
2 The Basics of Provable Security

Edgar Allan Poe was not only an author, but also a cryptography enthusiast. He once
wrote, in a discussion on the state of the art in cryptography:1

“Human ingenuity cannot concoct a cipher which human ingenuity cannot resolve.”

This was an accurate assessment of the cryptography that existed in 1841. Whenever
someone would come up with an encryption method, someone else would inevitably �nd
a way to break it, and the cat-and-mouse game would repeat again and again.

Modern 21st-century cryptography, however, is di�erent. This book will introduce
you to many schemes whose security we can prove in a very speci�c sense. The code-
makers can win against the code-breakers.

It’s only possible to prove things about security by having formal de�nitions of what
it means to be “secure.” This chapter is about the fundamental skills that revolve around
security de�nitions: how to write them, how to understand & interpret them, how to
prove security using the hybrid technique, and how to demonstrate insecurity using attacks
against the security de�nition.

2.1 How to Write a Security Definition

So far the only form of cryptography we’ve seen is one-time pad, so our discussion of secu-
rity has been rather speci�c to one-time pad. It would be preferable to have a vocabulary
to talk about security in a more general sense, so that we can ask whether any encryption
scheme is secure.

In this section, we’ll develop two security de�nitions for encryption.

What Doesn’t Go Into a Security Definition

A security de�nition should give guarantees about what can happen to a system in the
presence of an attacker. But not all important properties of a system refer to an attacker.
For encryption speci�cally:

I We don’t reference any attacker when we say that the Enc algorithm takes two
arguments (a key and a plaintext), or that the KeyGen algorithm takes no arguments.
Specifying the types of inputs/outputs (i.e., the “function signature”) of the various
algorithms is therefore not a statement about security. We call these properties the
syntax of the scheme.

1Edgar Allan Poe, “A Few Words on Secret Writing,” Graham’s Magazine, July 1841, v19.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

I Even if there is no attacker, it’s still important that decryption is an inverse of en-
cryption. This is not a security property of the encryption scheme. Instead, we call
it a correctness property.

Below are the generic de�nitions for syntax and correctness of symmetric-key encryp-
tion:

Definition 2.1

(Encryption syntax)

A symmetric-key encryption (SKE) scheme consists of the following algorithms:

I KeyGen: a randomized algorithm that outputs a key k ∈ K .

I Enc: a (possibly randomized) algorithm that takes a key k ∈ K and plaintextm ∈ M
as input, and outputs a ciphertext c ∈ C.

I Dec: a deterministic algorithm that takes a key k ∈ K and ciphertext c ∈ C as input,
and outputs a plaintextm ∈ M.

We callK the key space,M themessage space, and C the ciphertext space of the scheme.
Sometimes we refer to the entire scheme (the collection of all three algorithms) by a single
variable Σ. When we do so, we write Σ.KeyGen, Σ.Enc, Σ.Dec, Σ.K , Σ.M, and Σ.C to refer
to its components.

Definition 2.2

(SKE correctness)

An encryption scheme Σ satis�es correctness if for all k ∈ Σ.K and allm ∈ Σ.M,

Pr
[
Σ.Dec(k, Σ.Enc(k,m)) =m

]
= 1.

The de�nition is written in terms of a probability because Enc is allowed to be a random-
ized algorithm. In other words, decrypting a ciphertext with the same key that was used
for encryption must always result in the original plaintext.

Example An encryption scheme can have the appropriate syntax but still have degenerate behavior like
Enc(k,m) = 0λ (i.e., every plaintext is “encrypted” to 0λ). Such a scheme would not satisfy
the correctness property.

A di�erent scheme de�ned by Enc(k,m) =m (i.e., the “ciphertext” is always equal to the
plaintext itself) and Dec(k, c) = c does satisfy the correctness property, but would not satisfy
any reasonable security property.

“Real-vs-Random” Style of Security Definition

Let’s try to make a security de�nition that formalizes the following intuitive idea:

“an encryption scheme is a good one if its ciphertexts look like random junk to
an attacker.”

Security de�nitions always consider the attacker’s view of the system. What is the “in-
terface” that Alice & Bob expose to the attacker by their use of the cryptography, and does
that particular interface bene�t the attacker?

In this example, we’re considering a scenario where the attacker gets to observe ci-
phertexts. How exactly are these ciphertexts generated? What are the inputs to Enc (key
and plaintext), and how are they chosen?

22

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

I Key: It’s hard to imagine any kind of useful security if the attacker knows the key.
Hence, we consider that the key is kept secret from the attacker. Of course, the key
is generated according to the KeyGen algorithm of the scheme.
At this point in the course, we consider encryption schemes where the key is used
to encrypt only one plaintext. Somehow this restriction must be captured in our
security de�nition. Later, we will consider security de�nitions that consider a key
that is used to encrypt many things.

I Plaintext: It turns out to be useful to consider that the attacker actually chooses the
plaintexts. This a “pessimistic” choice, since it gives much power to the attacker.
However, if the encryption scheme is indeed secure when the attacker chooses the
plaintexts, then it’s also secure in more realistic scenarios where the attacker has
some uncertainty about the plaintexts.

These clari�cations allow us to �ll in more speci�cs about our informal idea of security:

“an encryption scheme is a good one if its ciphertexts look like random junk to
an attacker . . . when each key is secret and used to encrypt only one plaintext,
even when the attacker chooses the plaintexts.”

A concise way to express all of these details is to consider the attacker as a calling
program to the following subroutine:

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,m)
return c

.

A calling program can choose the argument to the subroutine (in this case, a plaintext),
and see only the resulting return value (in this case, a ciphertext). The calling program
can’t see values of privately-scoped variables (like k in this case). If the calling program
makes many calls to the subroutine, a fresh key k is chosen each time.

The interaction between an attacker (calling program) and this ctxt subroutine ap-
pears to capture the relevant scenario. We would like to say that the outputs from the
ctxt subroutine are uniformly distributed. A convenient way of expressing this property
is to say that this ctxt subroutine should have the same e�ect on every calling program
as a ctxt subroutine that (explicitly) samples its output uniformly.

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,m)
return c

vs.
ctxt(m ∈ Σ.M):
c ← Σ.C
return c

.

Intuitively, no calling program should have any way of determining which of these two
implementations is answering subroutine calls. As an analogy, one way of saying that “foo
is a correct sorting algorithm” is to say that “no calling program would behave di�erently
if foo were replaced by an implementation of mergesort.”

In summary, we can de�ne security for encryption in the following way:

23

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

“an encryption scheme is a good one if, when you plug its KeyGen and Enc algo-
rithms into the template of the ctxt subroutine above, the two implementations
of ctxt induce identical behavior in every calling program.”

In a few pages, we introduce formal notation and de�nitions for the concepts introduced
here. In particular, both the calling program and subroutine can be randomized algorithms,
so we should be careful about what we mean by “identical behavior.”

Example One-time pad is de�ned with KeyGen sampling k uniformly from {0, 1}λ and Enc(k,m) =
k ⊕m. It satis�es our new security property since, when we plug in this algorithms into the
above template, we get the following two subroutine implementations:

ctxt(m):
k ← {0, 1}λ // KeyGen of OTP
c := k ⊕m // Enc of OTP
return c

vs.
ctxt(m):
c ← {0, 1}λ // C of OTP
return c

,

and these two implementations have the same e�ect on all calling programs.

“Le�-vs-Right” Style of Security Definition

Here’s a di�erent intuitive idea of security:

“an encryption scheme is a good one if encryptions ofmL look like encryptions
ofmR to an attacker (for all possiblemL ,mR)”

As above, we are considering a scenario where the attacker sees some ciphertext(s).
These ciphertexts are generated with some key; where does that key come from? These
ciphertexts encrypt either somemL or somemR ; where domL andmR come from? We can
answer these questions in a similar way as the previous example. Plaintexts mL and mR
can be chosen by the attacker. The key is chosen according to KeyGen so that it remains
secret from the attacker (and is used to generate only one ciphertext).

“an encryption scheme is a good one if encryptions ofmL look like encryptions of
mR to an attacker, when each key is secret and used to encrypt only one plaintext,
even when the attacker choosesmL andmR .”

As before, we formalize this idea by imagining the attacker as a program that calls a par-
ticular interface. This time, the attacker will choose two plaintexts mL and mR , and get
a ciphertext in return.2 Depending on whether mL or mR is actually encrypted, those
interfaces are implemented as follows:

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,mL)

return c

;

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c := Σ.Enc(k,mR)

return c

.

2There may be other reasonable ways to formalize this intuitive idea of security. For example, we might
choose to give the attacker two ciphertexts instead of one, and demand that the attacker can’t determine which
of them encryptsmL and which encryptsmR . See Exercise 2.15.

24

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Now the formal way to say that encryptions ofmL “look like” encryptions ofmR is:

“an encryption scheme is a good one if, when you plug its KeyGen and Enc

algorithms into the template of the eavesdrop subroutines above, the two imple-
mentations of eavesdrop induce identical behavior in every calling program.”

Example Does one-time pad satisfy this new security property? To �nd out, we plug in its algorithms
to the above template, and obtain the following implementations:

eavesdrop(mL,mR):
k ← {0, 1}λ // KeyGen of OTP
c := k ⊕mL // Enc of OTP
return c

eavesdrop(mL,mR):
k ← {0, 1}λ // KeyGen of OTP
c := k ⊕mR // Enc of OTP
return c

If these two implementations have the same e�ect on all calling programs (and indeed they
do), then we would say that OTP satis�es this security property.

Is this a better/worse way to de�ne security than the previous way? One security
de�nition considers an attacker whose goal is to distinguish real ciphertexts from ran-
dom values (real-vs-random paradigm), and the other considers an attacker whose goal is
to distinguish real ciphertexts of two di�erent plaintexts (left-vs-right paradigm). Is one
“correct” and the other one “incorrect?” We save such discussion until later in the chapter.

2.2 Formalisms for Security Definitions

So far, we’ve de�ned security in terms of a single, self-contained subroutine, and imagined
the attacker as a program that calls this subroutine. Later in the course we will need to
generalize beyond a single subroutine, to a collection of subroutines that share common
(private) state information. Staying with the software terminology, we call this collection
a library:

Definition 2.3

(Libraries)

A library L is a collection of subroutines and private/static variables. A library’s interface
consists of the names, argument types, and output type of all of its subroutines (just like a
Java interface). If a program A includes calls to subroutines in the interface of L, then we
write A � L to denote the result of linking A to L in the natural way (answering those
subroutine calls using the implementation speci�ed in L). We write A � L ⇒ z to denote
the event that program A �L outputs the value z.

If A or L is a program that makes random choices, then the output of A � L is a
random variable. It is often useful to consider probabilities like Pr[A � L ⇒ true].

Example Here is a familiar library:
L

ctxt(m):
k ← {0, 1}λ

c := k ⊕m
return c

25

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

And here is one possible calling program:

A:

m ← {0, 1}λ

c := ctxt(m)
returnm

?
= c

You can hopefully convince yourself that

Pr[A � L ⇒ true] = 1/2λ .

If this A is linked to a di�erent library, its output probability may be di�erent. If a di�erent
calling program is linked to this L, the output probability may be di�erent.

Example A library can contain several subroutines and private variables that are kept static between
subroutine calls. For example, here is a simple library that picks a string s uniformly and
allows the calling program to guess s .

L

s ← {0, 1}λ

reset():
s ← {0, 1}λ

guess(x ∈ {0, 1}λ):

return x
?
= s

Our convention is that code outside of a subroutine (like the �rst line here) is run once at
initialization time. Variables de�ned at initialization time (like s here) are available in all
subroutine scopes (but not to the calling program).

Interchangeability

The idea that “no calling program behaves di�erently in the presence of these two li-
braries” still makes sense even for libraries with several subroutines. Since this is such a
common concept, we devote new notation to it:

Definition 2.4

(Interchangeable)

Let Lle� and Lright be two libraries that have the same interface. We say that Lle� and Lright

are interchangeable, and write Lle� ≡ Lright , if for all programsA that output a boolean
value,

Pr[A � Lle� ⇒ true] = Pr[A � Lright ⇒ true].

This de�nition considers calling programs that give boolean output. Imagine a calling
program / attacker whose only goal is to distinguish two particular libraries (indeed, we
often refer to the calling program as a distinguisher). A boolean output is enough for
that task. You can think of the output bit as the calling program’s “guess” for which library
the calling program thinks it is linked to.

26

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

The distinction between “calling program outputs true” and “calling program outputs
false” is not signi�cant. If two libraries don’t a�ect the calling program’s probability of
outputting true, then they also don’t a�ect its probability of outputting false:

Pr[A � Lle� ⇒ true] = Pr[A � Lright ⇒ true]

⇔ 1 − Pr[A � Lle� ⇒ true] = 1 − Pr[A � Lright ⇒ true]

⇔ Pr[A � Lle� ⇒ false] = Pr[A � Lright ⇒ false].

Example Here are some very simple and straightforward ways that two libraries may be interchange-
able. Hopefully it’s clear that each pair of libraries has identical behavior, and therefore
identical e�ect on all calling programs.

Despite being very simple examples, each of these concepts shows up as a building block
in a real security proof in this book.

foo(x):
if x is even:

return 0
else if x is odd:

return 1
else:

return -1

≡

foo(x):
if x is even:

return 0
else if x is odd:

return 1
else:

return∞

Their only di�erence happens in an un-
reachable block of code.

foo(x):
return bar(x , x)

bar(a,b):
k ← {0, 1}λ

return k ⊕ a

≡

foo(x):
return bar(x , 0λ)

bar(a,b):
k ← {0, 1}λ

return k ⊕ a

Their only di�erence is the value they as-
sign to a variable that is never actually
used.

foo(x ,n):
for i = 1 to λ:

bar(x , i)
≡

foo(x ,n):
for i = 1 to n:

bar(x , i)
for i = n + 1 to λ:

bar(x , i)

Their only di�erence is that one library
unrolls a loop that occurs in the other li-
brary.

foo(x):
k ← {0, 1}λ

y ← {0, 1}λ

return k ⊕ y ⊕ x

≡

foo(x):
k ← {0, 1}λ

return k ⊕ bar(x)

bar(x):
y ← {0, 1}λ

return y ⊕ x

Their only di�erence is that one library
inlines a subroutine call that occurs in
the other library.

Example Here are more simple examples of interchangeable libraries that involve randomness:

27

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

foo():
x ← {0, 1}λ

y ← {0, 1}λ

return x ‖y

≡

foo():
z ← {0, 1}2λ

return z

The uniform distribution over strings acts inde-
pendently on di�erent characters in the string (“‖”
refers to concatenation).

k ← {0, 1}λ

foo(x):
return k ⊕ x

≡

foo(x):
if k not de�ned:
k ← {0, 1}λ

return k ⊕ x

Sampling a value “eagerly” (as soon as possible)
vs. sampling a value “lazily” (at the last possible
moment before the value is needed). We assume
that k is static/global across many calls to foo,
and initially unde�ned.

Formal Restatements of Previous Concepts

We can now re-state our security de�nitions from the previous section, using this new
terminology.

Our “real-vs-random” style of security de�nition for encryption can be expressed as
follows:

Definition 2.5

(Uniform ctxts)

An encryption scheme Σ has one-time uniform ciphertexts if:

LΣ
ots$-real

ctxt(m ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

≡

LΣ
ots$-rand

ctxt(m ∈ Σ.M):
c ← Σ.C
return c

In other words, if you �ll in the speci�cs of Σ (i.e., the behavior of its KeyGen and Enc)
into these two library “templates,” and you get two libraries that are interchangeable (i.e.,
have the same e�ect on all calling programs), we will say that Σ has one-time uniform
ciphertexts.

Throughout this course, we will use the “$” symbol to denote randomness (as in real-
vs-random).3

Our “left-vs-right” style of security de�nition can be expressed as follows:

Definition 2.6

(One-time secrecy)

An encryption scheme Σ has one-time secrecy if:

LΣ
ots-L

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mL)

return c

≡

LΣ
ots-R

eavesdrop(mL,mR ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k,mR)

return c

3It is quite common in CS literature to use the “$” symbol when referring to randomness. This stems
from thinking of randomized algorithms as algorithms that “toss coins.” Hence, randomized algorithms need
to have spare change (i.e., money) sitting around. By convention, randomness comes in US dollars.

28

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Previously in Claim 1.3 we argued that one-time-pad ciphertexts follow the uniform
distribution. This actually shows that OTP satis�es the uniform ciphertexts de�nition:

Claim 2.7

(OTP rule)

One-time pad satis�es the one-time uniform ciphertexts property. In other words:

Lotp-real

eavesdrop(m ∈ {0, 1}λ):
k ← {0, 1}λ // OTP.KeyGen

return k ⊕m // OTP.Enc(k,m)

≡

Lotp-rand

eavesdrop(m ∈ {0, 1}λ):
c ← {0, 1}λ // OTP.C
return c

Because this property of OTP is quite useful throughout the course, I’ve given these
two libraries special names (apart from LOTP

ots$-real
and LOTP

ots$-rand
).

Discussion, Pitfalls

It is a common pitfall to imagine the calling program A being simultaneously linked to
both libraries, but this is not what the de�nition says. The de�nition of L1 ≡ L2 refers to
two di�erent executions: one whereA is linked only to L1 for its entire lifetime, and one
where A is linked only to L2 for its entire lifetime. There is never a time where some of
A’s subroutine calls are answered byL1 and others byL2. This is an especially important
distinction when A makes several subroutine calls in a single execution.

Another common pitfall is confusion about the di�erence between the algorithms of
an encryption scheme (e.g., what is shown in Construction 1.1) and the libraries used in a
security de�nition (e.g., what is shown in De�nition 2.6). The big di�erence is:

I The algorithms of the scheme show a regular user’s view of things. For example,
the Enc algorithm takes two inputs: a key and a plaintext. Is there any way of
describing an algorithm that takes two arguments other than writing something
like Construction 1.1?

I The libraries capture the attacker’s view of of a particular scenario, where the users
use the cryptographic algorithms in a very speci�c way. For example, when we talk
about security of encryption, we don’t guarantee security when Alice lets the at-
tacker choose her encryption key! But letting the attacker choose the plaintext is
�ne; we can guarantee security in that scenario. That’s why De�nition 2.5 describes
a subroutine that calls Enc on a plaintext that is chosen by the calling program, but
on a key k chosen by the library.

A security de�nition says that some task (e.g., distinguishing ciphertexts from ran-
dom junk) is impossible, when the attacker is allowed certain in�uence over the
inputs to the algorithms (e.g., full choice of plaintexts, but no in�uence over the
key), and is allowed to see certain outputs from those algorithms (e.g., ciphertexts).

It’s wrong to summarize one-time secrecy as: “I’m not allowed to choose what to
encrypt, I have to ask the attacker to choose for me.” The correct interpretation is: “If I
encrypt only one plaintext per key, then I am safe to encrypt things even if the attacker
sees the resulting ciphertext and even if she has some in�uence or partial information on
what I’m encrypting, because this is the situation captured in the one-time secrecy library.”

29

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Kerckho�s’ Principle, Revisited

Kerckho�s’ Principle says to assume that the attacker has complete knowledge of the
algorithms being used. Assume that the choice of keys is the only thing unknown to the
attacker. Let’s see how Kerckho�s’ Principle is re�ected in our formal security de�nitions.

Suppose I write down the source code of two libraries, and your goal is to write an
e�ective distinguisher. So you study the source code of the two libraries and write the
best distinguisher that exists. It would be fair to say that your distinguisher “knows”
what algorithms are used in the libraries, because it was designed based on the source
code of these libraries. The de�nition of interchangeability considers literally every calling
program, so it must also consider calling programs like yours that “know” what algorithms
are being used.

However, there is an important distinction to make. If you know you might be linked
to a library that executes the statement “k ← {0, 1}λ”, that doesn’t mean you know the
actual value ofk that was chosen at runtime. Our convention is that all variables within the
library are privately scoped, and the calling program can learn about them only indirectly
through subroutine outputs. In the library-distinguishing game, you are not allowed to
pick a di�erent calling program based on random choices that the library makes! After
we settle on a calling program, we measure its e�ectiveness in terms of probabilities that
take into account all possible outcomes of the random choices in the system.

In summary, the calling program “knows” what algorithms are being used (and how
they are being used!) because the choice of the calling program is allowed to depend on
the 2 speci�c libraries that we consider. The calling program “doesn’t know” things like
secret keys because the choice of calling program isn’t allowed to depend on the outcome
of random sampling done at runtime.

Kerckho�s’ Principle, applied to our formal terminology:

Assume that the attacker knows every fact in the universe, except for:

1. which of the two possible libraries it is linked to in any particular execu-
tion, and

2. the random choices that the library will make during any particular ex-
ecution (which are usually assigned to privately scoped variables within
the library).

2.3 How to Demonstrate Insecurity with A�acks

We always de�ne security with respect to two libraries — or, if you like, two library tem-
plates that describe how to insert the algorithms of a cryptographic scheme into two li-
braries. If the two libraries that you get (after �lling in the speci�cs of a particular scheme)
are interchangeable, then we say that the scheme satis�es the security property. If we want
to show that some scheme is insecure, we have to demonstrate just one calling program
that behaves di�erently in the presence of those two libraries.

Let’s demonstrate this process with the following encryption scheme, which is like
one-time pad but uses bitwise-and instead of xor:

30

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Construction 2.8 K = {0, 1}λ

M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
return k &m // bitwise-and

I haven’t shown the Dec algorithm, because in fact there is no way to write one that
satis�es the correctness requirement. But let’s pretend we haven’t noticed that yet, and ask
whether this encryption scheme satis�es the two security properties de�ned previously.

Claim 2.9 Construction 2.8 does not have one-time uniform ciphertexts (De�nition 2.5).

Proof To see whether Construction 2.8 satis�es uniform one-time ciphertexts, we have to plug
in its algorithms into the two libraries of De�nition 2.5 and see whether the resulting
libraries are interchangeable. We’re considering the following two libraries:

LΣ
ots$-real

ctxt(m ∈ {0, 1}λ):
k ← {0, 1}λ // Σ.KeyGen

c := k &m // Σ.Enc

return c

LΣ
ots$-rand

ctxt(m ∈ {0, 1}λ):
c ← {0, 1}λ // Σ.C
return c

To show that these two libraries are not interchangeable, we need to write a calling pro-
gram that behaves di�erently in their presence. The calling program should make one
or more calls to the ctxt subroutine. That means it needs to choose the input m that it
passes, and it must make some conclusion (about which of the two libraries it is linked to)
based on the return value that it gets. Whatm should the calling program choose as input
to ctxt? What should the calling program look for in the return values?

There are many valid ways to write a good calling program, and maybe you can think
of several. One good approach is to observe that bitwise-and with k can never “turn a
0 into a 1.” So perhaps the calling program should choose m to consist of all 0s. When
m = 0λ , the Lots$-real library will always return all zeroes, but the Lots$-rand library may
return strings with both 0s and 1s.

We can formalize this idea with the following calling program:

A:
c := ctxt(0λ)
return c

?
= 0λ

.

Next, let’s ensure that this calling program behaves di�erently when linked to each of
these two libraries.

31

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

A:
c := ctxt(0λ)
return c

?
= 0λ

�

LΣ
ots$-real

ctxt(m):
k ← {0, 1}λ

c := k &m
return c

WhenA is linked toLots$-real, c is computed as k&0λ .
No matter what k is, the result is always all-zeroes.
Therefore, A will always return true.

In other words, Pr[A � Lots$-real ⇒ true] = 1.

A:
c := ctxt(0λ)
return c

?
= 0λ

�

LΣ
ots$-rand

ctxt(m):
c ← {0, 1}λ

return c

WhenA is linked to Lots$-rand, c is chosen uniformly
from {0, 1}λ . The probability that c then happens to
be all-zeroes is 1/2λ .

In other words, Pr[A � Lots$-rand ⇒ true] = 1/2λ .

Since these two probabilities are di�erent, this shows that LΣ
ots$-real

. LΣ
ots$-rand

. In
other words, the scheme does not satisfy this uniform ciphertexts property. �

So far we have two security de�nitions. Does this encryption scheme satisfy one but
not the other?

Claim 2.10 Construction 2.8 does not satisfy one-time secrecy (De�nition 2.6).

Proof This claim refers to a di�erent security de�nition, which involves two di�erent libraries.
When we plug in the details of Construction 2.8 into the libraries of De�nition 2.6, we get
the following:

LΣ
ots-L

eavesdrop(mL,mR):
k ← {0, 1}λ // Σ.KeyGen

c := k &mL // Σ.Enc(k,mL)

return c

LΣ
ots-R

eavesdrop(mL,mR):
k ← {0, 1}λ // Σ.KeyGen

c := k &mR // Σ.Enc(k,mR)

return c

Now we need to write a calling program that behaves di�erently in the presence of these
two libraries. We can use the same overall idea as last time, but not the same actual calling
program, since these libraries provide a di�erent interface. In this example, the calling
program needs to call the eavesdrop subroutine which takes two arguments mL and mR .
How should the calling program choosemL andmR? Which two plaintexts have di�erent
looking ciphertexts?

A good approach is to choose mL to be all zeroes and mR to be all ones. We know
from before that an all-zeroes plaintext always encrypts to an all-zeroes ciphertext, so the
calling program can check for that condition. More formally, we can de�ne the calling
program:

A:
c := eavesdrop(0λ , 1λ)
return c

?
= 0λ

Next, we need to compute its output probabilities in the presence of the two libraries.

32

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

A:

c := eavesdrop(0λ , 1λ)
return c

?
= 0λ

�

LΣ
ots-L

eavesdrop(mL ,mR):
k ← {0, 1}λ

c := k & mL

return c

When A is linked to Lots-L, c is
computed as an encryption ofmL =

0λ . No matter what k is, the result
is always all-zeroes. So,

Pr[A � Lots-L ⇒ true] = 1.

A:

c := eavesdrop(0λ , 1λ)
return c

?
= 0λ

�

LΣ
ots-R

eavesdrop(mL, mR):
k ← {0, 1}λ

c := k & mR

return c

When A is linked to Lots-R, c is
computed as an encryption ofmR =

1λ . In other words, c := k & 1λ .
But the bitwise-and of any string k
with all 1s is just k itself. So c is just
equal to k , which was chosen uni-
formly at random. The probability
that a uniformly random c happens
to be all-zeroes is

Pr[A � Lots-R ⇒ true] = 1/2λ .

Since these two probabilities are di�erent, LΣ
ots-L

. LΣ
ots-R

and the scheme does not
have one-time secrecy. �

2.4 How to Prove Security with The Hybrid Technique

We proved that one-time pad satis�es the uniform ciphertexts property (Claim 1.3) by
carefully calculating certain probabilities. This will not be a sustainable strategy as things
get more complicated later in the course. In this section we will introduce a technique for
proving security properties, which usually avoids tedious probability calculations.

Chaining Several Components

Before getting to a security proof, we introduce a convenient lemma. Consider a com-
pound program like A � L1 � L2. Our convention is that subroutine calls only happen
from left to right across the � symbol, so in this example, L1 can make calls to subroutines
in L2, but not vice-versa. Depending on the context, it can sometimes be convenient to
interpret A �L1 � L2 as:

I (A � L1) � L2: a compound calling program linked to L2. After all, A � L1 is a
program that makes calls to the interface of L2.

I or: A�(L1 �L2): A linked to a compound library. After all,A is a program that
makes calls to the interface of (L1 � L2).

The placement of the parentheses does not a�ect the functionality of the overall program,
just like how splitting up a real program into di�erent source �les doesn’t a�ect its func-
tionality.

33

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

In fact, every security proof in this book will have some intermediate steps that involve
compound libraries. We will make heavy use of the following helpful result:

Lemma 2.11

(Chaining)

If Lle� ≡ Lright then, for any library L∗, we have L∗ � Lle� ≡ L
∗ � Lright.

Proof Note that we are comparing L∗ � Lle� and L∗ � Lright as compound libraries. Hence we
consider a calling program A that is linked to either L∗ � Lle� or L∗ � Lright.

Let A be such an arbitrary calling program. We must show that A � (L∗ � Lle�) and
A�(L∗�Lright) have identical output distributions. As mentioned above, we can interpret
A �L∗ � Lle� as a calling programA linked to the library L∗ � Lle�, but also as a calling
program A � L∗ linked to the library Lle�. Since Lle� ≡ Lright, swapping Lle� for Lright

has no e�ect on the output of any calling program. In particular, it has no e�ect when the
calling program happens to be the compound program A �L∗. Hence we have:

Pr[A � (L∗ � Lle�) ⇒ true] = Pr[(A � L∗) � Lle� ⇒ true] (change of perspective)
= Pr[(A � L∗) � Lright ⇒ true] (since Lle� ≡ Lright)
= Pr[A � (L∗ � Lright) ⇒ true]. (change of perspective)

Since A was arbitrary, we have proved the lemma. �

An Example Hybrid Proof

In this section we will prove something about the following scheme, which encrypts twice
with OTP, using independent keys:

Construction 2.12

(“Double OTP”) K = ({0, 1}λ)2

M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

return (k1,k2)

Enc

(
(k1,k2),m

)
:

c1 := k1 ⊕m
c2 := k2 ⊕ c1
return c2

Dec

(
(k1,k2), c2

)
:

c1 := k2 ⊕ c2
m := k1 ⊕ c1
returnm

It would not be too hard to directly show that ciphertexts in this scheme are uniformly
distributed, as we did for plain OTP. However, the new hybrid technique will allow us to
leverage what we already know about OTP in an elegant way, and avoid any probability
calculations.

Claim 2.13 Construction 2.12 has one-time uniform ciphertexts (De�nition 2.6).

Proof In terms of libraries, we must show that:

LΣ
ots$-real

ctxt(m):
k1 ← {0, 1}

λ }
KeyGen

k2 ← {0, 1}
λ

c1 := k1 ⊕m
c2 := k2 ⊕ c1

}
Enc

return c2

≡

LΣ
ots$-rand

ctxt(m):
c ← {0, 1}λ

return c

34

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Instead of directly comparing these two libraries, we will introduce some additional li-
braries Lhyb-1, Lhyb-2, Lhyb-3, and show that:

LΣ
ots$-real

≡ Lhyb-1 ≡ Lhyb-2 ≡ Lhyb-3 ≡ L
Σ
ots$-rand

Since the ≡ symbol is transitive, this will achieve our goal.
The intermediate libraries are called hybrids, since they will contain a mix of char-

acteristics from the two “endpoints” of this sequence. These hybrids are chosen so that it
is very easy to show that consecutive libraries in this sequence are interchangeable. The
particular hybrids we have in mind here are:

LΣ
ots$-real

ctxt(m):
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

c1 := k1 ⊕m
c2 := k2 ⊕ c1
return c2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb-1

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-rand

ctxt′(m′):
c ← {0, 1}λ

return c︸ ︷︷ ︸
Lhyb-2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 ← {0, 1}

λ

return c2︸ ︷︷ ︸
Lhyb-3

≡

LΣ
ots$-rand

ctxt(m):
c2 ← {0, 1}

λ

return c2

Next, we provide a justi�cation for each “≡” in the expression above. For each pair of
adjacent libraries, we highlight their di�erences below:

LΣ
ots$-real

ctxt(m):
k1 ← {0, 1}

λ

k2 ← {0, 1}
λ

c1 := k1 ⊕m
c2 := k2 ⊕ c1
return c2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb-1

The only di�erence between these two libraries is that the highlighted expressions have
been factored out into a separate subroutine, and some variables have been renamed. In
both libraries, c2 is chosen as the xor of c1 and a uniformly chosen string. These di�erences
make no e�ect on the calling program. Importantly, the subroutine that we have factored
out is exactly the one in the Lotp-real library (apart from renaming the subroutine).

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb-1

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-rand

ctxt′(m′):
c ← {0, 1}λ

return c︸ ︷︷ ︸
Lhyb-2

Claim 2.7 says thatLotp-real ≡ Lotp-rand, so Lemma 2.11 says that we can replace an instance
of Lotp-real in a compound library with Lotp-rand, as we have done here. This change will
have no e�ect on the calling program.

35

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 := ctxt′(c1)
return c2

�

Lotp-rand

ctxt′(m′):
c ← {0, 1}λ

return c︸ ︷︷ ︸
Lhyb-2

≡

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 ← {0, 1}

λ

return c2︸ ︷︷ ︸
Lhyb-3

The only di�erence between these two libraries is that a subroutine call has been inlined.
This di�erence has no e�ect on the calling program.

ctxt(m):
k1 ← {0, 1}

λ

c1 := k1 ⊕m
c2 ← {0, 1}

λ

return c2︸ ︷︷ ︸
Lhyb-3

≡

LΣ
ots$-rand

ctxt(m):
c2 ← {0, 1}

λ

return c2

The only di�erence between these two libraries is that the two highlighted lines have been
removed. But it should be clear that these lines have no e�ect: k1 is used only to compute
c1, which is never used again. Hence, this di�erence has no e�ect on the calling program.

The �nal hybrid is exactly LΣ
ots$-rand

(although with a variable name changed). We
have shown that LΣ

ots$-rand
≡ LΣ

ots$-real
, meaning that this encryption scheme has one-time

uniform ciphertexts. �

Summary of the Hybrid Technique

We have now seen our �rst example of the hybrid technique for security proofs. All secu-
rity proofs in this book use this technique.

I Proving security means showing that two particular libraries, say Lle� and Lright,
are interchangeable.

I Often Lle� and Lright are signi�cantly di�erent, making them hard to compare di-
rectly. To make the comparison more manageable, we can show a sequence of hybrid
libraries, beginning with Lle� and ending with Lright. The idea is to break up the
large “gap” between Lle� and Lright into smaller ones that are easier to justify.

I It is helpful to think of “starting” at Lle�, and then making a sequence of small
modi�cations to it, with the goal of eventually reaching Lright. You must justify
why each modi�cation doesn’t a�ect the calling program (i.e., why the two libraries
before/after your modi�cation are interchangeable).

I As discussed in Section 2.2, simple things like inlining/factoring out subroutines,
changing unused variables, changing unreachable statements, or unrolling loops
are always “allowable” modi�cations in a hybrid proof since they have no e�ect on

36

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

the calling program. As we progress in the course, we will see more kinds of useful
modi�cations.

A Contrasting Example

Usually the boundary between secure and insecure is razor thin. Let’s make a small change
to the previous encryption scheme to illustrate this point. Instead of applying OTP to the
plaintext twice, with independent keys, what would happen if we use the same key?

Construction 2.14

(“dOuB`∃ OTP”)
K = {0, 1}λ

M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m):
c1 := k ⊕m
c2 := k ⊕ c1
return c2

Dec(k, c2):
c1 := k ⊕ c2
m := k ⊕ c1
returnm

You probably noticed that the ciphertext c2 is computed as c2 := k ⊕ (k ⊕m), which is
just a fancy way of saying c2 :=m. There is certainly no way this kind of “double-OTP” is
secure.

For educational purposes, let’s try to repeat the steps of our previous security proof
on this (insecure) scheme and see where things break down. If we wanted to show that
Construction 2.14 has uniform ciphertexts, we would have to show that the following two
libraries are interchangeable:

LΣ
ots$-real

ctxt(m):
k ← {0, 1}λ // KeyGen

c1 := k ⊕m
c2 := k ⊕ c1

}
Enc

return c2

?
≡

LΣ
ots$-rand

ctxt(m):
c ← {0, 1}λ

return c

In the previous hybrid proof, the �rst step was to factor out the statements “k2 ← {0, 1}λ ;
c2 := k2 ⊕ c1” into a separate subroutine, so we could argue that the result of c2 was
uniformly distributed. If we do something analogous with this example, we get:

LΣ
ots$-real

ctxt(m):
k ← {0, 1}λ

c1 := k ⊕m
c2 := k ⊕ c1
return c2

?
≡

ctxt(m):
c1 := k ⊕m // ??
c2 := ctxt′(c1)
return c2

�

Lotp-real

ctxt′(m′):
k ← {0, 1}λ

return k ⊕m′︸ ︷︷ ︸
Lhyb

Do you see the problem? In “Lhyb”, we have tried to move the variable k into Lotp-real.
Since this scope is private, every operation we want to do with k has to be provided by
its container library Lotp-real. But there is a mismatch: Lotp-real only gives us a way to use
k in one xor expression, whereas we need to use the same k in two xor expressions to

37

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

match the behavior of Lots$-real. The compound library Lhyb has an unresolved reference
to k in the line “c1 := k ⊕m,” and therefore doesn’t have the same behavior as Lots$-real.4
This is the step of the security proof that breaks down.

Here’s a more conceptual way to understand what went wrong here. The important
property of OTP is that its ciphertexts look uniform when the key is used to encrypt only one
plaintext. This “double OTP” variant uses OTP in a way that doesn’t ful�ll that condition,
and therefore provides no security guarantee. The previous (successful) proof was able to
factor out some xor’s in terms of Lotp-real without breaking anything, and that’s how we
know the scheme was using OTP in a way that is consistent with its security guarantee.

As you can hopefully see, the process of a security proof provides a way to catch these
kinds of problems. It is very common in a hybrid proof to factor out some statements
in terms of a library from some other security de�nition. This step can only be done
successfully if the underlying cryptography is being used in an appropriate way.

2.5 How to Compare/Contrast Security Definitions

In math, a de�nition can’t really be “wrong,” but it can be “not as useful as you hoped” or
it can “fail to adequately capture your intuition” about the concept.

Security de�nitions are no di�erent. In this chapter we introduced two security de�ni-
tions: one in the “real-vs-random” style and one in the “left-vs-right” style. In this section
we treat the security de�nitions themselves as objects worth studying. Are both of these
security de�nitions “the same,” in some sense? Do they both capture all of our intuitions
about security?

One Security Definition Implies Another

One way to compare/contrast two security de�nitions is to prove that one implies the
other. In other words, if an encryption scheme satis�es de�nition #1, then it also satis�es
de�nition #2.

Theorem 2.15 If an encryption scheme Σ has one-time uniform ciphertexts (De�nition 2.5), then Σ also has
one-time secrecy (De�nition 2.6). In other words:

LΣ
ots$-real

≡ LΣ
ots$-rand

=⇒ LΣ
ots-L
≡ LΣ

ots-R
.

If you are comfortable with what all the terminology means, then the meaning of this
statement is quite simple and unsurprising. “If all plaintextsm induce a uniform distribu-
tion of ciphertexts, then allm induce the same distribution of ciphertexts.”

This fairly straight-forward statement can be proven formally, giving us another ex-
ample of the hybrid proof technique:

Proof We are proving an if-then statement. We want to show that the “then”-part of the state-
ment is true; that is, LΣ

ots-L
≡ LΣ

ots-R
. We are allowed to use the fact that the “if”-part is

true; that is, LΣ
ots$-real

≡ LΣ
ots$-rand

.
4I would say that the library “doesn’t compile” due to a scope/reference error.

38

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

The proof uses the hybrid technique. We will start with the library Lots-L, and make a
small sequence of justi�able changes to it, until �nally reaching Lots-R. Along the way, we
can use the fact that Lots$-real ≡ Lots$-rand. This suggests some “strategy” for the proof: if
we can somehow getLots$-real to appear as a component in one of the hybrid libraries, then
we can replace it with Lots$-rand (or vice-versa), in a way that hopefully makes progress
towards our goal of transforming Lots-L to Lots-R.

Below we list the sequence of hybrid libraries, and justify why each one is interchange-
able with the previous library.

LΣ
ots-L

eavesdrop(mL,mR):
k ← Σ.KeyGen

c ← Σ.Enc(k,mL)

return c

The starting point of our hybrid sequence
is LΣ

ots-L
.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
ots$-real

ctxt(m):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

Factoring out a block of statements into a
subroutine makes it possible to write the
library as a compound one, but does not
a�ect its external behavior. Note that the
new subroutine is exactly the LΣ

ots$-real
li-

brary from De�nition 2.5. This was a
strategic choice, because of what hap-
pens next.

eavesdrop(mL,mR):
c := ctxt(mL)

return c

�

LΣ
ots$-rand

ctxt(m):
c ← Σ.C
return c

LΣ
ots$-real

has been replaced with
LΣ

ots$-rand
. The chaining lemma

Lemma 2.11 says that this change
has no e�ect on the library’s behav-
ior, since the two Lots$-? libraries are
interchangeable.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
ots$-rand

ctxt(m):
c ← Σ.C
return c

The argument to ctxt has been changed
from mL to mR . This has no e�ect on the
library’s behavior since ctxt does not ac-
tually use its argument in these hybrids!

The previous transition is the most important one in the proof, as it gives insight into how
we came up with this particular sequence of hybrids. Looking at the desired endpoints of
our sequence of hybrids — LΣ

ots-L
and LΣ

ots-R
— we see that they di�er only in swapping

mL formR . If we are not comfortable eyeballing things, we’d like a better justi�cation for
why it is “safe” to exchange mL for mR (i.e., why it has no e�ect on the calling program).
However, the uniform ciphertexts property shows thatLΣ

ots-L
in fact has the same behavior

as a library Lhyb-2 that doesn’t use either of mL or mR . In a program that doesn’t use mL
ormR , it is clear that we can switch them!

39

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Having made this crucial change, we can now perform the same sequence of steps, but
in reverse.

eavesdrop(mL,mR):
c := ctxt(mR)

return c

�

LΣ
ots$-real

ctxt(m):
k ← Σ.KeyGen

c ← Σ.Enc(k,m)
return c

LΣ
ots$-rand

has been replaced with
LΣ

ots$-real
. This is another application of

the chaining lemma.

LΣ
ots-R

eavesdrop(mL,mR):
k ← Σ.KeyGen

c ← Σ.Enc(k,mR)

return c

A subroutine call has been inlined, which
has no e�ect on the library’s behavior.
The result is exactly LΣ

ots-R
.

Putting everything together, we showed thatLΣ
ots-L
≡ Lhyb-1 ≡ · · · ≡ Lhyb-4 ≡ L

Σ
ots-R

. This
completes the proof, and we conclude that Σ satis�es the de�nition of one-time secrecy.�

One Security Definition Doesn’t Imply Another

Another way we might compare security de�nitions is to identify any schemes that satisfy
one de�nition without satisfying the other. This helps us understand the boundaries and
“edge cases” of the de�nition.

A word of warning: If we have two security de�nitions that both capture our intuitions
rather well, then any scheme which satis�es one de�nition and not the other is bound to
appear unnatural and contrived. The point is to gain more understanding of the security
de�nitions themselves, and unnatural/contrived schemes are just a means to do that.

Theorem 2.16 There is an encryption scheme that satis�es one-time secrecy (De�nition 2.6) but not one-time
uniform ciphertexts (De�nition 2.5). In other words, one-time secrecy does not necessarily
imply one-time uniform ciphertexts.

Proof One such encryption scheme is given below:

K = {0, 1}λ

M = {0, 1}λ

C = {0, 1}λ+2

KeyGen:
k ← {0, 1}λ

return k

Enc(k,m ∈ {0, 1}λ):
c ′ := k ⊕m
c := c ′‖00
return c

Dec(k, c ∈ {0, 1}λ+2):
c ′ := �rst λ bits of c
return k ⊕ c ′

This scheme is just OTP with the bits 00 added to every ciphertext. The following
facts about the scheme should be believable (and the exercises encourage you to prove
them formally if you would like more practice at that sort of thing):

I This scheme satis�es one-time one-time secrecy, meaning that encryptions of mL
are distributed identically to encryptions ofmR , for anymL andmR of the attacker’s
choice. We can characterize the ciphertext distribution in both cases as “λ uniform

40

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

bits followed by 00.” Think about how you might use the hybrid proof technique to
formally prove that this scheme satis�es one-time secrecy!

I This scheme does not satisfy the one-time uniform ciphertexts property. Its cipher-
texts always end with 00, whereas uniform strings end with 00 with probability
1/4. Think about how you might formallize this observation as a calling program /
distinguisher for the relevant two libraries! �

You might be thinking, surely this can be �xed by rede�ning the ciphertext space as
C as the set of λ + 2-bit strings whose last two bits are 00. This is a clever idea, and
indeed it would work. If we change the de�nition of the ciphertext space C following
this suggestion, then the scheme would satisfy the uniform ciphertexts property (this is
because the Lots$-rand library samples uniformly from whatever C is speci�ed as part of
the encryption scheme).

But this observation raises an interesting point. Isn’t it weird that security hinges
on how narrowly you de�ne the set C of ciphertexts, when C really has no e�ect on
the functionality of encryption? Again, no one really cares about this contrived “OTP +
00” encryption scheme. The point is to illuminate interesting edge cases in the security
de�nition itself!

Exercises

2.1. Below are two calling programsA1,A2 and two librariesL1,L2 with a common interface:

A1

r1 := rand(6)
r2 := rand(6)
return r1

?
= r2

A2

r := rand(6)

return r
?
> 3

L1

rand(n):
r ← Zn
return r

L2

rand(n):
return 0

(a) What is Pr[A1 � L1 ⇒ true]?

(b) What is Pr[A1 � L2 ⇒ true]?

(c) What is Pr[A2 � L1 ⇒ true]?

(d) What is Pr[A2 � L2 ⇒ true]?

2.2. In each problem, a pair of libraries are described. State whether or not Lle� ≡ Lright. If
so, show how they assign identical probabilities to all outcomes. If not, then describe a
successful distinguisher.

Assume that both libraries use the same value of n. Does your answer ever depend on the
choice of n?

In part (a), x denotes the bitwise-complement of x . In part (d), x & y denotes the bitwise-
and of the two strings:

(a)

Lle�

qery() :
x ← {0, 1}n

return x

Lright

qery() :
x ← {0, 1}n

y := x
return y

41

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

(b)

Lle�

qery() :
x ← Zn
return x

Lright

qery() :
x ← Zn
y := 2x % n
return y

(c)

Lle�

qery(c ∈ Zn) :
if c = 0

return null
x ← Zn
return x

Lright

qery(c ∈ Zn) :
if c = 0

return null
x ← Zn
y := cx % n
return y

(d)

Lle�

qery() :
x ← {0, 1}n

y ← {0, 1}n

return x & y

Lright

qery() :
z ← {0, 1}n

return z

2.3. Show that the following libraries are interchangeable:

Lle�

qery(m ∈ {0, 1}λ):
x ← {0, 1}λ

y := x ⊕m
return (x ,y)

Lright

qery(m ∈ {0, 1}λ):
y ← {0, 1}λ

x := y ⊕m
return (x ,y)

Note that x and y are swapped in the �rst two lines, but not in the return statement.

2.4. Show that the following libraries arenot interchangeable. Describe an explicit distinguish-
ing calling program, and compute its output probabilities when linked to both libraries:

Lle�

eavesdrop(mL,mR ∈ {0, 1}
λ):

k ← {0, 1}λ

c := k ⊕mL
return (k, c)

Lright

eavesdrop(mL,mR ∈ {0, 1}
λ):

k ← {0, 1}λ

c := k ⊕mR
return (k, c)

? 2.5. In abstract algebra, a (�nite) group is a �nite set G of items together with an operator ⊗
satisfying the following axioms:

I Closure: for all a,b ∈ G, we have a ⊗ b ∈ G.

I Identity: there is a special identity element e ∈ G that satis�es e ⊗ a = a ⊗ e = a for
all a ∈ G. We typically write “1” rather than e for the identity element.

I Associativity: for all a,b, c ∈ G, we have (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c).

I Inverses: for all a ∈ G, there exists an inverse element b ∈ G such that a ⊗ b = b ⊗ a
is the identity element of G. We typically write “a−1” for the inverse of a.

42

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

De�ne the following encryption scheme in terms of an arbitrary group (G, ⊗):

K = G

M = G

C = G

KeyGen:
k ← G
return k

Enc(k,m):
return k ⊗m

Dec(k, c):
??

(a) Prove that {0, 1}λ is a group with respect to the xor operator. What is the identity
element, and what is the inverse of a value x ∈ {0, 1}λ?

(b) Fill in the details of the Dec algorithm and prove (using the group axioms) that the
scheme satis�es correctness.

(c) Prove that the scheme satis�es one-time secrecy.

2.6. In the proof of Claim 2.9 we considered an attacker / calling program that calls ctxt(0λ).

(a) How does this attacker’s e�ectiveness change if it calls ctxt(1λ) instead?

(b) How does its e�ectiveness change if it calls ctxt(m) for a uniformly chosenm?

2.7. The following scheme encrypts a plaintext by simply reordering its bits, according to the
secret permutation k .

K =

{
permutations
of {1, . . . , λ}

}
M = {0, 1}λ

C = {0, 1}λ

KeyGen:
k ← K
return k

Enc(k,m):
for i := 1 to λ:
ck (i) :=mi

return c1 · · · cλ

Dec(k, c):
for i := 1 to λ:
mi := ck (i)

returnm1 · · ·mλ

Show that the scheme does not have one-time secrecy, by constructing a program that
distinguishes the two relevant libraries from the one-time secrecy de�nition.

2.8. Show that the following encryption scheme does not have one-time secrecy, by construct-
ing a program that distinguishes the two relevant libraries from the one-time secrecy def-
inition.

K = {1, . . . , 9}
M = {1, . . . , 9}
C = Z10

KeyGen:
k ← {1, . . . , 9}
return k

Enc(k,m):
return k ×m % 10

2.9. Consider the following encryption scheme. It supports plaintexts fromM = {0, 1}λ and
ciphertexts from C = {0, 1}2λ . Its keyspace is:

K =
{
k ∈ {0, 1, _}2λ | k contains exactly λ “_” characters

}
To encrypt plaintextm under key k , we “�ll in” the _ characters in k using the bits ofm.

43

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

Show that the scheme does not have one-time secrecy, by constructing a program that
distinguishes the two relevant libraries from the one-time secrecy de�nition.

Example: Below is an example encryption ofm = 1101100001.

k = 1__0__11010_1_0_0___

m = 11 01 1 0 0 001

⇒ Enc(k,m) = 11100111010110000001

2.10. Suppose we modify the scheme from the previous problem to �rst permute the bits of m
(as in Exercise 2.7) and then use them to �ll in the “_” characters in a template string. In
other words, the key speci�es a random permutation on positions {1, . . . , λ} as well as a
random template string that is 2λ characters long with λ “_” characters.

Show that even with this modi�cation the scheme does not have one-time secrecy.

? 2.11. Prove that if an encryption scheme Σ has |Σ.K| < |Σ.M| then it cannot satisfy one-
time secrecy. Try to structure your proof as an explicit attack on such a scheme (i.e., a
distinguisher against the appropriate libraries).

The Enc algorithm of one-time pad is deterministic, but our de�nitions of encryption allow
Enc to be randomized (i.e., it may give di�erent outputs when called twice with the same
k and m). For full credit, you should prove the statement even for the case of Enc is
randomized. However, you may assume that Dec is deterministic.

Hint: Thede�nitionofinterchangeabilitydoesnotplaceanyrestrictionontherunningtimeofthedis-
tinguisher/callingprogram.Evenanexhaustivebrute-forceattackwouldbevalid.

2.12. Let Σ denote an encryption scheme where Σ.C ⊆ Σ.M (so that it is possible to use the
scheme to encrypt its own ciphertexts). De�ne Σ2 to be the following nested-encryption
scheme:

K = (Σ.K)2

M = Σ.M
C = Σ.C

KeyGen:
k1 ← Σ.K
k2 ← Σ.K
return (k1,k2)

Enc((k1,k2),m):
c1 := Σ.Enc(k1,m)
c2 := Σ.Enc(k2, c1)
return c2

Dec((k1,k2), c2):
c1 := Σ.Dec(k2, c2)
m := Σ.Dec(k1, c1)
returnm

Prove that if Σ satis�es one-time secrecy, then so does Σ2.

2.13. Let Σ denote an encryption scheme and de�ne Σ2 to be the following encrypt-twice
scheme:

44

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

K = (Σ.K)2

M = Σ.M
C = Σ.C

KeyGen:
k1 ← Σ.K
k2 ← Σ.K
return (k1,k2)

Enc((k1,k2),m):
c1 := Σ.Enc(k1,m)
c2 := Σ.Enc(k2,m)
return (c1, c2)

Dec((k1,k2), (c1, c2)):
m1 := Σ.Dec(k1, c1)
m2 := Σ.Dec(k2, c2)
ifm1 ,m2 return err

returnm1

Prove that if Σ satis�es one-time secrecy, then so does Σ2.

2.14. Prove that an encryption scheme Σ satis�es one-time secrecy if and only if the following
two libraries are interchangeable:

LΣ
le�

foo(m ∈ Σ.M):
k ← Σ.KeyGen

c ← Σ.Enc(k, m)
return c

LΣ
right

foo(m ∈ Σ.M):
k ← Σ.KeyGen

m′← Σ.M

c ← Σ.Enc(k, m′)
return c

Note: you must prove both directions of the if-and-only-if with a hybrid proof.

2.15. Prove that an encryption scheme Σ has one-time secrecy if and only if the following two
libraries are interchangeable:

LΣ
le�

foo(mL,mR ∈ Σ.M):
k1 ← Σ.KeyGen

c1 := Σ.Enc(k1,mL)

k2 ← Σ.KeyGen

c2 := Σ.Enc(k2,mR)

return (c1, c2)

LΣ
right

foo(mL,mR ∈ Σ.M):
k1 ← Σ.KeyGen

c1 := Σ.Enc(k1,mR)

k2 ← Σ.KeyGen

c2 := Σ.Enc(k2,mL)

return (c1, c2)

Note: you must prove both directions of the if-and-only-if with a hybrid proof.

2.16. Formally de�ne a variant of the one-time secrecy de�nition in which the calling program
can obtain two ciphertexts (on chosen plaintexts) encrypted under the same key. Call it
two-time secrecy.

(a) Suppose someone tries to prove that one-time secrecy implies two-time secrecy. Show
where the proof appears to break down.

(b) Describe an attack demonstrating that one-time pad does not satisfy your de�nition
of two-time secrecy.

45

Draft: January 3, 2021 CHAPTER 2. THE BASICS OF PROVABLE SECURITY

2.17. In this problem we consider modifying one-time pad so that the key is not chosen uni-
formly. Let Dλ denote the probability distribution over {0, 1}λ where we choose each bit
of the result to be 0 with probability 0.4 and 1 with probability 0.6.

Let Σ denote one-time pad encryption scheme but with the key sampled from distribution
Dλ rather than the uniform distribution on {0, 1}λ .

(a) Consider the case of λ = 5. A calling program A for the LΣ
ots-? libraries calls

eavesdrop(01011, 10001) and receives the result 01101. What is the probability that
this happens, assuming that A is linked to Lots-L? What about when A is linked to
Lots-R?

(b) Turn this observation into an explicit attack on the one-time secrecy of Σ.

2.18. Complete the proof of Theorem 2.16.

(a) Formally prove (using the hybrid technique) that the scheme in that theorem satis�es
one-time secrecy.

(b) Give a distinguishing calling program to show that the scheme doesn’t satisfy one-time
uniform ciphertexts.

46

