
8 Block Cipher Modes of Operation

One of the drawbacks of the previous CPA-secure encryption scheme is that its ciphertexts
are λ bits longer than its plaintexts. In the common case that we are using a block cipher
with blocklength blen = λ, this means that ciphertexts are twice as long as plaintexts. Is
there any way to encrypt data (especially lots of it) without requiring such a signi�cant
overhead?

A block cipher mode refers to a way to use a block cipher to e�ciently encrypt a
large amount of data (more than a single block). In this chapter, we will see the most
common modes for CPA-secure encryption of long plaintexts.

8.1 A Tour of Common Modes

As usual, blen will denote the blocklength of a block cipher F . In our diagrams, we’ll write
Fk as shorthand for F (k, ·). When m is the plaintext, we will write m = m1‖m2‖ · · · ‖m` ,
where eachmi is a single block (so ` is the length of the plaintext measured in blocks). For
now, we will assume thatm is an exact multiple of the block length.

ECB: Electronic Codebook (never never use this! never‼)

The most obvious way to use a block cipher to encrypt a long message is to just apply the
block cipher independently to each block. The only reason to know about this mode is to
know never to use it (and to publicly shame anyone who does). It can’t be said enough
times: never use ECB mode! It does not provide security of encryption; can you see
why?

Construction 8.1

(ECB Mode)

N
EVER

U
SE

TH
IS

!

Enc(k,m1‖ · · · ‖m`):
for i = 1 to `:
ci := F (k,mi)

return c1‖ · · · ‖c`

Dec(k, c1‖ · · · ‖c`):
for i = 1 to `:
mi := F−1(k, ci)

returnm1‖ · · · ‖m`

Fk Fk Fk

m1 m2 m3

c1 c2 c3

· · ·

· · ·

· · ·



F−1k F−1k F−1k

c1 c2 c3

m1 m2 m3

· · ·

· · ·

· · ·



© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

CBC: Cipher Block Chaining

CBC (which stands for cipher block chaining) is the most common mode in practice. The
CBC encryption of an `-block plaintext is ` + 1 blocks long. The �rst ciphertext block is
called an initialization vector (IV). Here we have described CBC mode as a randomized
encryption, with the IV of each ciphertext being chosen uniformly. As you know, random-
ization is necessary (but not su�cient) for achieving CPA security, and indeed CBC mode
provides CPA security.

Construction 8.2

(CBC Mode)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

blen:
for i = 1 to `:
ci := F (k,mi ⊕ ci−1)

return c0‖c1‖ · · · ‖c`

Dec(k, c0‖ · · · ‖c`):
for i = 1 to `:
mi := F−1(k, ci) ⊕ ci−1

returnm1‖ · · · ‖m`

Fk Fk

$

⊕ ⊕

m1 m2

c0 c1 c2

· · ·

· · ·

· · ·



F−1k F−1k

⊕ ⊕

c0 c1 c2

m1 m2

· · ·

· · ·

· · ·


CTR: Counter

The next most common mode in practice is counter mode (usually abbreviated as CTR
mode). Just like CBC mode, it involves an additional IV block r that is chosen uniformly.
The idea is to then use the sequence

F (k, r); F (k, r + 1); F (k, r + 2); · · ·

as a long one-time pad to mask the plaintext. Since r is a block of bits, the addition ex-
pressions like r + 1 refer to addition modulo 2blen (this is the typical behavior of unsigned
addition in a processor).

145

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Construction 8.3

(CTR Mode)
Enc(k,m1‖ · · · ‖m`):
r ← {0, 1}blen

c0 := r
for i = 1 to `:
ci := F (k, r) ⊕mi
r := r + 1 % 2blen

return c0‖ · · · ‖c`

Fk Fk Fk

$

⊕ ⊕ ⊕

m1 m2 m3

c0 c1 c2 c3

+1 +1 +1

· · ·

· · ·

· · ·

OFB: Output Feedback

OFB (output feedback) mode is rarely used in practice. We’ll include it in our discussion
because it has the easiest security proof. As with CBC and CTR modes, OFB starts with a
random IV r , and then uses the sequence:

F (k, r); F (k, F (k, r)); F (k, F (k, F (k, r))); · · ·

as a one-time pad to mask the plaintext.

Construction 8.4

(OFB Mode)
Enc(k,m1‖ · · · ‖m`):
r ← {0, 1}blen

c0 := r
for i = 1 to `:
r := F (k, r)
ci := r ⊕mi

return c0‖ · · · ‖c`

Fk Fk Fk

$

⊕ ⊕ ⊕

m1 m2 m3

c0 c1 c2 c3

· · ·

· · ·

· · ·

Compare & Contrast

CBC and CTR modes are essentially the only two modes that are ever considered in prac-
tice for CPA security. Both provide the same security guarantees, and so any comparison
between the two must be based on factors outside of the CPA security de�nition. Here are
a few properties that are often considered when choosing between these modes:

I Although we have not shown the decryption algorithm for CTR mode, it does not
even use the block cipher’s inverse F−1. This is similar to our PRF-based encryption
scheme from the previous chapter (in fact, CTR mode collapses to that construction
when restricted to 1-block plaintexts). Strictly speaking, this means CTR mode can
be instantiated from a PRF; it doesn’t need a PRP. However, in practice it is rare to
encounter an e�cient PRF that is not a PRP.

I CTR mode encryption can be parallelized. Once the IV has been chosen, the ith
block of ciphertext can be computed without �rst computing the previous i − 1

146

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

blocks. CBC mode does not have this property, as it is inherently sequential. Both
modes have a parallelizable decryption algorithm, though.

I If calls to the block cipher are expensive, it might be desirable to pre-compute and
store them before the plaintext is known. CTR mode allows this, since only the IV
a�ects the input given to the block cipher. In CBC mode, the plaintext in�uences the
inputs to the block cipher, so these calls cannot be pre-computed before the plaintext
is known.

I It is relatively easy to modify CTR to support plaintexts that are not an exact multiple
of the blocklength. (This is left as an exercise.) We will see a way to make CBC mode
support such plaintexts as well, but it is far from trivial.

I So far all of the comparisons have favored CTR mode, so here is one important
property that favors CBC mode. It is common for implementers to misunderstand
the security implications of the IV in these modes. Many careless implementations
allow an IV to be reused. Technically speaking, reusing an IV (other than by acci-
dent, as the birthday bound allows) means that the scheme was not implemented
correctly. But rather than dumping the blame on the developer, it is good design
practice to anticipate likely misuses of a system and, when possible, try to make
them non-catastrophic.

The e�ects of IV-reuse in CTR mode are quite devastating to message privacy (see
the exercises). In CBC mode, reusing an IV can actually be safe, if the two plaintexts
have di�erent �rst blocks!

8.2 CPA Security and Variable-Length Plaintexts

Here’s a big surprise: none of these block cipher modes achieve CPA security, or at least
CPA security as we have been de�ning it.

Example Consider a block cipher with blen = λ, used in CBC mode. As you will see, there is nothing
particularly speci�c to CBC mode, and the same observations apply to the other modes.

In CBC mode, a plaintext consisting of ` blocks is encrypted into a ciphertext of ` + 1
blocks. In other words, the ciphertext leaks the number of blocks in the plaintext. We
can leverage this observation into the following attack:

A:

c := eavesdrop(0λ , 02λ)
return |c | ?= 2λ

The distinguisher chooses a 1-block plaintext and a 2-block plaintext. If this distinguisher is
linked to Lcpa-L, the 1-block plaintext is encrypted and the resulting ciphertext is 2 blocks (2λ
bits) long. If the distinguisher is linked to Lcpa-R, the 2-block plaintext is encrypted and the
resulting ciphertext is 3 blocks (3λ bits) long. By simply checking the length of the ciphertext,
this distinguisher can tell the di�erence and achieve advantage 1.

147

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

So, technically speaking, these block cipher modes do not provide CPA security, since
ciphertexts leak the length (measured in blocks) of the plaintext. But suppose we don’t re-
ally care about hiding the length of plaintexts.1 Is there a way to make a security de�nition
that says: ciphertexts hide everything about the plaintext, except their length?

It is clear from the previous example that a distinguisher can successfully distinguish
the CPA libraries if it makes a query eavesdrop(mL,mR) with |mL | , |mR |. A simple
way to change the CPA security de�nition is to just disallow this kind of query. The
libraries will give an error message if |mL | , |mR |. This would allow the adversary to
make the challenge plaintexts di�er in any way of his/her choice, except in their length. It
doesn’t really matter whether |m | refers to the length of the plaintext in bits or in blocks
— whichever makes the most sense for a particular scheme.

From now on, when discussing encryption schemes that support variable-length plain-
texts, CPA security will refer to the following updated libraries:

LΣ
cpa-L

k ← Σ.KeyGen

ctxt(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mL)

return c

LΣ
cpa-R

k ← Σ.KeyGen

ctxt(mL,mR ∈ Σ.M):
if |mL | , |mR | return err

c := Σ.Enc(k,mR)

return c

In the de�nition of CPA$ security (pseudorandom ciphertexts), the Lcpa$-rand library re-
sponds to queries with uniform responses. Since these responses must look like cipher-
texts, they must have the appropriate length. For example, for the modes discussed in this
chapter, an `-block plaintext is expected to be encrypted to an (`+1)-block ciphertext. So,
based on the length of the plaintext that is provided, the library must choose the appropri-
ate ciphertext length. We are already using Σ.C to denote the set of possible ciphertexts of
an encryption scheme Σ. So let’s extend the notation slightly and write Σ.C(`) to denote
the set of possible ciphertexts for plaintexts of length `. Then when discussing encryption
schemes supporting variable-length plaintexts, CPA$ security will refer to the following
libraries:

LΣ
cpa$-real

k ← Σ.KeyGen

challenge(m ∈ Σ.M):
c := Σ.Enc(k,m)
return c

LΣ
cpa$-rand

challenge(m ∈ Σ.M):
c ← Σ.C(|m |)

return c

Note that the Lcpa$-rand library does not use any information about m other than its
length. This again re�ects the idea that ciphertexts leak nothing about plaintexts other
than their length.

1Indeed, hiding the length of communication (in the extreme, hiding the existence of communication) is
a very hard problem.

148

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

In the exercises, you are asked to prove that, with respect to these updated security
de�nitions, CPA$ security implies CPA security as before.

Don’t Take Length-Leaking for Granted!

We have just gone from requiring encryption to leak no partial information to casually
allowing some speci�c information to leak. Let us not be too hasty about this!

If we want to truly support plaintexts of arbitrary length, then leaking the length is in
fact unavoidable. But “unavoidable” doesn’t mean “free of consequences.” By observing
only the length of encrypted network tra�c, many serious attacks are possible. Here are
several examples:

I When accessing Google maps, your browser receives many image tiles that comprise
the map that you see. Each image tile has the same pixel dimensions. However, they
are compressed to save resources, and not all images compress as signi�cantly as
others. Every region of the world has its own rather unique “�ngerprint” of image-
tile lengths. So even though tra�c to and from Google maps is encrypted, the sizes of
the image tiles are leaked. This can indeed be used to determine the region for which
a user is requesting a map.2 The same idea applies to auto-complete suggestions in
a search form.

I Variable-bit-rate (VBR) encoding is a common technique in audio/video encoding.
When the data stream is carrying less information (e.g., a scene with a �xed camera
position, or a quiet section of audio), it is encoded at a lower bit rate, meaning that
each unit of time is encoded in fewer bits. In an encrypted video stream, the changes
in bit rate are re�ected as changes in packet length. When a user is watching a movie
on Net�ix or a Youtube video (as opposed to a live event stream), the bit-rate changes
are consistent and predictable. It is therefore rather straight-forward to determine
which video is being watched, even on an encrypted connection, just by observing
the packet lengths.

I VBR is also used in many encrypted voice chat programs. Attacks on these tools
have been increasing in sophistication. The �rst attacks on encrypted voice pro-
grams showed how to identify who was speaking (from a set of candidates), just by
observing the stream of ciphertext sizes. Later attacks could determine the language
being spoken. Eventually, when combined with sophisticated linguistic models, it
was shown possible to even identify individual words to some extent!

It’s worth emphasizing again that none of these attacks involve any attempt to break the
encryption. The attacks rely solely on the fact that encryption leaks the length of the
plaintexts.

8.3 Security of OFB Mode

In this section we will prove that OFB mode has pseudorandom ciphertexts (when the
blocklength is blen = λ bits). OFB encryption and decryption both use the forward direc-

2
h�p://blog.ioactive.com/2012/02/ssl-tra�ic-analysis-on-google-maps.html

149

http://blog.ioactive.com/2012/02/ssl-traffic-analysis-on-google-maps.html

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

tion of F , so OFB provides security even when F is not invertible. Therefore we will prove
security assuming F is simply a PRF.

Claim 8.5 OFB mode (Construction 8.4) has CPA$ security, if its underlying block cipher F is a secure
PRF with parameters in = out = λ.

Proof The general structure of the proof is very similar to the proof used for the PRF-based
encryption scheme in the previous chapter (Construction 7.4). This is no coincidence: if
OFB mode is restricted to plaintexts of a single block, we obtain exactly Construction 7.4!

The idea is that each ciphertext block (apart from the IV) is computed as ci := r ⊕mi .
By the one-time pad rule, it su�ces to show that the r values are independently pseudo-
random. Each r value is the result of a call to the PRF. These PRF outputs will be inde-
pendently pseudorandom only if all of the inputs to the PRF are distinct. In OFB mode,
we use the output r of a previous PRF call as input to the next, so it is highly unlikely
that this PRF output r matches a past PRF-input value. To argue this more precisely, the
proof includes hybrids in which r is chosen without replacement (before changing r back
to uniform sampling).

The formal sequence of hybrid libraries is given below:

LOFB

cpa$-real
:

LOFB

cpa$-real

k ← {0, 1}λ

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r := F (k, r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

The starting point is LOFB

cpa$-real
, shown

here with the details of OFB �lled in.

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

LF
prf-real

k ← {0, 1}λ

lookup(r):
return F (k, r)

The statements pertaining to the PRF
F have been factored out in terms of
LF

prf-real
.

150

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

LF
prf-rand

T := empty

lookup(x):
if T [x] unde�ned:
T [x] ← {0, 1}λ

return T [x]

LF
prf-real

has been replaced by
LF

prf-rand
. By the PRF security of F ,

the change is indistinguishable.

Next, all of the statements that involve sampling values for the variable r are factored out
in terms of the Lsamp-L library from Lemma 4.11:

challenge(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

T := empty

lookup(x):
if T [x] unde�ned:
T [x] := samp()

return T [x]

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

Lsamp-L is then replaced by Lsamp-R. By Lemma 4.11, this change is indistinguishable:

ctxt(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

T := empty

lookup(x):
if T [x] unde�ned:
T [x] := samp()

return T [x]

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

Arguments to lookup are never repeated in this hybrid, so the middle library can be sig-
ni�cantly simpli�ed:

ctxt(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

lookup(x):
t := samp()
return t

�

Lsamp-R

R := ∅

samp():
r ← {0, 1}λ \ R
R := R ∪ {r }
return r

151

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Next, Lsamp-R is replaced by Lsamp-L. By Lemma 4.11, this change is indistinguishable:

ctxt(m1‖ · · · ‖m`):
r := samp()
c0 := r
for i = 1 to `:
r := lookup(r)
ci := r ⊕mi

return c0‖c1‖ · · · ‖c`

�

lookup(x):
t := samp()
return t

�

Lsamp-L

samp():
r ← {0, 1}λ

return r

Subroutine calls to lookup and samp are inlined:

ctxt(m1‖ · · · ‖m`):
r ← {0, 1}λ

c0 := r
for i = 1 to `:
r ← {0, 1}λ

ci := r ⊕mi
return c0‖c1‖ · · · ‖c`

Finally, the one-time pad rule is applied within the for-loop (omitting some common steps).
Note that in the previous hybrid, each value of r is used only once as a one-time pad. The
i = 0 case has also been absorbed into the for-loop. The result is LOFB

cpa$-rand
, since OFB

encrypts plaintexts of ` blocks into ` + 1 blocks.

LOFB

cpa$-rand

ctxt(m1‖ · · · ‖m`):
for i = 0 to `:
ci ← {0, 1}

λ

return c0‖c1‖ · · · ‖c`

The sequence of hybrids shows that LOFB

cpa$-real

∼∼∼ L
OFB

cpa$-rand
, and so OFB mode has

pseudorandom ciphertexts. �

We proved the claim assuming F is a PRF only, since OFB mode does not require F to
be invertible. Since we assume a PRF with parameters in = out = λ, the PRP switching
lemma (Lemma 6.7) shows that OFB is secure also when F is a PRP with blocklength n = λ.

8.4 Padding & Ciphertext Stealing

So far we have assumed that all plaintexts are exact multiples of the blocklength. But data
in the real world is not always so accommodating. How are block ciphers used in practice
with data that has arbitrary length?

152

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Padding

Padding just refers to any approach to encode arbitrary-length data into data that is a
multiple of the blocklength. The only requirement is that this encoding is reversible. More
formally, a padding scheme should consist of two algorithms:

I pad: takes as input a string of any length, and outputs a string whose length is a
multiple of the blocklength

I unpad: the inverse of pad. We require that unpad(pad(x)) = x for all strings x .

The idea is that the sender can encrypt pad(x), which is guaranteed to be a multiple of the
blocklength; the receiver can decrypt and run unpad on the result to obtain x .

In the real world, data almost always comes in bytes and not bits, so that will be our
assumption here. In this section we will write bytes in hex, for example 8f . Typical
blocklengths are 128 bits (16 bytes) or 256 bits (32 bytes).

Here are a few common approaches for padding:

Null padding: The simplest padding approach is to just �ll the �nal block with null
bytes (00). The problem with this approach is that it is not always reversible. For exam-
ple, pad(31 41 59) and pad(31 41 59 00) will give the same result. It is not possible to
distinguish between a null byte that was added for padding and one that was intentionally
the last byte of the data.

ANSIX.923 standard: Data is padded with null bytes, except for the last byte of padding
which indicates how many padding bytes there are. In essence, the last byte of the padded
message tells the receiver how many bytes to remove to recover the original message.

Note that in this padding scheme (and indeed in all of them), if the original unpadded
data is already a multiple of the block length, then an entire extra block of padding
must be added. This is necessary because it is possible for the original data to end with
some bytes that look like valid padding (e.g., 00 00 03), and we do not want these bytes
to be removed erroneously.

Example Below are some examples of valid and invalid X.923 padding (using 16-byte blocks):

01 34 11 d9 81 88 05 57 1d 73 c3 00 00 00 00 05 ⇒ valid

95 51 05 4a d6 5a a3 44 af b3 85 00 00 00 00 03 ⇒ valid

71 da 77 5a 5e 77 eb a8 73 c5 50 b5 81 d5 96 01 ⇒ valid

5b 1c 01 41 5d 53 86 4e e4 94 13 e8 7a 89 c4 71 ⇒ invalid

d4 0d d8 7b 53 24 c6 d1 af 5f d6 f6 00 c0 00 04 ⇒ invalid

PKCS#7 standard: If b bytes of padding are needed, then the data is padded not with
null bytes but with b bytes. Again, the last byte of the padded message tells the receiver
how many bytes to remove.

153

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Example Below are some examples of valid and invalid PKCS#7 padding (using 16-byte blocks):

01 34 11 d9 81 88 05 57 1d 73 c3 05 05 05 05 05 ⇒ valid

95 51 05 4a d6 5a a3 44 af b3 85 03 03 03 03 03 ⇒ valid

71 da 77 5a 5e 77 eb a8 73 c5 50 b5 81 d5 96 01 ⇒ valid

5b 1c 01 41 5d 53 86 4e e4 94 13 e8 7a 89 c4 71 ⇒ invalid

d4 0d d8 7b 53 24 c6 d1 af 5f d6 f6 04 c0 04 04 ⇒ invalid

ISO/IEC 7816-4 standard: The data is padded with a 80 byte followed by null bytes.
To remove the padding, remove all trailing null bytes and ensure that the last byte is 80

(and then remove it too).
The signi�cance of 80 is clearer when you write it in binary as 10000000. So another

way to describe this padding scheme is: append a 1 bit, and then pad with 0 bits until
reaching the blocklength. To remove the padding, remove all trailing 0 bits as well as
the rightmost 1 bit. Hence, this approach generalizes easily to padding data that is not a
multiple of a byte.

Example Below are some examples of valid and invalid ISO/IEC 7816-4 padding (using 16-byte blocks):

01 34 11 d9 81 88 05 57 1d 73 c3 80 00 00 00 00 ⇒ valid

95 51 05 4a d6 5a a3 44 af b3 85 03 03 80 00 00 ⇒ valid

71 da 77 5a 5e 77 eb a8 73 c5 50 b5 81 d5 96 80 ⇒ valid

5b 1c 01 41 5d 53 86 4e e4 94 13 e8 7a 89 c4 71 ⇒ invalid

d4 0d d8 7b 53 24 c6 d1 af 5f d6 f6 c4 00 00 00 ⇒ invalid

The choice of padding scheme is not terribly important, and any of these is generally
�ne. Just remember that padding schemes are not a security feature! Padding is a
public method for encoding data, and it does not involve any secret keys. The only purpose
of padding is to enable functionality — using block cipher modes like CBC with data that
is not a multiple of the block length.

Furthermore, as we will see in the next chapter, padding is associated with certain
attacks against improper use of encryption. Even though this is not really the fault of the
padding (rather, it is the fault of using the wrong �avor of encryption), it is such a common
pitfall that it is always worth considering in a discussion about padding.

Ciphertext Stealing

Another approach with a provocative name is ciphertext stealing (CTS, if you are not
yet tired of three-leter acronyms), which results in ciphertexts that are not a multiple of
the blocklength. The main idea behind ciphertext stealing is to use a standard block-cipher
mode that only supports full blocks (e.g., CBC mode), and then simply throw away some
bits of the ciphertext, in such a way that decryption is still possible. If the last plaintext
blocks is j bits short of being a full block, it is generally possible to throw away j bits of
the ciphertext. In this way, a plaintext of n bits will be encrypted to a ciphertext of blen+n
bits, where blen is the length of the extra IV block.

154

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

As an example, let’s see ciphertext stealing as applied to CBC mode. Suppose the
blocklength is blen and the last plaintext block m` is j bits short of being a full block. We
start by extending m` with j zeroes (i.e., null-padding the plaintext) and performing CBC
encryption as usual.

Now our goal is to identify j bits of the CBC ciphertext that can be thrown away while
still making decryption possible. In this case, the appropriate bits to throw away are the
last j bits of c`−1 (the next-to-last block of the CBC ciphertext). The reason is illustrated
in the �gure below:

Fk Fk Fk

⊕ ⊕ ⊕

m`−2 m`−1 m`

c`−2 c`−1 c`

c`−2 c ′
`−1 c`

· · ·

· · ·

· · ·

· · ·

usual CBC encryption


�nal ciphertext:

zero-padding

identical!

Suppose the receiver obtains this CBC ciphertext but the last j bits of c`−1 have been
deleted. How can he/she decrypt? The important idea is that those missing j bits were
redundant, because there is another way to compute them.

In CBC encryption, the last value given as input into the block cipher is c`−1 ⊕m` . Let
us give this value a name x∗ := c`−1 ⊕m` . Since the last j bits ofm` are 0’s,3 the last j bits
of x∗ are the last j bits of c`−1 — the missing bits. Even though these bits are missing from
c`−1, the receiver has a di�erent way of computing them as x∗ := F−1(k, c`).

Putting it all together, the receiver does the following: First, it observes that the ci-
phertext is j bits short of a full block. It computes F−1(k, c`) and takes the last j bits of this
value to be the missing bits from c`−1. With the missing bits recovered, the receiver does
CBC decryption as usual. The result is a plaintext consisting of ` full blocks, but we know
that the last j bits of that plaintext are 0 padding that the receiver can remove.

It is convenient in an implementation for the boundaries between blocks to be in pre-
dictable places. For that reason, it is slightly awkward to remove j bits from the middle of
the ciphertext during encryption (or add them during decryption), as we have done here.
So in practice, the last two blocks of the ciphertext are often interchanged. In the example
above, the resulting ciphertext (after ciphertext stealing) would be:

c0 ‖ c1 ‖ c2 · · · c`−3 ‖ c`−2 ‖ c` ‖ c
′
`−1 , where c ′

`−1 is the �rst blen − j bits of c`−1.

3The receiver knows this fact, because the ciphertext is j bits short of a full block. The length of the
(shortened) ciphertext is a signal about how many 0-bits of padding were used during encryption.

155

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

That way, all ciphertext blocks except the last one are the full blen bits long, and the
boundaries between blocks appear consistently every blen bits. This “optimization” does
add some signi�cant edge cases to any implementation. One must also decide what to do
when the plaintext is already an exact multiple of the blocklength — should the �nal two
ciphertext blocks be swapped even in this case? Below we present an implementation of
ciphertext stealing (CTS) that does not swap the �nal two blocks in this case. This means
that it collapses to plain CBC mode when the plaintext is an exact multiple of the block
length.

Construction 8.6

(CBC-CTS)

Enc(k,m1‖ · · · ‖m`):
// eachmi is blen bits,
// except possiblym`

j := blen − |m` |

m` :=m` ‖0
j

c0 ← {0, 1}
blen:

for i = 1 to `:
ci := F (k,mi ⊕ ci−1)

if j , 0:
remove �nal j bits of c`−1
swap c`−1 and c`

return c0‖c1‖ · · · ‖c`

Dec(k, c0‖ · · · ‖c`):
// each ci is blen bits,
// except possibly c`

j := blen − |c` |
if j , 0:

swap c`−1 and c`
x := last j bits of F−1(k, c`)
c`−1 := c`−1‖x

for i = 1 to `:
mi := F−1(k, ci) ⊕ ci−1

remove �nal j bits ofm`

returnm1‖ · · · ‖m`

The marked lines correspond to plain CBC mode.

Exercises

8.1. Prove that a block cipher in ECB mode does not provide CPA security. Describe a distin-
guisher and compute its advantage.

8.2. Describe OFB decryption mode.

8.3. Describe CTR decryption mode.

8.4. CBC mode:

(a) In CBC-mode encryption, if a single bit of the plaintext is changed, which ciphertext
blocks are a�ected (assume the same IV is used)?

(b) In CBC-mode decryption, if a single bit of the ciphertext is changed, which plaintext
blocks are a�ected?

8.5. Prove that CPA$ security for variable-length plaintexts implies CPA security for variable-
length plaintexts. Where in the proof do you use the fact that |mL | = |mR |?

8.6. Suppose that instead of applying CBC mode to a block cipher, we apply it to one-time pad.
In other words, we replace every occurrence of F (k,?) with k ⊕ ? in the code for CBC
encryption. Show that the result does not have CPA security. Describe a distinguisher
and compute its advantage.

156

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

8.7. Prove that there is an attacker that runs in time O(2λ/2) and that can break CPA security
of CBC mode encryption with constant probability.

8.8. Below are several block cipher modes for encryption, applied to a PRP F with blocklength
blen = λ. For each of the modes:

I Describe the corresponding decryption procedure.

I Show that the mode does not have CPA-security. That means describe a distin-
guisher and compute its advantage.

(a)

Enc(k,m1‖ · · · ‖m`):
r0 ← {0, 1}

λ

c0 := r0
for i = 1 to `:
ri := F (k,mi)

ci := ri ⊕ ri−1
return c0‖ · · · ‖c`

(b)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

λ

for i = 1 to `:
ci := F (k,mi) ⊕ ci−1

return c0‖ · · · ‖c`

(c)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

λ

m0 := c0
for i = 1 to `:
ci := F (k,mi) ⊕mi−1

return c0‖ · · · ‖c`

(d)

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

λ

r0 := c0
for i = 1 to `:
ri := ri−1 ⊕mi
ci := F (k, ri)

return c0‖ · · · ‖c`

Mode (a) is similar to CBC, except the xor happens after, rather than before, the block
cipher application. Mode (c) is essentially the same as CBC decryption.

8.9. Suppose you observe a CBC ciphertext and two of its blocks happen to be identical. What
can you deduce about the plaintext? State some non-trivial property of the plaintext that
doesn’t depend on the encryption key.

8.10. The CPA$-security proof for CBC encryption has a slight complication compared to the
proof of OFB encryption. Recall that an important part of the proof is arguing that all
inputs to the PRF are distinct.

In OFB, outputs of the PRF were fed directly into the PRF as inputs. The adversary had no
in�uence over this process, so it wasn’t so bad to argue that all PRF inputs were distinct
(with probability negligibly close to 1).

By contrast, CBC mode takes an output block from the PRF, xor’s it with a plaintext block
(which is after all chosen by the adversary), and uses the result as input to the next PRF
call. This means we have to be a little more careful when arguing that CBC mode gives
distinct inputs to all PRF calls (with probability negligibly close to 1).

157

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

(a) Prove that the following two libraries are indistinguishable:

Lle�

samp(m ∈ {0, 1}λ):
r ← {0, 1}λ

return r

Lright

R := ∅

samp(m ∈ {0, 1}λ):
r ← {r ′ ∈ {0, 1}λ | r ′ ⊕m < R}
R := R ∪ {r ⊕m}
return r

Hint:

UseLemma4.12.

(b) Using part (a), and the security of the underlying PRF, prove the CPA$-security of CBC
mode.

Hint:

InLright,letRcorrespondtothesetofallinputssenttothePRF.Letmcorrespondtothenext
plaintextblock.Insteadofsamplingr(theoutputofthePRF)uniformlyasinLle�,wesample
rsothatr⊕mhasneverbeenusedasaPRF-inputbefore.ThisguaranteesthatthenextPRF
callwillbeona“fresh”input.

Note: Appreciate how important it is that the adversary chooses plaintext block m
before “seeing” the output r from the PRF (which is included in the ciphertext).

? 8.11. Prove that CTR mode achieves CPA$ security.

Hint: UseLemma4.12toshowthatthereisonlynegligibleprobabilityofchosingtheIVsothattheblock
ciphergetscalledonthesamevaluetwice.

8.12. Let F be a secure PRF with out = in = λ and let F (2) denote the function F (2)(k, r) =
F (k, F (k, r)).

(a) Prove that F (2) is also a secure PRF.

(b) What if F is a secure PRP with blocklength blen? Is F (2) also a secure PRP?

8.13. This question refers to the nonce-based notion of CPA security.

(a) Show a de�nition for CPA$ security that incorporates both the nonce-based syntax of
Section 7.1 and the variable-length plaintexts of Section 8.2.

(b) Show that CBC mode not secure as a nonce-based scheme (where the IV is used as a
nonce).

(c) Show that CTR mode is not secure as a nonce-based scheme (where the IV is used as a
nonce). Note that if we restrict (randomized) CTR mode to a single plaintext block, we
get the CPA-secure scheme of Construction 7.4, which is is secure as a nonce-based
scheme. The attack must therefore use the fact that plaintexts can be longer than one
block. (Does the attack in part (b) work with single-block plaintexts?)

8.14. One way to convert a randomized-IV-based construction into a nonce-based construction
is called the synthetic IV approach.

158

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

(a) The synthetic-IV (SIV) approach applied to CBC mode is shown below. Prove that it is
CPA/CPA$ secure as a nonce-based scheme (refer to the security de�nitions from the
previous problem):

SIV-CBC.Enc

(
(k1,k2),v,m1‖ · · · ‖m`

)
:

c0 := F (k1,v)

for i = 1 to `:
ci := F (k2 ,mi ⊕ ci−1)

return c0‖c1‖ · · · ‖c`

Instead of chosing a random IV c0, it is generated deterministically from the nonce v
using the block cipher F . In your proof, you can use the fact that randomized CBC
mode has CPA$ security, and that F is also a secure PRF.

(b) It is important that the SIV construction uses two keys for di�erent purposes. Suppose
that we instead used the same key throughout:

BadSIV-CBC.Enc(k,v,m1‖ · · · ‖m`):
c0 := F (k ,v)
for i = 1 to `:
ci := F (k ,mi ⊕ ci−1)

return c0‖c1‖ · · · ‖c`

Show that the resulting scheme does not have CPA$ security (in the nonce-based
sense). Ignore the complication of padding, and only consider plaintexts that are a
multiple of the blocklength. Describe a successful distinguisher and compute its ad-
vantage.

(c) For randomized encryption, it is necessary to include the IV in the ciphertext; oth-
erwise the receiver cannot decrypt. In the nonce-based setting we assume that the
receiver knows the correct nonce (e.g., from some out-of-band communication). With
that in mind, we could modify the scheme from part (b) to remove c0, since the receiver
could reconstruct it anyway from v .
Show that even with this modi�cation, the scheme still fails to be CPA-secure under
the nonce-based de�nition.

8.15. Implementers are sometimes cautious about IVs in block cipher modes and may attempt
to “protect” them. One idea for protecting an IV is to prevent it from directly appearing in
the ciphertext. The modi�ed CBC encryption below sends the IV through the block cipher
before including it in the ciphertext:

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

blen

c ′0 := F (k, c0)

for i = 1 to `:
ci := F (k,mi ⊕ ci−1)

return c ′0 ‖c1‖ · · · ‖c`

159

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

This ciphertext can be decrypted by �rst computing c0 := F−1(k, c ′0) and then doing usual
CBC decryption on c0‖ · · · ‖c` .

Show that this new scheme is not CPA-secure (under the traditional de�nitions for ran-
domized encryption).

8.16. Suppose a bad implementation leads to two ciphertexts being encrypted with the same IV,
rather than a random IV each time.

(a) Characterize as thoroughly as you can what information is leaked about the plaintexts
when CBC mode was used and an IV is repeated.

(b) Characterize as thoroughly as you can what information is leaked about the plaintexts
when CTR mode was used and an IV is repeated.

8.17. Describe how to extend CTR and OFB modes to deal with plaintexts of arbitrary length
(without using padding). Why is it so much simpler than CBC ciphertext stealing?

8.18. The following technique for ciphertext stealing in CBC was proposed in the 1980s and was
even adopted into commercial products. Unfortunately, it’s insecure.

Suppose the �nal plaintext block m` is blen − j bits long. Rather than padding the �nal
block with zeroes, it is padded with the last j bits of ciphertext block c`−1. Then the padded
block m` is sent through the PRP to produce the �nal ciphertext block c` . Since the �nal
j bits of c`−1 are recoverable from c` , they can be discarded.

If the �nal block of plaintext is already blen bits long, then standard CBC mode is used.

Fk Fk Fk

⊕ ⊕

m`−2 m`−1 m`

c`−2 c`−1 c`

· · ·

· · ·

· · ·

pad with these bits

discard

Show that the scheme does not satisfy CPA$ security. Describe a distinguisher and com-
pute its advantage.

Hint:

Askforseveralencryptionsofplaintextswhoselastblockisblen−1bitslong.

8.19. Prove that any CPA-secure encryption remains CPA-secure when augmented by padding
the input.

8.20. Prove that CBC with ciphertext stealing has CPA$ security. You may use the fact that CBC
mode has CPA$ security when restricted to plaintexts whose length is an exact multiple
of the blocklength (i.e., CBC mode without padding or ciphertext stealing).

160

Draft: January 3, 2021 CHAPTER 8. BLOCK CIPHER MODES OF OPERATION

Hint:

LetCBCdenotestandardCBCmoderestrictedtoplaintextspaceM=({0,1}blen)∗,andlet
CBC-CTSdenoteCBCmodewithciphertextstealing(soM={0,1}

∗
).Observethatitiseasy

toimplementacalltoL
CBC-CTS

cpa$-realbyarelatedcalltoL
CBC

cpa$-realplusasmallamountofadditional
processing.

8.21. Propagating CBC (PCBC) mode refers to the following variant of CBC mode:

Enc(k,m1‖ · · · ‖m`):
c0 ← {0, 1}

blen:
m0 := 0blen

for i = 1 to `:
ci := F (k,mi ⊕ ci−1 ⊕mi−1)

return c0‖c1‖ · · · ‖c`

Fk Fk

$

⊕ ⊕

m1 m2

c0 c1 c2

· · ·

· · ·

· · ·

(a) Describe PCBC decryption.

(b) Assuming that standard CBC mode has CPA$-security (for plaintexts that are exact
multiple of the block length), prove that PCBC mode also has CPA$-security (for the
same plaintext space).

Hint:

WritePCBCencryptionusingplainCBCencryptionasasubroutine.

(c) Consider the problem of adapting CBC ciphertext stealing to PCBC mode. Suppose
the �nal plaintext block m` has blen − j bits, and we pad it with the �nal j bits of the
previous plaintext block m`−1. Show that discarding the last j bits of c`−1 still allows
for correct decryption and results in CPA$ security.

Hint:

SeeExercise8.20.

(d) Suppose the �nal plaintext block is padded using the �nal j bits of the previous cipher-
text block c`−1. Although correct decryption is still possible, the construction is no
longer secure. Show an attack violating the CPA$-security of this construction. Why
doesn’t the proof approach from part (c) work?

Hint:

Askforseveralencryptionsofplaintextswhoselastblockis1bitlong.

161

