algorithm does eventually
return within the main for-loop, because x takes on the sequence of values:

2

4 8r 25r
e

w',w w* w W

and the final value of that sequence satisfies

W2sr — Wed—l =N W(ed—l)%¢(N) — Wl—l =1.
Although we don’t prove it here, it is possible to show that the algorithm returns a square
root of unity chosen uniformly at random from among the four possible square roots of
unity. So with probability 1/2 the output is a nontrivial square root. We can repeat this

basic process n times, and eventually encounter a nontrivial square root of unity with
probability 1 — 27",]

246

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.1.

13.2.

13.3.

13.4.

13.5.

13.6.

13.7.

Exercises

Prove by induction the correctness of the ExTGecp algorithm. That is, whenever
EXTGCD(x,) outputs (d, a, b), we have ged(x,y) = d = ax + by. You may use the fact
that the original Euclidean algorithm correctly computes the GCD.

Prove that if g* =, 1 and gb =, 1, then gng(“’b) =, 1.
Prove that ged(2? — 1,20 — 1) = gecd(@b) _ 1,

Prove that x% % n = x?%#(") %, n for any x € Z. In other words, when working modulo n,
you can reduce exponents modulo ¢(n).

How many fractions a/b in lowest terms are there, where 0 < a/b < 1 and b < n? For
n = 5 the answer is 9 since the relevant fractions are:

111213234

543525345

Write a formula in terms of n. What is the answer for n = 100?

In this problem we determine the efficiency of Euclid’s GCD algorithm. Since its input
is a pair of numbers (x,y), let’s call x + y the size of the input. Let F; denote the kth
Fibonacci number, using the indexing convention Fy = 1; F; = 2. Prove that (Fg, Fx_1) is
the smallest-size input on which Euclid’s algorithm makes k recursive calls.

Note that the size of input (Fj, Fx_1) is Fis1, and recall that Fr,y ~ ¢**!, where ¢ ~
1.618. .. is the golden ratio. Thus, for any inputs of size N € [F, Fi+1), Euclid’s algorithm
will make less than k < log¢ N recursive calls. In other words, the worst-case number
of recursive calls made by Euclid’s algorithm on an input of size N is O(log N), which is
linear in the number of bits needed to write such an input.®

Consider the following symmetric-key encryption scheme with plaintext space M =
{0,1}*. To encrypt a message m, we “pad” m into a prime number by appending a zero
and then random non-zero bytes. We then mulitply by the secret key. To decrypt, we
divide off the key and then strip away the “padding”

The idea is that decrypting a ciphertext without knowledge of the secret key requires
factoring the product of two large primes, which is a hard problem.

8 A more involved calculation that incorporates the cost of each division (modulus) operation shows the
worst-case overall efficiency of the algorithm to be O(log? N) — quadratic in the number of bits needed to
write the input.

247

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.8.

13.9.

13.10.

13.11.

KeyGen:
choose random A-bit prime k Enc(k,m € {0,1}%):
return k r
m :=10-m
Dec(k, ¢): while m’ not prime:
—_— d—{1,...,9}
m’:=c/k . ’
)) m =10-m' +d
while m’ not a multiple of 10: ,
, , return k - m
m’ :=|m’/10]

return m’/10

Show an attack breaking CPA-security of the scheme. That is, describe a distinguisher and
compute its bias.

Explain why the RSA exponents e and d must always be odd numbers.
Why must p and g be distinct primes? Why is it a bad idea to choose p = ¢?

A simple power analysis (SPA) attack is a physical attack on a computer, where the
attacker monitors precisely how much electrical current the processor consumes while
performing a cryptographic algorithm. In this exercise, we will consider an SPA attack
against the MobpExp algorithm shown in Section 13.2.

The MopExp algorithm consists mainly of squarings and multiplications. Suppose that by
monitoring a computer it is easy to tell when the processor is running a squaring vs. a
multiplication step (this is a very realistic assumption). This assumption is analogous to
having access to the printed output of this modified algorithm:

MopExp(m, e, N): // compute m® % N

if e = 0: return 1

if e even:
res := MobExp(m, §,N)* % N
print “square”

if e odd:
res := MobExp(m, %, N)? - m % N
print “square”
print “mult”

return res

Describe how the printed output of this algorithm lets the attacker completely learn the
value e. Remember that in RSA it is indeed the exponent that is secret, so this attack leads
to key recovery for RSA.

The Chinese Remainder Theorem states that there is always a solution for x in the follow-
ing system of equations, when ged(r, s) = 1:

X=ru

248

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.12.

13.13.

13.14.

13.15.

13.16.

* 13.17.

X =50

Give an example u, v, r, s, with gcd(r,s) # 1 for which the equations have no solution.
Explain why there is no solution.

Prove Claims 13.10 and 13.11.

Consider a rectangular grid of points, with width w and height h. Starting in the lower-
left of the grid, start walking diagonally northeast. When you fall off end the grid, wrap
around to the opposite side (i.e., Pac-Man topology). Below is an example of the first few
steps you take on a grid with w = 3 and h = 5:

5
o/o’o
4
°

°

3
oo/o’

°

[

Show that if ged(w, h) = 1 then you will eventually visit every point in the grid.

Suppose (u,v) € Z, X Zs is a CRT encoding of x € Z,. Prove that x € Z; if and only if
ueZ andv € Z;.

Note: this problem implies that ¢(rs) = ¢(r)$(s) when ged(r,s) = 1. A special case of this
identity is the familiar expression ¢(pq) = (p — 1)(¢ — 1) when p and q are distinct primes.

There is a bug (or at least an oversight) in the proof that x + x¢ % N and y > y¢ % N are
inverses. We used the fact that x?'N) =y 1, but this is only necessarily true for x € Zy-
Using the Chinese Remainder Theorem, show that the RSA function and its inverse are
truly inverses, even when applied to x ¢ Z},.

We are supposed to choose RSA exponents e and d such that ed =y(n) 1. Let N = pq and
define the value L = Icm(p — 1,9 — 1). Suppose we choose e and d such that ed = 1.
Show that RSA still works for this choice of e and d — in other words, x — x¢ % N and
y — y? % N are inverses.

If y* =y x then we call y an “e-th root” of x. One way to think about RSA is that raising
something to the d power is equivalent to computing an e-th root. Our assumption about
RSA is that it’s hard to compute e-th roots given only public e and N.

In this problem, show that if you are given an a-th root of x and b-th root of the same x,
and ged(a, b) = 1, then you can easily compute an ab-th root of x.

More formally, given x,y, z and N where y* =y x and z” =5 x, show how to efficiently

compute a value w such that w® =y x.

249

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.18.

13.19.

Compute w for the following values (after verifying that y is an a-th root and z is a b-th
root of x mod N):

= 318753895014839414391833197387495582828703628009180678460009
= 183418622076108277295248802695684859123490073011079896375192
= 56685394747281296805145649774065693442016512301628946051059
178205100585526989632998577959780764157496762062661723119813
= 185575838649944725271855413520846311652963277243867273346885
= 20697550065842164169278024507041536884260713996371572807344

N < T OO X 2
]

Suppose Alice uses the CRT method to sign some message m in textbook RSA. In other
words, she computes m? % p, then m? % g, and finally converts this CRT encoding back to
ZN. But suppose Alice is using faulty hardware (or Eve is bombarding her hardware with
electromagnetic pulses), so that she computes the wrong value mod g. The rest of the
computation happens correctly, and Alice publishes m and the (incorrect) signature o.

Show that, no matter what m is, and no matter what Alice’s computational error was, Eve
can factor N (upon seeing m, ¢, and the public RSA information N and e).

(a) Show that given an RSA modulus N and @¢(N), it is possible to factor N easily.

(b) Write a Sage function that takes as input an RSA modulus N and ¢(N) and outputs
the prime factors of N. Use it to factor the following 2048-bit RSA modulus. Note: take
care that there are no precision issues in how you solve the problem; double-check
your factorization!

N = 133140272889335192922108409260662174476303831652383671688547009484
253235940586917140482669182256368285260992829447207980183170174867
620358952230969986447559330583492429636627298640338596531894556546
013113154346823212271748927859647994534586133553218022983848108421
465442089919090610542344768294481725103757222421917115971063026806
587141287587037265150653669094323116686574536558866591647361053311
046516013069669036866734126558017744393751161611219195769578488559
882902397248309033911661475005854696820021069072502248533328754832
698616238405221381252145137439919090800085955274389382721844956661
1138745095472005761807

phi = 133140272889335192922108409260662174476303831652383671688547009484
253235940586917140482669182256368285260992829447207980183170174867
620358952230969986447559330583492429636627298640338596531894556546
013113154346823212271748927859647994534586133553218022983848108421
465442089919090610542344768294481725103757214932292046538867218497
635256772227370109066785312096589779622355495419006049974567895189
687318110498058692315630856693672069320529062399681563590382015177
322909744749330702607931428154183726552004527201956226396835500346
779062494259638983191178915027835134527751607017859064511731520440
2981816860178885028680

250

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.20.

13.21.

13.22.

* 13.23.

13.24.

13.25.

13.26.

13.27.

True or false: if x* =y 1 then x € Z};. Prove or give a counterexample.
Discuss the computational difficulty of the following problem:
Given an integer N, find a nonzero element of Zn \ Z;.

If you can, relate its difficulty to that of other problems we’ve discussed (factoring N or
inverting RSA).

(a) Show that it is possible to efficiently compute all four square roots of unity modulo
Pq, given p and q.

(b) Implement a Sage function that takes distinct primes p and q as input and returns the
four square roots of unity modulo pq. Use it to compute the four square roots of unity
modulo

1052954986442271985875778192663 X 611174539744122090068393470777.

Show that, conditioned on w € Zj},, the SqrtUnity subroutine outputs a square root of
unity chosen uniformly at random from the 4 possible square roots of unity.

Suppose N is an RSA modulus, and x*> =y y?, but x £y +y. Show that N can be efficiently
factored if such a pair x and y are known.

Why are +1 the only square roots of unity modulo p, when p is an odd prime?

When N is an RSA modulus, why is squaring modulo N a 4-to-1 function, but raising to
the e power modulo N is 1-to-1?

Implement a Sage function that efficiently factors an RSA modulus N, given only N, e,
and d. Use your function to factor the following 2048-bit RSA modulus.

N = 157713892705550064909750632475691896977526767652833932128735618711
213662561319634033137058267272367265499003291937716454788882499492
311117065951077245304317542978715216577264400048278064574204140564
709253009840166821302184014310192765595015483588878761062406993721
851190041888790873152584082212461847511180066690936944585390792304
663763886417861546718283897613617078370412411019301687497005038294
389148932398661048471814117247898148030982257697888167001010511378
647288478239379740416388270380035364271593609513220655573614212415
962670795230819103845127007912428958291134064942068225836213242131
15022256956985205924967

e = 327598866483920224268285375349315001772252982661926675504591773242
501030864502336359508677092544631083799700755236766113095163469666
905258066495934057774395712118774014408282455244138409433389314036
198045263991986560198273156037233588691392913730537367184867549274
682884119866630822924707702796323546327425328705958528315517584489
590815901470874024949798420173098581333151755836650797037848765578
433873141626191257009250151327378074817106208930064676608134109788

251

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

13.28.

13.29.

601067077103742326030259629322458620311949453584045538305945217564
027461013225009980998673160144967719374426764116721861138496780008
6366258360757218165973

d = 138476999734263775498100443567132759182144573474474014195021091272
755207803162019484487127866675422608401990888942659393419384528257
462434633738686176601555755842189986431725335031620097854962295968
391161090826380458969236418585963384717406704714837349503808786086
701573765714825783042297344050528898259745757741233099297952332012
749897281090378398001337057869189488734951853748327631883502135139
523664990296334020327713900408683264232664645438899178442633342438
198329983121207315436447041915897544445402505558420138506655106015
215450140256129977382476062366519087386576874886938585789874186326
69265500594424847344765

In this problem we’ll see that it’s bad to choose RSA prime factors p and g too close to-
gether.

(a) Let N = pg be an RSA modulus. Show that if you know N and § = |p — ¢| then you
can efficiently factor N.

(b) Alice generated the following RSA modulus N = pq and lets you know that |p — ¢| <
10000. Factor N:

N = 874677518388996663638698301429866315858010681593301504361505917406
679600338654753978646639928231278257025792316921962329748948203153
633013718175380969169006125249183547099230845322374618855425387176
952865483432804575895177869626746459878695728149786382697571962961
898331255405534657194681056148437649091612403258304084081171824215
469594984981192162710052121535309254024720635781955739713239334398
494465828323810812843582187587256744901184016546638718414715249093
757039375585896257839327987501216755865353444704506441078034811012
930282857089819030160822729139768982546143104625315700571887037795
31855302859423676881

Here is a slightly better method to factor RSA moduli whose factors are too close together.
As before, let N = pq.

(a) Define t = (p + ¢)/2. Note that when p and g are close, t is not much larger than VN.
Show that:

» t? — N is a perfect square.
» Given t, it is possible to efficiently factor N.

(b) Write a Sage function that factors RSA moduli whose prime factors are close. Use it
to factor the following 2048-bit number. How close were the factors (how large was

Ip —ql)?

N = 514202868664266501986736340226343880193216864011643244558701956114
553317880043289827487456460284103951463512024249329243228109624011

252

Draft: January 3, 2021 CHAPTER 13. RSA & DIGITAL SIGNATURES

915392411888724026403127686707255825056081890692595715828380690811
131686383180282330775572385822102181209569411961125753242467971879
131305986986525600110340790595987975345573842266766492356686762134
653833064511337433089249621257629107825681429573934949101301135200
918606211394413498735486599678541369375887840013842439026159037108
043724221865116794034194812236381299786395457277559879575752254116
612726596118528071785474551058540599198869986780286733916614335663
3723003246569630373323

253

