
The Joy of Cryptography

Mike Rosulek 〈mike@joyofcryptography.com〉
School of Electrical Engineering & Computer Science

Oregon State University, Corvallis, Oregon, USA

Draft of January 3, 2021

> Preface

The Joy of Cryptography is an undergraduate textbook in cryptography. This book evolved
from lecture notes I developed for the cs427 course at Oregon State University (and before
that, cs473 at the University of Montana).

Yes, I know that the title is ridiculous. All of the serious titles were already taken. I
hope you understand that actual joy is not guaranteed.

What Is This Book About?

This book is about the fundamentals of provable security.

I Security: Cryptography is about controlling access to information. We break apart
the nebulous concept of “security” into more speci�c goals: con�dentiality, authen-
ticity, integrity.

I Provable: We can formally de�ne what it means to be secure, and then mathemat-
ically prove claims about security. One prominent theme in the book is the logic of
composing building blocks together in secure ways.

I Fundamentals: This is an introductory book on the subject that covers the basics.
After completing this course, you will have a solid theoretical foundation that you
can apply to most real-world situations. You will also be equipped to study more
advanced topics in cryptography.

This book is not a handbook telling you which cryptographic algorithm to use in every
situation, nor a guide for securely implementing production-ready cryptographic libraries.
We do not discuss speci�c cryptographic software (e.g., PGP, Tor, Signal, TrueCrypt) or
cryptocurrencies like Bitcoin. You won’t learn how to become a hacker by reading this
book.

Who Is This Book For?

This book is for anyone who might need to secure information with cryptography, and
who is curious about what makes some things “secure” (and what makes other things
insecure). I don’t imagine that most readers of this book will develop their own novel
cryptography (e.g., designing new block ciphers), but they will be far more likely to use
and combine cryptographic building blocks — thus our focus on the logic of composition.

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021

What Background Is Needed To Understand This Book?

You will get the most out of this book if you have a solid foundation in standard under-
graduate computer science material:

I Discrete mathematics (of the kind you typically �nd in year 2 or 3 of an under-
graduate CS program) is required background. The book assumes that you are
familiar with basic modular arithmetic, discrete probabilities, simple combinatorics,
and especially proof techniques. Chapter 0 contains a brief review of some of these
topics.

I Algorithms & data structures background is highly recommended, and theory of
computation (automata, formal languages & computability) is also recommended.
We deal with computations and algorithms at a high level of abstraction, and with
mathematical rigor. Prior exposure to this style of thinking will be helpful.

Why Is Cryptography A Di�icult Subject?

It’s all the math, right? Cryptography has a reputation of being a di�cult subject be-
cause of the amount of di�cult math, but I think this assessment misses the mark. A former
victim, I mean student, summed it up bluntly when he shared in class (paraphrased):

Some other students were thinking of taking your course but were worried that
it is really math-heavy. I wouldn’t say that this course is a lot of math exactly.
It’s somehow even worse!

Thanks, I think.
Anyway, many corners of cryptography use math that most CS undergrads would �nd

quite advanced (advanced factoring algorithms, elliptic curves, isogenies, even algebraic
geometry), but these aren’t the focus of this book. Our focus is instead on the logic of
composing di�erent building blocks together in provably secure ways. Yes, you will prob-
ably learn some new math in this book — enough to understand RSA, for example. And
yes, there are plenty of “proofs.” But I honestly believe you’ll be �ne if you did well in
a standard discrete math course. I always tell my cs427 students that I’m not expecting
them to love math, proofs, and theory — I only ask them to choose not to be scared of it.

If not math, then what? In an algorithms course, I could introduce and explain con-
cepts with concrete examples — here’s what happens step-by-step when I run mergesort
on this particular array, here’s what happens when I run Dijkstra’s algorithm on this par-
ticular graph, here are 42 examples of a spanning tree. You could study these concrete
examples, or even make your own, to develop your understanding of the general case.

Cryptography is di�erent because our main concerns are higher up the ladder of
abstraction than most students are comfortable with.1 Yes, I can illustrate what happens

1Of course, abstraction is the heart of math. I may be making a false distinction by saying “it’s not the
math, it’s the abstraction.” But I think there’s something to the distinction between a CS major’s typical
math-aversion and what is really challenging about cryptography.

iii

Draft: January 3, 2021

step-by-step when you run a cryptographic algorithm on a particular input. This might
help you understand what the algorithm does, but it can never illustrate why the al-
gorithm is secure. This question of “why” is the primary focus of this book.

I Security is a global property about the behavior of a system across all possible
inputs. You can’t demonstrate security by example, and there’s nothing to see in a
particular execution of an algorithm. Security is about a higher level of abstraction.

I Most security de�nitions in this book are essentially: “the thing is secure if its outputs
look like random junk.” If I give an example that is concrete enough to show actual
inputs and outputs, and if things are working as they should, then all the outputs
will just look like meaningless garbage. Unfortunately, no one ever learned very
much by staring at meaningless garbage.

Systems are insecure when they fail to adequately look like random junk. Occasionally
they fail so spectacularly that you can actually see it by looking at concrete input and
output values (as in the case of the ECB penguin). But more often, the reason for insecurity
is far from obvious. For example, suppose an encryption scheme was insecure because the
xor of the �rst two output blocks is the same as the xor of the third and fourth output
blocks. I’m not convinced that it would be helpful to show concrete example values with
this property. What’s more, sometimes the reason for insecurity only “jumps o� the page”
on speci�c, non-obvious, choices of inputs.

If you want to be equipped to answer questions like “why is this thing secure but this
other very similar thing is not?”, then you must develop an understanding at this higher
level of abstraction. You’ll have to directly come to terms with abstract ideas like “this
algorithm’s outputs look like random junk, under these circumstances,” and the conse-
quences of these kinds of ideas. It’s hard to arrive at understanding without the usual
scafolding of concrete examples (seeing algorithms executed on speci�c inputs), but this
book is my best e�ort at making the path as smooth as I know how.

Known Shortcomings

I I’ve used this book as a primary course reference for several years now, but I still
consider it to be a draft. Of course I try my best to ensure the accuracy of the content,
but there are sure to be plenty of bugs, ranging in their severity. Caveat emptor!

I welcome feedback of all kinds — not just on errors and typos but also on the se-
lection, organization, and presentation of the material.

I I usually cover essentially this entire book during our 10-week quarters. There is
probably not enough material to sustain an entire 16-week semester, though. I al-
ways �nd it easier to polish existing material than to add completely new material.
Someday I hope to add more chapters (see the roadmap below), but for now you’ll
have to get by without some important and interesting topics.

I There is no solutions manual, and I currently have no plans to make one.

iv

Draft: January 3, 2021

Code-Based Games Philosophy

The security de�nitions and proofs in these notes are presented in a style that is known
to the research community as code-based games. I’ve chosen this style because I think it
o�ers signi�cant pedagogical bene�ts:

I Every security de�nition can be expressed in the same style, as the indistinguisha-
bility of two games. In my terminology, the games are libraries with a common
interface/API but di�erent internal implementations. An adversary is any calling
program on that interface. These libraries use a concrete pseudocode that reduces
ambiguity about an adversary’s capabilities. For instance, the adversary controls
arguments to subroutines that it calls and sees only the return value. The adversary
cannot see any variables that are privately scoped to the library.

I A consistent framework for de�nitions leads to a consistent process for proving and
breaking security — the two fundamental activities in cryptography.

In these notes, breaking a construction always corresponds to writing a program that
expects a particular interface and behaves as di�erently as possible in the presence
of two particular implementations of the interface.

Proving security nearly always refers to showing a sequence of libraries (called hy-
brids), each of which is indistinguishable from the previous one. Each of these hy-
brids is written in concrete pseudocode. By identifying what security property we
wish to prove, we identify what the endpoints of this sequence must be. The steps
that connect adjacent hybrids are stated in terms of syntactic rewriting rules for
pseudocode, including down-to-earth steps like factoring out and inlining subrou-
tines, changing the value of unused variables, and so on.

I Cryptography is full of conditional statements of security: “if A is a secure thinga-
majig, then B is a secure doohickey.” A conventional proof of such a statement would
address the contrapositive: “given an adversary that attacks the doohickey-security
of B, I can construct an attack on the thingamajig-security of A.”

In my experience, students struggle to �nd the right way to transform an abstract,
hypothetical B-attacking adversary into a successful A-attacking adversary. By
de�ning security in terms of games/libraries, we can avoid this abstract challenge,
and indeed avoid the context switch into the contrapositive altogether. In these
notes, the thingamajig-security of A gives the student a new constructive rewriting
rule that can be placed in his/her toolbox and used to bridge hybrids when proving
the doohickey-security of B.

Code-based games were �rst proposed by Shoup2 and later expanded by Bellare & Rog-
away.3 These notes adopt a simpli�ed and uni�ed style of games, since the goal is not to
encompass every possible security de�nition but only the fundamental ones. The most
signi�cant di�erence in style is that the games in these notes have no explicit Initialize

2Victor Shoup: Sequences of Games: A Tool for Taming Complexity in Security Proofs. ia.cr/2004/332
3Mihir Bellare & Philip Rogaway: Code-Based Game-Playing Proofs and the Security of Triple Encryption.

ia.cr/2004/331

v

http://ia.cr/2004/332
http://ia.cr/2004/331

Draft: January 3, 2021

or Finalize step. As a result, all security de�nitions are expressed as indistinguishability
of two games/libraries, even security de�nitions that are fundamentally about unforge-
ability. Yet, we can still reason about unforgeability properties within this framework. For
instance, to say that no adversary can forge a MAC, it su�ces to say that no adversary can
distinguish a MAC-veri�cation subroutine from a subroutine that always returns false.
An index of security de�nitions has been provided at the end of the book.

One instance where the approach falls short, however, is in de�ning collision resis-
tance. I have not been able to de�ne it in this framework in a way that is both easy to use
and easy to interpret (and perhaps I achieved neither in the end). See Chapter 11 for my
best attempt.

Other Boring Stu�

Copyright

This work is copyright by Mike Rosulek and made available under the Creative Commons
BY-NC-SA 4.0 license. Under this license, you are free to:

Share: copy and redistribute the material in any medium or format.

Adapt: remix, transform, and build upon the material.

The licensor cannot revoke these freedoms as long as you follow the following license
terms:

Attribution: You must give appropriate credit, provide a link to the license, and in-
dicate if changes were made. You may do so in any reasonable man-
ner, but not in any way that suggests the licensor endorses you or
your use.

NonCommercial: You may not use the material for commercial purposes.

ShareAlike: If you remix, transform, or build upon the material, you must dis-
tribute your contributions under the same license as the original.

You may not apply legal terms or technological measures that legally restrict others from
doing anything the license permits.

About the cover

The cover design consists of assorted shell illustrations from Bibliothèque conchyliologique,
published in 1846. The images are no longer under copyright, and were obtained from the
Biodiversity Heritage Library (h�p://biodiversitylibrary.org/bibliography/11590).

Why shells? Just like a properly deployed cryptographic primitive, a properly de-
ployed shell is the most robust line of defense for a mollusk. To an uniformed observer, a
shell is just a shell. However, there are many kinds of shells, each of which provides pro-
tection against a di�erent kind of attack. The same is true of the cryptographic building
blocks we study in this course.

vi

http://biodiversitylibrary.org/bibliography/11590

Draft: January 3, 2021

Acknowledgements

Some �nancial support for writing this book has been kindly provided by the National
Science Foundation (awards #1149647, #1617197) and the Oregon State University Open
Textbook Initiative.

Thanks to Brent Carmer & Leo Reyzin for many thoughtful suggestions and comments
about the material. I am also grateful for the many students in cs427 who have reported
countless bugs.

Changelog

2021-01-03 Chapter 2 (provable security basics) is now much more explicit about how security de�ni-
tions are a “template” that we “�ll in” with speci�c algorithms (e.g., Enc, Dec). Chapter 5
(PRGs) now compares/contrasts two approaches for extending the stretch of a PRG — one
secure and one insecure. This chapter also introduces a “socratic dialogue” approach to
thinking about security proofs (previously there was only one such dialogue in Chapter
7). Hints to the exercises are now upside-down for extra security!

2020-02-05 Overhaul of Chapter 2 (provable security fundamentals). The structure is arguably more
coherent now. The total number of examples is increased. I now also include both a
successful security proof and an example of where an attempted security proof goes wrong
(since the scheme is actually insecure).

2020-01-09 High-frequency winter revisions are continuing. This update focuses entirely on Chapter
13 (RSA): Many many more examples are included, in Sage! Discussion of CRT is (hope-
fully) clearer. Digital signatures content is �nally there. There’s a new discussion of how
to actually compute modular exponentiation on huge numbers, and a couple fun new ex-
ercises.

2020-01-05 Revising in preparation for teaching CS427 during Winter term.

I Chapter 0: More examples. Expanded treatment of modular arithmetic. Tips & tricks
for modular arithmetic and probabilities.

I Chapter 1: Moderate reorganization of “things that cryptographers blissfully ig-
nore.”

I Chapters 12–15: Moved AEAD chapter into position as chapter 12. Public-key stu�
is now chapters 13–15.

I Chapter 13 (RSA): More (but not enough) examples of multiplicative inverses. New
discussion of algorithmic aspects of exponentiation mod N . This chapter will even-
tually focus on signatures exclusively, but we’re not year that. Expect updates over
the next few months.

2019-03-21 Chapter 11 (hash functions) signi�cant revisions: no more impenetrable security de�nition
for collision-resistance; explicit treatment of salts; better examples for Merkle-Damgård
and length-extension. New draft Chapter 15 on AEAD (after next revision will be inserted
after Chapter 11).

vii

Draft: January 3, 2021

2019-01-07 Extensive revisions; only the major ones listed here. Lots of homework problems
added/updated throughout. I tried to revise the entire book in time for my Winter 2019
o�ering, but ran out of time.

I Added a changelog!

I Chapter 1: Kerckho�s’ Principle now discussed here (previously only mentioned for
the �rst time in Ch 2).

I Chapter 2: Now the concepts are introduced in context of speci�c one-time security
de�nition, not in the abstract. More examples of interchangeable libraries.

I Chapter 3: Polynomial interpolation now shown explicitly with LaGrange polyno-
mials (rather than Vandermonde matrices). Full interpolation example worked out.

I Chapter 4: Better organization. Real-world contextual examples of extreme (large
& small) 2n values. Full proof of bad-event lemma. Generalized avoidance-sampling
libraries.

I Chapter 5: Motivate PRGs via pseudo-OTP idea. Better illustration of PRG function,
and conceptual pitfalls. How NOT to build a PRG. New section on stream cipher &
symmetric ratchet.

I Chapter 6: Combined PRF & PRP chapters. Motivate PRFs via m 7→ (r , F (k, r) ⊕m)
construction. Better discussion of eager vs. lazy sampling of exponentially large
table. How NOT to build a PRF. New section on constructing PRG from PRF, and
more clarity on security proofs with variable number of hybrids. Better illustrations
& formal pseudocode for Feistel constructions.

I Chapter 7: Other ways to avoid insecurity of deterministic encryption (stateful &
nonce-based). Ridiculous Socratic dialog on the security of the PRF-based encryp-
tion scheme.

I Chapter 8: Compare & contrast CTR & CBC modes.

Road Map

The following topics are shamefully missing from the book, but are planned or being con-
sidered:

1. authenticated key agreement, secure messaging / ratcheting (high priority)

2. random oracle & ideal cipher models (medium priority)

3. elliptic curves, post-quantum crypto (but I would need to learn them �rst)

4. DH-based socialist millionaires, PSI, PAKE, simple PIR, basic MPC concepts (low
priority)

viii

Contents

0 Review of Concepts & Notation 1
0.1 Logs & Exponents . 1
0.2 Modular Arithmetic . 1
0.3 Strings . 4
0.4 Functions . 5
0.5 Probability . 5
0.6 Notation in Pseudocode . 7
0.7 Asymptotics (Big-O) . 8

1 One-Time Pad & Kerckho�s’ Principle 10
1.1 What Is [Not] Cryptography? . 10
1.2 Speci�cs of One-Time Pad . 13

2 The Basics of Provable Security 21
2.1 How to Write a Security De�nition . 21
2.2 Formalisms for Security De�nitions . 25
2.3 How to Demonstrate Insecurity with Attacks 30
2.4 How to Prove Security with The Hybrid Technique 33
2.5 How to Compare/Contrast Security De�nitions 38

3 Secret Sharing 47
3.1 De�nitions . 47
3.2 A Simple 2-out-of-2 Scheme . 51
3.3 Polynomial Interpolation . 54
3.4 Shamir Secret Sharing . 58
3.5? Visual Secret Sharing . 62

4 Basing Cryptography on Intractable Computations 67
4.1 What Quali�es as a “Computationally Infeasible” Attack? 67
4.2 What Quali�es as a “Negligible” Success Probability? 70
4.3 Indistinguishability . 72
4.4 Birthday Probabilities & Sampling With/out Replacement 76

5 Pseudorandom Generators 85
5.1 De�nitions . 85
5.2 Pseudorandom Generators in Practice . 87
5.3 Application: Shorter Keys in One-Time-Secret Encryption 90
5.4 Extending the Stretch of a PRG . 92
5.5? Applications: Stream Cipher & Symmetric Ratchet 98

6 Pseudorandom Functions & Block Ciphers 106
6.1 De�nition . 107
6.2 PRFs vs PRGs; Variable-Hybrid Proofs . 110
6.3 Block Ciphers (Pseudorandom Permutations) 120
6.4 Relating PRFs and Block Ciphers . 121

© Copyright Mike Rosulek. Creative Commons BY-NC-SA 4.0. Latest version at joyofcryptography.com.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://joyofcryptography.com

Draft: January 3, 2021

6.5 PRFs and Block Ciphers in Practice . 124
6.6? Strong Pseudorandom Permutations . 125

7 Security Against Chosen Plaintext Attacks 130
7.1 Limits of Deterministic Encryption . 130
7.2 Pseudorandom Ciphertexts . 133
7.3 CPA-Secure Encryption Based On PRFs . 135

8 Block Cipher Modes of Operation 144
8.1 A Tour of Common Modes . 144
8.2 CPA Security and Variable-Length Plaintexts 147
8.3 Security of OFB Mode . 149
8.4 Padding & Ciphertext Stealing . 152

9 Chosen Ciphertext Attacks 162
9.1 Padding Oracle Attacks . 162
9.2 What Went Wrong? . 165
9.3 De�ning CCA Security . 168
9.4? A Simple CCA-Secure Scheme . 171

10 Message Authentication Codes 182
10.1 De�nition . 182
10.2? A PRF is a MAC . 186
10.3 MACs for Long Messages . 191
10.4 Encrypt-Then-MAC . 194

11 Hash Functions 201
11.1 Security Properties for Hash Functions . 201
11.2 Merkle-Damgård Construction . 205
11.3 Hash Functions vs. MACs: Length-Extension Attacks 208

12 Authenticated Encryption & AEAD 214
12.1 De�nitions . 215
12.2 Achieving AE/AEAD . 217
12.3 Carter-Wegman MACs . 218
12.4 Galois Counter Mode for AEAD . 225

13 RSA & Digital Signatures 227
13.1 “Dividing” Mod n . 227
13.2 The RSA Function . 232
13.3 Digital Signatures . 237
13.4 Chinese Remainder Theorem . 240
13.5 The Hardness of Factoring N . 244

14 Di�e-Hellman Key Agreement 254
14.1 Cyclic Groups . 254
14.2 Di�e-Hellman Key Agreement . 255

x

Draft: January 3, 2021

14.3 Decisional Di�e-Hellman Problem . 256

15 Public-Key Encryption 260
15.1 Security De�nitions . 260
15.2 One-Time Security Implies Many-Time Security 261
15.3 ElGamal Encryption . 264
15.4 Hybrid Encryption . 267

Index of Security De�nitions 271

xi

