
6 Pseudorandom Functions & Block

Ciphers

Imagine if Alice & Bob had an in�nite amount of shared randomness — not just a short
key. They could split it up into λ-bit chunks and use each one as a one-time pad whenever
they want to send an encrypted message of length λ.

Alice could encrypt by saying, “hey Bob, this message is encrypted with one-time pad
using chunk #674696273 as key.” Bob could decrypt by looking up location #674696273
in his copy of the shared randomness. As long as Alice doesn’t repeat a key/chunk, an
eavesdropper (who doesn’t have the shared randomness) would learn nothing about the
encrypted messages. Although Alice announces (publicly) which location/chunk was used
as each one-time pad key, that information doesn’t help the attacker know the value at that
location.

1 1100100010 · · ·

2 0110000101 · · ·
...

...

674696273 0011100001 · · ·
...

...

Alice Bob
“this message encrypted under OTP key #674696273”

0111101111 · · ·

Eve

???

It is silly to imagine an in�nite amount of shared randomness. However, an expo-
nential amount of something is often just as good as an in�nite amount. A shared table
containing “only” 2λ one-time pad keys would be quite useful for encrypting as many
messages as you could ever need.

A pseudorandom function (PRF) is a tool that allows Alice & Bob to achieve the
e�ect of such an exponentially large table of shared randomness in practice. In this chapter
we will explore PRFs and their properties. In a later chapter, after introducing new security
de�nitions for encryption, we will see that PRFs can be used to securely encrypt many
messages under the same key, following the main idea illustrated above.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com


Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

6.1 Definition

Continuing our example, imagine a huge table of shared data stored as an array T , so the
ith item is referenced as T [i]. Instead of thinking of i as an integer, we can also think of
i as a binary string. If the array has 2in items, then i will be an in-bit string. If the array
contains strings of length “out”, then the notationT [i] is like a function that takes an input
from {0, 1}in and gives an output from {0, 1}out .

A pseudorandom function emulates the functionality of a huge array. It is a function F
that takes an input from {0, 1}in and gives an output from {0, 1}out . However, F also takes
an additional argument called the seed, which acts as a kind of secret key.

The goal of a pseudorandom function is to “look like” a uniformly chosen array /
lookup table. Such an array can be accessed through the lookup subroutine of the fol-
lowing library:

for x ∈ {0, 1}in:
T [x] ← {0, 1}out

lookup(x ∈ {0, 1}in):
return T [x]

As you can see, this library initially �lls up the array T with uniformly random data, and
then allows the calling program to access any position in the array.

A pseudorandom function should produce indistinguishable behavior, when it is used
with a uniformly chosen seed. More formally, the following library should be indistin-
guishable from the one above:

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

Note that the �rst library samples out · 2in bits uniformly at random (out bits for each of
2in entries in the table), while the second library samples only λ bits (the same k is used
for all invocations of F ). Still, we are asking for the two libraries to be indistinguishable.

This is basically the de�nition of a PRF, with one technical caveat. We want to allow
situations like in > λ, but in those cases the �rst library runs in exponential time. It is
generally convenient to build our security de�nitions with libraries that run in polynomial
time.1 We �x this by taking advantage of the fact that, no matter how big the table T is
meant to be, a polynomial-time calling program will only access a polynomial amount of
it. In some sense it is “overkill” to actually populate the entire tableT upfront. Instead, we
can populate T in a lazy / on-demand way. T initially starts uninitialized, and its values
are only assigned as the calling program requests them. This changes when each T [x] is
sampled (if at all), but does not change how it is sampled (i.e., uniformly & independently).
This also changes T from being a typical array to being an associative array (“hash table”
or “dictionary” data structure), since it only maps a subset of {0, 1}in to values in {0, 1}out .

1When we use a pseudorandom function as a component in other constructions, the libraries for PRF
security will show up as calling programs of other libraries. The de�nition of indistinguishability requires all
calling programs to run in polynomial time.

107



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Definition 6.1

(PRF security)

Let F : {0, 1}λ × {0, 1}in → {0, 1}out be a deterministic function. We say that F is a secure
pseudorandom function (PRF) if LF

prf-real

∼∼∼ L
F
prf-rand

, where:

LF
prf-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

LF
prf-rand

T := empty assoc. array

lookup(x ∈ {0, 1}in):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

Discussion, Pitfalls

The name “pseudorandom function” comes from the perspective of viewing T not as an
(associative) array, but as a function T : {0, 1}in → {0, 1}out . There are 2out ·2in possible
functions for T (an incredibly large number), and Lprf-rand chooses a “random function”
by uniformly sampling its truth table as needed.

For each possible seed k , the residual function F (k, ·) is also a function from {0, 1}in →
{0, 1}out . There are “only” 2λ possible functions of this kind (one for each choice of k),
and Lprf-real chooses one of these functions randomly. In both cases, the libraries give the
calling program input/output access to the function that was chosen. You can think of this
in terms of the picture from Section 5.1, but instead of strings, the objects are functions.

Note that even in the case of a “random function” (Lprf-rand), the function T itself is
still deterministic! To be precise, this library chooses a deterministic function, uniformly,
from the set of all possible deterministic functions. But once it makes this choice, the
input/output behavior ofT is �xed. If the calling program calls lookup twice with the same
x , it receives the same result. The same is true inLprf-real, since F is a deterministic function
and k is �xed throughout the entire execution. To avoid this very natural confusion, it
is perhaps better to think in terms of “randomly initialized lookup tables” rather than
“random functions.”

How NOT to Build a PRF

We can appreciate the challenges involved in building a PRF by looking at a natural ap-
proach that doesn’t quite work.

Example Suppose we have a length-doubling PRGG : {0, 1}λ → {0, 1}2λ and try to use it to construct
a PRF F as follows:

F (k,x):
return G(k) ⊕ x

You might notice that all we have done is rename the encryption algorithm of “pseudo-OTP”
(Construction 5.2). We have previously argued that this algorithm is a secure method for one-
time encryption, and that the resulting ciphertexts are pseudorandom. Is this enough for a
secure PRF? No, we can attack the security of this PRF.

108



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Attacking F means designing distinguisher that behaves as di�erently as possible in the
presence of the two LF

prf-?
libraries. We want to show that F is insecure even if G is an

excellent PRG. We should not try to base our attack on distinguishing outputs of G from
random. Instead, we must try to break the inappropriate way thatG is used to construct
a PRF.

The distinguisher must use the interface of the Lprf-? libraries — i.e., make some calls to
the lookup subroutine and output 0 or 1 based on the answers it gets. The lookup subroutine
takes an argument, so the distinguisher has to choose which arguments to use.

One observation we can make is that if a calling program sees only one value of the form
G(k) ⊕ x , it will look pseudorandom. This is essentially what we showed in Section 5.3. So we
should be looking for a calling program that makes more than one call to lookup.

If we make two calls to lookup — say, on inputs x1 and x2 — the responses from Lprf-real

will be G(k) ⊕ x1 and G(k) ⊕ x2. To be a secure PRF, these responses must look independent
and uniform. Do they? They actually have a pattern that the calling program can notice:
their xor is always x1 ⊕ x2, a value that is already known to the calling program.

We can condense all of our observations into the following distinguisher:

A

pick x1,x2 ∈ {0, 1}
2λ arbitrarily so that x1 , x2

z1 := lookup(x1)
z2 := lookup(x2)
return z1 ⊕ z2

?
= x1 ⊕ x2

Let’s compute its advantage in distinguishing LF
prf-real

from LF
prf-rand

by considering A’s be-
havior when linked to these two libraries:

A

pick x1 , x2 ∈ {0, 1}
2λ

z1 := lookup(x1)
z2 := lookup(x2)
return z1 ⊕ z2

?
= x1 ⊕ x2

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return G(k) ⊕ x // F (k,x)

WhenA is linked to LF
prf-real

, the library will choose a key k . Then z1 is set toG(k) ⊕ x1 and
z2 is set toG(k) ⊕ x2. So z1 ⊕ z2 is always equal to x1 ⊕ x2, andA always outputs 1. That is,

Pr[A � LF
prf-real

⇒ 1] = 1.

A

pick x1 , x2 ∈ {0, 1}
2λ

z1 := lookup(x1)
z2 := lookup(x2)
return z1 ⊕ z2

?
= x1 ⊕ x2

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}2λ

return T [x]

109



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

When A is linked to LF
prf-rand

, the responses of the two calls to lookup will be chosen uni-
formly and independently because lookup is being called on distinct inputs. Consider the
moment in time when the second call to lookup is about to happen. At that point, x1, x2, and
z1 have all been determined, while z2 is about to be chosen uniformly by the library. Using
the properties of xor, we see that A will output 1 if and only if z2 is chosen to be exactly the
value x1 ⊕ x2 ⊕ z1. This happens only with probability 1/22λ . That is,

Pr[A � LF
prf-rand

⇒ 1] = 1/22λ .

The advantage of A is therefore 1 − 1/22λ which is certainly non-negligible since it doesn’t
even approach 0. This shows that F is not a secure PRF.

At a more philosophical level, we wanted to identify exactly how G is being used in an
inappropriate way. The PRG security libraries guarantee security when G’s seed is chosen
freshly for each call to G. This construction of F violates that rule and allows the same seed
to be used twice in di�erent calls to G, where the results are supposed to look independent.

This example shows the challenge of building a PRF. Even though we know how to
make any individual output pseudorandom, it is di�cult to make all outputs collectively
appear independent, when in reality they are derived from a single short seed.

6.2 PRFs vs PRGs; Variable-Hybrid Proofs

In this section we show that a PRG can be used to construct a PRF, and vice-versa. The
construction of a PRG from PRF is practical, and is one of the more common ways to obtain
a PRG in practice. The construction of a PRF from PRG is more of theoretical interest and
does not re�ect how PRFs are designed in practice.

Constructing a PRG from a PRF

As promised, a PRF can be used to construct a PRG. The construction is quite natural. For
simplicity, suppose we have a PRF F : {0, 1}λ × {0, 1}λ → {0, 1}λ (i.e., in = out = λ). We
can build a length-doubling PRG in the following way:

Construction 6.2

(Counter PRG)

G(s):
x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

There is nothing particularly special about the inputs 0 · · · 00 and 0 · · · 01 to F . All that
matters is that they are distinct. The construction can be extended to easily give more than
2 blocks of output, by treating the input to F as a simple counter (hence the name of this
construction).

The guarantee of a PRF is that when its seed is chosen uniformly and it is invoked on
distinct inputs, its outputs look independently uniform. In particular, its output on inputs
0 · · · 00 and 0 · · · 01 are indistinguishable from uniform. Hence, concatenating them gives
a string which is indistinguishable from a uniform 2λ-bit string.

110



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

That really is all there is to the security of this construction, but unfortunately there is
a slight technical issue which makes the security proof more complicated than you might
guess. We will have to introduce a new technique of variable hybrids to cope with it.

Claim 6.3 If F is a secure PRF, then the counter PRG construction G above is a secure PRG.

Proof In order to prove that G is a secure PRG, we must prove that the following libraries are
indistinguishable:

LG
prg-real

qery():
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)

 // G(s)
return x ‖y

LG
prg-rand

qery():
r ← {0, 1}2λ

return r

During the proof, we are allowed to use the fact that F is a secure PRF. That is, we can use
the fact that the following two libraries are indistinguishable:

LF
prf-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}in):
return F (k,x)

LF
prf-rand

T := empty assoc. array

lookup(x ∈ {0, 1}in):
if T [x] unde�ned:
T [x] ← {0, 1}out

return T [x]

The inconvenience in the proof stems from a mismatch of the s variable in Lprg-real and
the k variable in Lprf-real. In Lprg-real, s is local to the qery subroutine. Over the course
of an execution, s will take on many values. Since s is used as the PRF seed, we must write
the calls to F in terms of the lookup subroutine of Lprf-real. But in Lprf-real the PRF seed
is �xed for the entire execution. In other words, we can only use Lprf-real to deal with a
single PRF seed at a time, but Lprg-real deals with many PRG seeds at a time.

To address this, we will have to apply the security of F (i.e., replace Lprf-real with
Lprf-rand) many times during the proof — in fact, once for every call to qery made by
the calling program. Previous security proofs had a �xed number of hybrid steps (e.g., the
proof of Claim 5.5 used 7 hybrid libraries to show Lprg-real

∼∼∼ Lhyb-1

∼∼∼ · · · ∼∼∼ Lhyb-7

∼∼∼

Lprg-rand). This proof will have a variable number of hybrids that depends on the
calling program. Speci�cally, we will prove

LG
prg-real

∼∼∼ Lhyb-1

∼∼∼ · · · ∼∼∼ Lhyb- q ∼∼∼ L
G
prg-rand

,

where q is the number of times the calling program calls qery.

111



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Don’t be overwhelmed by all these hybrids. They all follow a simple pattern. In fact,
the ith hybrid looks like this:

Lhyb-i :

count := 0

qery():
count := count + 1
if count 6 i :
r ← {0, 1}2λ

return r
else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

In other words, the hybrid libraries all di�er in the value i that is inserted into the code
above. If you’re familiar with C compilers, think of this as adding “#define i 427” to the
top of the code above, to obtain Lhyb-427.

First note what happens for extreme choices of i :

I In Lhyb-0, the if-branch is never taken (count 6 0 is never true). This library behaves
exactly like LG

prg-real
by giving PRG outputs on every call to qery.

I If q is the total number of times that the calling program calls qery, then in Lhyb-q ,
the if-branch is always taken (count 6 q is always true). This library behaves exactly
like LG

prg-rand
by giving truly uniform output on every call to qery.

In general, Lhyb-i will respond to the �rst i calls to qery by giving truly random output.
It will respond to all further calls by giving outputs of our PRG construction.

We have argued that LG
prg-real

≡ Lhyb-0 and LG
prg-rand

≡ Lhyb-q . To complete the proof,
we must show that Lhyb-(i − 1) ∼∼∼ Lhyb-i for all i . The main reason for going to all this
trouble of de�ning so many hybrid libraries is that Lhyb-(i − 1) and Lhyb-i are completely
identical except in how they respond to the ith call to qery. This di�erence involves a
single call to the PRG (and hence a single PRF seed), which allows us to apply the security
of the PRF.

In more detail, let i be arbitrary, and consider the following sequence of steps starting
with Lhyb-(i − 1):

112



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
s∗ ← {0, 1}λ

x := F (s∗, 0 · · · 00)
y := F (s∗, 0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

We have taken Lhyb-(i − 1)
and simply expanded the
else-branch (count > i ) into
two subcases (count = i and
count > i ). However, both
cases lead to the same block of
code (apart from a change to a
local variable’s name), so the
change has no e�ect on the
calling program.

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x := lookup(0 · · · 00)
y := lookup(0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

�

LF
prf-real

k ← {0, 1}λ

lookup(x):
return F (k,x)

We have factored out the calls
to F that use seed s∗ (corre-
sponding to the count = i
case) in terms of Lprf-real. This
change no e�ect on the calling
program.

113



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x := lookup(0 · · · 00)
y := lookup(0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

�

LF
prf-rand

T := empty assoc. array

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}λ

return T [x]

From the fact that F is a secure
PRF, we can replace LF

prf-real

with LF
prf-rand

, and the overall
change is indistinguishable.

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x := lookup(0 · · · 00)
y := lookup(0 · · · 01)
return x ‖y

else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

�

lookup(x):
r ← {0, 1}λ

return r

Since count = i happens only
once, only two calls to lookup
will be made across the entire
lifetime of the library, and they
are on distinct inputs. There-
fore, the if-branch in lookup
will always be taken, and T is
never needed (it is only needed
to “remember” values and give
the same answer when the
same x is used twice as argu-
ment to lookup). Simplifying
the library therefore has no ef-
fect on the calling program:

114



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

count := 0

qery():
count := count + 1
if count < i :
r ← {0, 1}2λ

return r

elsif count = i :
x ← {0, 1}λ

y ← {0, 1}λ

return x ‖y
else:
s ← {0, 1}λ

x := F (s, 0 · · · 00)
y := F (s, 0 · · · 01)
return x ‖y

Inlining the subroutine has no
e�ect on the calling program.
The resulting library responds
with uniformly random output
to the �rst i calls to qery, and
responds with outputs of our
PRG G to the others. Hence,
this library has identical be-
havior to Lhyb-i .

We showed that Lhyb-(i − 1) ∼∼∼ Lhyb-i , and therefore:

LG
prg-real

≡ Lhyb-0

∼∼∼ Lhyb-1

∼∼∼ · · · ∼∼∼ Lhyb-q ≡ L
G
prg-rand

This shows that LG
prg-real

∼∼∼ L
G
prg-rand

, so G is a secure PRG. �

? A Theoretical Construction of a PRF from a PRG

We have already seen that it is possible to feed the output of a PRG back into the PRG
again, to extend its stretch (Claim 5.7). This is done by making a long chain (like a linked
list) of PRGs. The trick to constructing a PRF from a PRG is to chain PRGs together in a
binary tree (similar to Exercise 5.8(a)). The leaves of the tree correspond to �nal outputs
of the PRF. If we want a PRF with an exponentially large domain (e.g., in = λ), the binary
tree itself is exponentially large! However, it is still possible to compute any individual
leaf e�ciently by simply traversing the tree from root to leaf. This tree traversal itself is
the PRF algorithm. This construction of a PRF is due to Goldreich, Goldwasser, and Micali,
in the paper that de�ned the concept of a PRF.

115



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

G

G G

G G G G

G G G G G G G G

0 1

00 01 10 11

000 001 010 011 100 101 110 111

ϵ

...
...

...
...

...
...

...
...

k

length-
doubling PRG

G

λ

λ λGL GR

Imagine a complete binary tree of height in (in will be the input length of the PRF).
Every node in this tree has a position which can be written as a binary string. Think of
a node’s position as the directions to get there starting at the root, where a 0 means “go
left” and 1 means “go right.” For example, the root has position ϵ (the empty string), the
right child of the root has position 1, etc.

The PRF construction works by assigning a label to every node in the tree, using the
a length-doubling PRG G : {0, 1}λ → {0, 1}2λ . For convenience, we will write GL(k) and
GR(k) to denote the �rst λ bits and last λ bits of G(k), respectively. Labels in the tree are
λ-bit strings, computed according to the following two rules:

1. The root node’s label is the PRF seed.

2. If the node at position p has label v , then its left child (at position p‖0) gets label
GL(v), and its right child (at position p‖1) gets label GR(v).

In the picture above, a node’s label is the string being sent on its incoming edge. The tree
has 2in leaves, whose positions are the strings {0, 1}in. We de�ne F (k,x) to be the label of
node/leaf x . To compute this label, we can traverse the tree from root to leaf, taking left
and right turns at each node according to the bits of x and computing the labels along that
path according to the labeling rule. In the picture above, the highlighted path corresponds
to the computation of F (k, 1001 · · · ).

It is important to remember that the binary tree is a useful conceptual tool, but it is ex-
ponentially large in general. Running the PRF on some input does not involve computing
labels for the entire tree, only along a single path from root to leaf.

116



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Construction 6.4

(GGM PRF)

in = arbitrary
out = λ

F (k,x ∈ {0, 1}in):
v := k
for i = 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

Claim 6.5 If G is a secure PRG, then Construction 6.4 is a secure PRF.

Proof We prove the claim using a sequence of hybrids. The number of hybrids in this case
depends on the input-length parameter in. The hybrids are de�ned as follows:

Lhyb-d

T := empty assoc. array

qery(x):
p := �rst d bits of x
if T [p] unde�ned:
T [p] ← {0, 1}λ

v := T [p]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

The hybrids di�er only in their hard-coded value of d . We will show that

LF
prf-real

≡ Lhyb-0 ∼∼∼ Lhyb-1 ∼∼∼ · · · ∼∼∼ Lhyb-in ≡ L
F
prf-rand

.

We �rst start by understanding the behavior of Lhyb-d for extreme choices of d . Simpli-
�cations to the code are shown on the right.

Lhyb-0

T := empty assoc. array k := unde�ned
// k is alias for T [ϵ]

lookup(x):
p := �rst 0 bits of x p = ϵ
if T [p] unde�ned: if k unde�ned:
T [p] ← {0, 1}λ k ← {0, 1}λ

v := T [p]
for i = 1 to in:

if xi = 0 then v := GL(v)

 v
:= F (k,x)

if xi = 1 then v := GR(v)
return v return F (k,x)

In Lhyb-0, we always have p = ϵ ,
so the only entry ofT that is ac-
cessed is T [ϵ]. Then renaming
T [ϵ] to k , we see that Lhyb-0 ≡

LF
prf-real

. The only di�erence is
when the PRF seed k (T [ϵ]) is
sampled: eagerly at initializa-
tion time in LF

prf-real
vs. at the

last possible minute in Lhyb-0.

117



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Lhyb-in

T := empty assoc. array

lookup(x):
p := �rst in bits of x p = x
if T [p] unde�ned: if T [x] unde�ned:
T [p] ← {0, 1}λ T [x] ← {0, 1}λ

v := T [p]
for i = in + 1 to in:

if xi = 0 then v := GL(v)

 // unreachable
if xi = 1 then v := GR(v)

return v return T [x]

In Lhyb-in, we always have p =
x and the body of the for-
loop is always unreachable. In
that case, it is easy to see that
Lhyb-in has identical behavior to
LF

prf-rand
.

The general pattern is that Lhyb-d “chops o�” the top d levels of the conceptual binary
tree. When computing the output for some string x , we don’t start traversing the tree from
the root but rather d levels down the tree, at the node whose position is the d-bit pre�x of
x (called p in the library). We initialize the label of this node as a uniform value (unless it
has already been de�ned), and then continue the traversal to the leaf x .

To �nish the proof, we show that Lhyb-(d − 1) and Lhyb-d are indistinguishable:

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:
T [p] ← {0, 1}λ

T [p‖0] := GL(T [p])
T [p‖1] := GR(T [p])

p ′ := �rst d bits of x
v := T [p ′]

for i = d + 1 to in:
if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

The library that is shown here is di�erent from
Lhyb-(d − 1) in the highlighted parts. However, these dif-
ferences have no e�ect on the calling program. The li-
brary here advances d − 1 levels down the tree (to the
node at location p), initializes that node’s label as a uni-
form value, then computes the labels for both its chil-
dren, and �nally continues computing labels toward the
leaf. The only signi�cant di�erence from Lhyb-(d − 1) is
that it computes the labels of both of p’s children, even
though only one is on the path to x . Since it computes
the label correctly, though, it makes no di�erence when
(or if) this extra label is computed.

118



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:

T [p‖0]



T [p‖1] :=qery()

p ′ := �rst d + 1 bits of x
v := T [p ′]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

�

LG
prg-real

qery():
s ← {0, 1}λ

return G(s)

We have factored out the body
of the if-statement in terms of
LG

prg-real
since it involves an call

to G on uniform input. Impor-
tantly, the seed toG (calledT [p] in
the previous hybrid) was not used
anywhere else — it was a string of
length d − 1 while the library only
reads T [p ′] for p ′ of length d . The
change has no e�ect on the calling
program.

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:
T [p‖0]




T [p‖1] :=qery()
p ′ := �rst d + 1 bits of x
v := T [p ′]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

�

LG
prg-rand

qery():
r ← {0, 1}2λ

return r

We have applied the security
of G and replaced Lprg-real with
Lprg-rand. The change is indistin-
guishable.

T := empty assoc. array

lookup(x):
p := �rst d − 1 bits of x
if T [p] unde�ned:
T [p‖0] ← {0, 1}λ

T [p‖1] ← {0, 1}λ

p ′ := �rst d + 1 bits of x
v := T [p ′]
for i = d + 1 to in:

if xi = 0 then v := GL(v)
if xi = 1 then v := GR(v)

return v

We have inlined Lprg-rand and split the sampling of 2λ
bits into two separate statements sampling λ bits each.
In this library, we advance d levels down the tree, assign
a uniform label to a node (and its sibling), and then pro-
ceed to the leaf applyingG as usual. The only di�erence
between this library and Lhyb-d is that we sample the la-
bel of a node that is not on our direct path. But since we
sample it uniformly, it doesn’t matter when (or if) that
extra value is sampled. Hence, this library has identical
behavior to Lhyb-d .

We showed that Lhyb-(d − 1) ∼∼∼ Lhyb-d . Putting everything together, we have:

LF
prf-real

≡ Lhyb-0 ∼∼∼ Lhyb-1 ∼∼∼ · · · ∼∼∼ Lhyb-in ≡ L
F
prf-rand

.

119



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Hence, F is a secure PRF. �

6.3 Block Ciphers (Pseudorandom Permutations)

After �xing the seed of a PRF, it computes a function from {0, 1}in to {0, 1}out . Let’s con-
sider the case where in = out . Some functions from {0, 1}in to {0, 1}out are invertible,
which leads to the question of whether a PRF might realize such a function and be invert-
ible (with knowledge of the seed). In other words, what if it were possible to determine x
when given k and F (k,x)? While this would be a convenient property, it is not guaranteed
by the PRF security de�nition, even in the case of in = out . A function from {0, 1}in to
{0, 1}out chosen at random is unlikely to have an inverse, therefore a PRF instantiated with
a random key is unlikely to have an inverse.

A pseudorandom permutation (PRP) — also called a block cipher — is essentially
a PRF that is guaranteed to be invertible for every choice of seed. We use both terms (PRP
and block cipher) interchangeably. The term “permutation” refers to the fact that, for ev-
ery k , the function F (k, ·) should be a permutation of {0, 1}in. Instead of requiring a PRP to
be indistinguishable from a randomly chosen function, we require it to be indistinguish-
able from a randomly chosen invertible function.2 This means we must modify one of the
libraries from the PRF de�nition. Instead of populating the associative array T with uni-
formly random values, it chooses uniformly random but distinct values. As long asT gives
distinct outputs on distinct inputs, it is consistent with some invertible function. The li-
brary guarantees distinctness by only sampling values that it has not previously assigned.
Thinking of an associative array T as a key-value store, we use the notation T .values to
denote the set of values stored in T .

Definition 6.6

(PRP syntax)

Let F : {0, 1}λ × {0, 1}blen → {0, 1}blen be a deterministic function. We refer to blen as the
blocklength of F and any element of {0, 1}blen as a block.

We call F a secure pseudorandom permutation (PRP) (block cipher) if the following
two conditions hold:

1. (Invertible given k) There is a function F−1 : {0, 1}λ ×{0, 1}blen → {0, 1}blen satisfying

F−1(k, F (k,x)) = x ,

for all k ∈ {0, 1}λ and all x ∈ {0, 1}blen.

2. (Security) LF
prp-real

∼∼∼ L
F
prp-rand

, where:

LF
prp-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}blen):
return F (k,x)

LF
prp-rand

T := empty assoc. array

lookup(x ∈ {0, 1}blen):
if T [x] unde�ned:
T [x] ← {0, 1}blen \T .values

return T [x]

2As we will see later, the distinction between randomly chosen function and randomly chosen invertible
function is not as signi�cant as it might seem.

120



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

“T .values” refers to the set {v | ∃x : T [x] = v}.

The changes from the PRF de�nition are highlighted in yellow. In particular, the
Lprp-real and Lprf-real libraries are identical.

Discussion, Pitfalls

In the de�nition, both the functions F and F−1 take the seed k as input. Therefore, only
someone with k can invert the block cipher. Think back to the de�nition of a PRF —
without the seed k , it is hard to compute F (k,x). A block cipher has a forward and reverse
direction, and computing either of them is hard without k!

6.4 Relating PRFs and Block Ciphers

In this section we discuss how to obtain PRFs from PRPs/block ciphers, and vice-versa.

Switching Lemma (PRPs are PRFs, Too!)

Imagine you can query a PRP on chosen inputs (as in the Lprp-real library), and suppose
the blocklength of the PRP is blen = λ. You would only be able to query that PRP on
a negligible fraction of its exponentially large input domain. It seems unlikely that you
would even be able to tell that it was a PRP (i.e., an invertible function) rather than a PRF
(an unrestricted function).

This idea can be formalized as follows.

Lemma 6.7

(PRP switching)

Let Lprf-rand and Lprp-rand be de�ned as in De�nitions 6.1 & 6.6, with parameters in = out =
blen = λ (so that the interfaces match up). Then Lprf-rand

∼∼∼ Lprp-rand.

Proof Recall the replacement-sampling lemma, Lemma 4.11, which showed that the following
libraries are indistinguishable:

Lsamp-L

samp():
r ← {0, 1}λ

return r

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Lsamp-L samples values with replacement, and Lsamp-R samples values without replace-
ment. Now consider the following library L∗:

L∗

T := empty assoc. array

lookup(x ∈ {0, 1}λ):
if T [x] unde�ned:
T [x] ← samp()

return T [x]

121



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

When we link L∗ � Lsamp-L we obtain Lprf-rand since the values in T [x] are sampled uni-
formly. When we link L∗ � Lsamp-R we obtain Lprp-rand since the values in T [x] are sam-
pled uniformly subject to having no repeats (consider R playing the role of T .values in
Lprp-rand). Then from Lemma 4.11, we have:

Lprf-rand ≡ L
∗ � Lsamp-L

∼∼∼ L
∗ � Lsamp-R ≡ Lprp-rand,

which completes the proof. �

Using the switching lemma, we can conclude that every PRP (with blen = λ) is also a PRF:

Corollary 6.8 Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a secure PRP (with blen = λ). Then F is also a secure
PRF.

Proof As we have observed above, LF
prf-real

and LF
prp-real

are literally the same library. Since F is
a secure PRP, LF

prp-real

∼∼∼ L
F
prp-rand

. Finally, by the switching lemma, LF
prp-rand

∼∼∼ L
F
prf-rand

.
Putting everything together:

LF
prf-real

≡ LF
prp-real

∼∼∼ L
F
prp-rand

∼∼∼ L
F
prf-rand

,

hence F is a secure PRF. �

Keep in mind that the switching lemma applies only when the blocklength is su�-
ciently large (at least λ bits long). This comes from the fact that Lsamp-L and Lsamp-R in the
proof are indistinguishable only when sampling with long (length-λ) strings (look at the
proof of Lemma 4.11 to recall why). Exercise 6.14 asks you to show that a random permu-
tation over a small domain can be distinguished from a random (unconstrained) function;
so, a PRP with a small blocklength is not a PRF.

Constructing a PRP from a PRF: The Feistel Construction

How can you build an invertible block cipher out of a PRF that is not necessarily invertible?
In this section, we show a simple technique called the Feistel construction (named after
IBM cryptographer Horst Feistel).

The main idea in the Feistel construction is to convert a not-necessarily-invertible
function F : {0, 1}n → {0, 1}n into an invertible function F ∗ : {0, 1}2n → {0, 1}2n . The
function F ∗ is called the Feistel round with round function F and is de�ned as follows:

Construction 6.9

(Feistel round) F ∗(x ‖y):
// each of x ,y are n bits
return y‖(F (y) ⊕ x)

y

x

F⊕
No matter what F is, its Feistel round F ∗ is invertible. Not only that, but its inverse is

a kind of “mirror image” of F ∗:

122



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Feistel inverse Feistel

y

x

F⊕ F⊕
F (y) ⊕ x

y

y

F (y) ⊕
(
F (y) ⊕ x

)
= x

Note how both the forward and inverse Feistel rounds use F in the forward direction!

Example Let’s see what happens in the Feistel construction with a trivial round function. Consider the
constant function F (y) = 0n , which is the “least invertible” function imaginable. The Feistel
construction gives:

F ∗(x ‖y) = y‖(F (y) ⊕ x)

= y‖(0n ⊕ x)

= y‖x

The result is a function that simply switches the order of its halves — clearly invertible.

Example Let’s try another simple round function, this time the identity function F (y) = y. The Feistel
construction gives:

F ∗(x ‖y) = y‖(F (y) ⊕ x)

= y‖(y ⊕ x)

This function is invertible because given y and y ⊕ x we can solve for x as y ⊕ (y ⊕ x). You
can verify that this is what happens when you plug F into the inverse Feistel construction.

We can also consider using a round function F that has a key/seed. The result will be
an F ∗ that also takes a seed. For every seed k , F ∗(k, ·) will have an inverse (which looks
like its mirror image).

Construction 6.10

(Keyed Feistel)

F ∗(k,x ‖y):
return y‖(F (k,y) ⊕ x)

y

x

F (k, ·)⊕
Now suppose F is a secure PRF and we use it as a Feistel round function, to obtain a

keyed function F ∗. Since F ∗(k, ·) is invertible for every k , and since F ∗ uses a secure PRF in
some way, you might be tempted to claim that F ∗ is a secure PRP. Unfortunately, it is not!
The output of F ∗ contains half of its input, making it quite trivial to break the PRP-security
of F ∗.

We can avoid this trivial attack by performing several Feistel rounds in succession,
resulting in a construction called a Feistel cipher. At each round, we can even use a
di�erent key to the round function. If we use k1 in the �rst round, k2 in the second round,
and so on, then k1,k2, . . . is called the key schedule of the Feistel cipher. The formal
de�nition of an r -round Feistel cipher is given below:

123



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Construction 6.11

(Feistel cipher)

Fr
(
(k1, . . . ,kr ),v0‖v1

)
:

for i = 1 to r :
vi+1 := F (ki ,vi ) ⊕ vi−1

return vr ‖vr+1 v1

v0

F (k1, ·)⊕ F (k2, ·)⊕ F (k3, ·)⊕
· · ·

· · ·
v1 v2 v3

F−1r
(
(k1, . . . ,kr ),vr ‖vr+1

)
:

for i = r downto 1:
vi−1 := F (ki ,vi ) ⊕ vi+1

return v0‖v1 vr+1

vr

F (kr , ·)⊕ F (kr−1, ·)⊕ F (kr−2, ·)⊕
· · ·

· · ·
vr vr−1 vr−2

Because each round is invertible (given the appropriate round key), the overall Feistel
cipher is also invertible. Note that the inverse of the Feistel cipher uses inverse Feistel
rounds and reverses the order of the key schedule.

Surprisingly, a 3-round Feistel cipher can actually be secure, although a 2-round Feistel
cipher is never secure (see the exercises). More precisely: when F is a secure PRF with
in = out = λ, then using F as the round function of a 3-round Feistel cipher results in a
secure PRP. The Feistel cipher has blocklength 2λ, and it has a key of length 3λ (3 times
longer than the key for F ). Implicitly, this means that the three round keys are chosen
independently.

Theorem 6.12

(Luby-Racko�)

If F : {0, 1}λ × {0, 1}λ → {0, 1}λ is a secure PRF, then the 3-round Feistel cipher F3 (Con-
struction 6.11) is a secure PRP.

Unfortunately, the proof of this theorem is beyond the scope of this book.

6.5 PRFs and Block Ciphers in Practice

Block ciphers are one of the cornerstones of cryptography in practice today. We have
shown how (at least in principle) block ciphers can be constructed out of simpler primi-
tives: PRGs and PRFs. However, in practice we use block ciphers that are designed “from
scratch,” and then use these block ciphers to construct simpler PRGs and PRFs when we
need them.

We currently haveno proof that any secure PRP exists. As we discussed in Section 5.2,
such a proof would resolve the famous P vs NP problem. Without such proofs, what is our
basis for con�dence in the security of block ciphers being used today? The process that led
to the Advanced Encryption Standard (AES) block cipher demonstrates the cryptographic
community’s best e�orts at instilling such con�dence.

The National Institute of Standards & Technology (NIST) sponsored a competition to
design a block cipher to replace the DES standard from the 1970s. Many teams of cryp-
tographers submitted their block cipher designs, all of which were then subject to years
of intense public scrutiny by the cryptographic research community. The designs were
evaluated on the basis of their performance and resistance to attacks against the PRP se-
curity de�nition (and other attacks). Some designs did o�er proofs that they resist certain

124



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

classes of attacks, and proofs that justify certain choices in building the block cipher from
simpler components.

The Rijndael cipher, designed by Vincent Rijmen and Joan Daemen, was selected as the
winner and became the AES standard in 2001. There may not be another cryptographic
algorithm that has been the focus of more scrutiny and attempts at attack. So far no
signi�cant weaknesses in AES are known.3

The AES block cipher has a blocklength of 128 bits, and o�ers 3 di�erent variants with
128-bit, 192-bit, and 256-bit keys. As a result of its standardization, AES is available in
cryptographic libraries for any programming language. It is even implemented as hard-
ware instructions in most modern processors, allowing millions of AES evaluations per
second. As we have seen, once you have access to a good block cipher, it can be used
directly also as a secure PRF (Corollary 6.8), and it can be used to construct a simple PRG
(Construction 6.2). Even though AES itself is not a provably secure PRP, these construc-
tions of PRFs and PRGs based on AES are secure. Or, more precisely, the PRF-security and
PRG-security of these constructions is guaranteed to be as good as the PRP-security of
AES.

6.6? Strong Pseudorandom Permutations

Since a block cipher F has a corresponding inverse F−1, it is natural to think of F and F−1

as interchangeable in some sense. However, the PRP security de�nition only guarantees a
security property for F and not its inverse. In the exercises, you will see that it is possible
to construct F which is a secure PRP, whose inverse F−1 is not a secure PRP!

It would be very natural to ask for a PRP whose F and F−1 are both secure. We will later
see applications where this property would be convenient. An even stronger requirement
would allow the distinguisher to query both F and F−1 in a single interaction (rather than
one security de�nition where the distinguisher queries only F , and another de�nition
where the distinguisher queries only F−1). If a PRP is indistinguishable from a random
permutation under that setting, then we say it is a strong PRP (SPRP).

In the formal security de�nition, we provide the calling program two subroutines: one
for forward queries and one for reverse queries. In Lsprp-real, these subroutines are im-
plemented by calling the PRP or its inverse accordingly. In Lsprp-rand, we emulate the
behavior of a randomly chosen permutation that can be queried in both directions. We
maintain two associative arrays T and Tinv to hold the truth tables of these permutations,
and sample their values on-demand. The only restriction is that T and Tinv maintain con-
sistency (T [x] = y if and only if Tinv[y] = x ). This also ensures that they always represent
an invertible function. We use the same technique as before to ensure invertibility.

3In all fairness, there is a possibility that government agencies like NSA know of weaknesses in many
cryptographic algorithms, but keep them secret. I know of a rather famous cryptographer (whom I will not
name here) who believes this is likely, based on the fact that NSA has hired more math & cryptography PhDs
than have gone on to do public research.

125



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

Definition 6.13

(SPRP security)

Let F : {0, 1}λ × {0, 1}blen → {0, 1}blen be a deterministic function. We say that F is a secure
strong pseudorandom permutation (SPRP) if LF

sprp-real

∼∼∼ L
F
sprp-rand

, where:

LF
sprp-real

k ← {0, 1}λ

lookup(x ∈ {0, 1}blen):
return F (k,x)

invlookup(y ∈ {0, 1}blen):
return F−1(k,y)

LF
sprp-rand

T ,Tinv := empty assoc. arrays

lookup(x ∈ {0, 1}blen):
if T [x] unde�ned:
y ← {0, 1}blen \T .values

T [x] := y; Tinv[y] := x
return T [x]

invlookup(y ∈ {0, 1}blen):
if Tinv[y] unde�ned:
x ← {0, 1}blen \Tinv.values

Tinv[y] := x ; T [x] := y
return Tinv[y]

Earlier we showed that using a PRF as the round function in a 3-round Feistel cipher
results in a secure PRP. However, that PRP is not a strong PRP. Even more surprisingly,
adding an extra round to the Feistel cipher does make it a strong PRP! We present the
following theorem without proof:

Theorem 6.14

(Luby-Racko�)

If F : {0, 1}λ × {0, 1}λ → {0, 1}λ is a secure PRF, then the 4-round Feistel cipher F4 (Con-
struction 6.11) is a secure SPRP.

Exercises

6.1. In this problem, you will show that it is hard to determine the key of a PRF by querying
the PRF.

Let F be a candidate PRF, and suppose there exists a program A such that:

Pr[A � LF
prf-real

outputs k] is non-negligible.

In the above expression, k refers to the private variable within Lprf-real.

Prove that if such anA exists, then F is not a secure PRF. UseA to construct a distinguisher
that violates the PRF security de�nition.

6.2. Let F be a secure PRF.

(a) Letm ∈ {0, 1}out be a �xed (public, hard-coded, known to the adversary) string. De�ne:

Fm(k,x) = F (k,x) ⊕m.

Prove that for everym, Fm is a secure PRF.

126



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

(b) De�ne
F ′(k,x) = F (k,x) ⊕ x .

Prove that F ′ is a secure PRF.

6.3. Let F be a secure PRF with λ-bit outputs, and let G be a PRG with stretch `. De�ne

F ′(k, r ) = G(F (k, r )).

So F ′ has outputs of length λ + `. Prove that F ′ is a secure PRF.

6.4. Let F be a secure PRF with in = 2λ, and let G be a length-doubling PRG. De�ne

F ′(k,x) = F (k,G(x)).

We will see that F ′ is not necessarily a PRF.

(a) Prove that if G is injective then F ′ is a secure PRF.
Hint:

YoushouldnotevenneedtousethefactthatGisaPRG.

? (b) Exercise 5.9(b) constructs a secure length-doubling PRG that ignores half of its input.
Show that F ′ is insecure when instantiated with such a PRG. Give a distinguisher and
compute its advantage.
Note: You are not attacking the PRF security of F , nor the PRG security of G. You are
attacking the invalid way in which they have been combined.

6.5. Let F be a secure PRF, and let m ∈ {0, 1}in be a �xed (therefore known to the adversary)
string. De�ne the new function

Fm(k,x) = F (k,x) ⊕ F (k,m).

Show that Fm is not a secure PRF. Describe a distinguisher and compute its advantage.

? 6.6. In the previous problem, what happens when m is secret and part of the PRF seed? Let F
be a secure PRF, and de�ne the new function: De�ne the new function

F ′
(
(k,m),x

)
= F (k,x) ⊕ F (k,m).

The seed of F ′ is (k,m), which you can think of as a λ+ in bit string. Show that F ′ is indeed
a secure PRF.

Hint: RewritetheF
′

algorithmtoincludean“ifx=m”clauseandarguethatthecallingprogramcan
rarelysatisfythisclause.

6.7. Let F be a secure PRF. Let x denote the bitwise complement of the string x . De�ne the
new function:

F ′(k,x) = F (k,x)‖F (k,x).

Show that F ′ is not a secure PRF. Describe a distinguisher and compute its advantage.

6.8. Suppose F is a secure PRF with input length in, but we want to use it to construct a PRF
with longer input length. Below are some approaches that don’t work. For each one,
describe a successful distinguishing attack and compute its advantage:

127



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

(a) F ′(k,x ‖x ′) = F (k,x)‖F (k,x ′), where x and x ′ are each in bits long.

(b) F ′(k,x ‖x ′) = F (k,x) ⊕ F (k,x ′), where x and x ′ are each in bits long.

(c) F ′(k,x ‖x ′) = F (k,x) ⊕ F (k,x ⊕ x ′), where x and x ′ are each in bits long.

(d) F ′(k,x ‖x ′) = F (k, 0‖x) ⊕ F (k, 1‖x ′), where x and x ′ are each in − 1 bits long.

6.9. De�ne a PRF F whose key k we write as (k1, . . . ,kin), where each ki is a string of length
out . Then F is de�ned as:

F (k,x) =
⊕
i :xi=1

ki .

Show that F is not a secure PRF. Describe a distinguisher and compute its advantage.

6.10. De�ne a PRF F whose key k is an in× 2 array of out-bit strings, whose entries we refer to
as k[i,b]. Then F is de�ned as:

F (k,x) =
in⊕
i=1

k[i,xi ].

Show that F is not a secure PRF. Describe a distinguisher and compute its advantage.

6.11. A function {0, 1}n → {0, 1}n is chosen uniformly at random. What is the probability that
the function is invertible?

6.12. Let F be a secure PRP with blocklength blen = 128. Then for each k , the function F (k, ·)
is a permutation on {0, 1}128. Suppose I choose a permutation on {0, 1}128 uniformly at
random. What is the probability that the permutation I chose agrees with a permutation
of the form F (k, ·)? Compute the probability as an actual number — is it a reasonable
probability or a tiny one?

6.13. Suppose R : {0, 1}n → {0, 1}n is chosen uniformly among all such functions. What is the
probability that there exists an x ∈ {0, 1}n such that R(x) = x?

Hint: First�ndtheprobabilitythatR(x),xforallx.Simplifyyouranswerusingtheapproximation
(1−y)≈e

−y.

6.14. In this problem, you will show that the PRP switching lemma holds only for large domains.
Let Lprf-rand and Lprp-rand be as in Lemma 6.7. Choose any small value of blen = in =
out that you like, and show that Lprf-rand 6

∼∼∼ Lprp-rand with those parameters. Describe a
distinguisher and compute its advantage.

Hint: Rememberthatthedistinguisherneedstoruninpolynomialtimeinλ,butnotnecessarilypoly-
nomialinblen.

6.15. Let F : {0, 1}in → {0, 1}out be a (not necessarily invertible) function. We showed how to
use F as a round function in the Feistel construction ony when in = out .

Describe a modi�cation of the Feistel construction that works even when the round func-
tion satis�es in , out . The result should be an invertible with input/output length in+out .
Be sure to show that your proposed transform is invertible! You are not being asked to
show any security properties of the Feistel construction.

128



Draft: January 3, 2021 CHAPTER 6. PSEUDORANDOM FUNCTIONS & BLOCK CIPHERS

6.16. Show that a 1-round keyed Feistel cipher cannot be a secure PRP, no matter what its round
functions are. That is, construct a distinguisher that successfully distinguishes LF

prp-real

and LF
prp-rand

, knowing only that F is a 1-round Feistel cipher. In particular, the purpose is
to attack the Feistel transform and not its round function, so your attack should work no
matter what the round function is.

6.17. Show that a 2-round keyed Feistel cipher cannot be a secure PRP, no matter what its round
functions are. Your attack should work without knowing the round keys, and it should
work even with di�erent (independent) round keys.

Hint:

Asuccessfulattackrequirestwoqueries.

6.18. Show that any function F that is a 3-round keyed Feistel cipher cannot be a secure strong
PRP. As above, your distinguisher should work without knowing what the round functions
are, and the attack should work with di�erent (independent) round functions.

6.19. In this problem you will show that PRPs are hard to invert without the key (if the block-
length is large enough). Let F be a candidate PRP with blocklength blen > λ. Suppose
there is a program A where:

Pr
y←{0,1}blen

[
A(y) � LF

prf-real
outputs F−1(k,y)

]
is non-negligible.

The notation means that A receives a random block y as an input (and is also linked to
Lprf-real). k refers to the private variable within Lprf-real. So, when given the ability to
evaluate F in the forward direction only (via Lprf-real), A can invert a uniformly chosen
block y.

Prove that if such an A exists, then F is not a secure PRP. Use A to construct a distin-
guisher that violates the PRP security de�nition. Where do you use the fact that blen > λ?
How do you deal with the fact thatA may give the wrong answer with high probability?

6.20. Let F be a secure PRP with blocklength blen = λ, and consider F̂ (k,x) = F (k,k) ⊕ F (k,x).

(a) Show that F̂ is not a strong PRP (even if F is).

? (b) Show that F̂ is a secure (normal) PRP.

129


