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> “Encrypt” truth table of each gate
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> Garbled encoding = one label per wire
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> Only one ciphertext per
gate is decryptable
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> Garbled encoding = one label per wire

Garbled evaluation:

> Only one ciphertext per
gate is decryptable

> Result of decryption =
value on outgoing wire
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Applications: 2PC and more

garbled circuit f,
garbled input x,
all labels of output wires

>y Y
(S
input ¢ Y E
—_— DR oT NN %
wire labels ey

fixy)

In 2PC: Parties agree on fto evaluate = garbling doesn’t have to hide f

In other applications of garbled circuits it is helpful to hide f.



Gate-Hiding Garbled Circuits

Garbled circuit f + garbled
Input x

reveals no more than

fix) + topology of f

In particular, garbling hides:
> Values on non-output wires of f(including inputs x)
» Type of each gate (AND, OR, XOR, etc).



Garbled circuits: state of the art

size (XA) | garble cost | eval cost |assump.
XOR AND |XOR AND |XOR AND
Textbook Yao 4 4 1 PRF
[Yao86,BMR90]
GRR3 3 4 1 PRF
[NPS99]
Free XOR 0 3 0 4 0 1 | circ+RK
[KS08]
GRR2 2 2 4 4 1 1 PRF
[PSSW09]
Half-gates 0 2 4 4 2 2 | circ+RK
[ZRET5]
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Garbled circuits: state of the art

size (XA) | garble cost | eval cost |assump. |gate hiding?

XOR AND | XOR AND |XOR AND
Textbook Yao 4 4 1 PRF yes
[Yao86,BMR90]
GRR3 3 4 1 PRF yes
[NPS99]
Free XOR 0 3 0 4 0 1 | circ+RK no
[KS08]
GRR2 2 2 4 4 1 1 PRF no
[PSSW09]
Half-gates 0 2 4 4 2 2 | circ+RK no
[ZRE15]

“no” = evaluation procedure depends on type of gate (e.g., XOR, AND)
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Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF
GRR3 [NP599] 304 0o [1 o0 PRF
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Gate-hiding state of the art

size | garble cost | eval cost |assump.| gates
(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 4 0 1 0 PRF any
GRR3 [NPS99] 3 4 0 1 0 PRF any
KKS 2 |3 0 1 0 circ+RK [ symmetric
[KempkaKikuchiSuziki16]
WM [WangMalluhi17] 1 1 1 circ+RK | symmetric
this paper #1 2 1 1 PRF | non-const
this paper #2 0 1 0 PRF | non-const

What kind of gates are actually supported?

Literally any gate
g:10,1)* = {0,1)

Symmetric gates

)

only: g(1,0) = g(0,1)

All except constant
gla,b) =0, gla,b) =1




Our contribution

Two new garbled circuit constructions:

\4

Gate-hiding

\4

Minimal size
2/ bits/gate matches state of the art for standard garbling

v

Minimal hardness assumption: (PRF)

> More natural class of gates
NOT gates can be absorbed into neighboring gates = free
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New Construction #1
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GRR2 [PSSW09]| 2 |
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4 | 1 | PRF
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—>—
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New Construction #1

‘ size (XA) ‘ garble cost ‘ eval cost ‘ assump. ‘ gate hiding?
GRR2 [PSSW09] ‘ 2 ‘ 4 ‘ 1 ‘ PRF ‘ no < why not?

Odd-parity gate: Even-parity gate:

— ) — @ >

000 0 0|1« even #of 1s
0 1|{1|« odd # of 1s 0 1|0
10(0 10]0
11]0 1 1|1|«< even # of 1s

[PinkasSchneiderSmartWilliams09]: different techniques for odd/even parity!

> Our (simple) observation: can adapt garbler method so that
odd-parity evaluation works for even-parity gates too [details in
backup slides]



New Construction #1

Garbled gate size: 21 bits

Garbling cost:
> Finite field operations ~ 2 interpolations of deg-2 polynomials

> 4 calls to cryptographic function E

Evaluation cost:
> 1 interpolation of deg-2 polynomial

> 1 call to cryptographic function E

Assumption: PRF

Gates supported: All except the two constant gates
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Garbled gate size: 21 bits

Garbling cost:
> Finite field operations ~ 2 interpolations of deg-2 polynomials

> 4 calls to cryptographic function E

Evaluation cost:
» 1interpolation of deg-2 polynomial

> 1 call to cryptographic function E

Assumption: PRF

Gates supported: All except the two constant gates
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> e.g., least significant bit of label

»

> equivalent to including a “secret NOT gate
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Decouple wire label subscript from truth value

Ag, A
é‘:}ﬂ » random association betwen (0,1) & (T,F)

B1, By on each wire

Make wire label subscript public to evaluator

K1 = H(Ao.Bo) | C1 o .
» e.g., least significant bit of label
Ko = H(Ao,B1) | C1 & & )
Kz = H(A1,Bo) | Co » equivalent to including a “secret NOT gate”
Ky = H(A1,B1) | C1

= Evaluator’s behavior can depend on wire
label subscripts (“input combination”)

Use K = H(A;, B)) as unique key for each input
combination

» H can be built from a PRF in a simple way



Standard GC Tricks

Decouple wire label subscript from truth value

Ag, A
é‘:}ﬂ » random association betwen (0,1) & (T,F)

B1, By on each wire

Make wire label subscript public to evaluator

K1 @ Cy o/ .
>
Ko ® Cy e.g., least significant bit of label
K3 ® Co » equivalent to including a “secret NOT gate”
Ky ® Cq

= Evaluator’s behavior can depend on wire
label subscripts (“input combination”)

Use K = H(A;, B)) as unique key for each input
combination

» H can be built from a PRF in a simple way
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> ... choose them to make Tst ciphertext zero
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> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
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> First 2 ciphertexts are linear combination of last 2



New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co =Ky
Ci=K o Ky ® Ky

Ao, A1 I:: Co,Cy
Bo, By

Ks ® Cy
Ky ® Cy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

> First 2 ciphertexts are linear combination of last 2 = don’t send
them! (evaulator can reconstruct first 2 “virtually”)



New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?




New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?
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By, B1 E

Ky ® Cy
Ky ® C;
Ky @ Cy
Ky ® Cy
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Co =Ky
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j[: Co.C1

By, By

Ki ® Cy| « always 0*
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Fli 3D Co.C1
By, By
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Ky @& Cq
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Ky ® Cy

> (Same as before) Instead of choosing output wire labels randomly . ..

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero



New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

G, < {0,1}"
Fli 3D Co, C1
Bo, By
Ki ® Cy| « always 04
Ky @& Cq
Ks @ C; — xoris Ko ® K3 ® Ky & Cy
Ky ® Cy

> (Same as before) Instead of choosing output wire labels randomly . ..

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero 777

> But xor of other 3 ciphertexts already fixed! (C; cancels out!)
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. reconstruct “virtual row” ciphertext as linear combination
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Compute key unique to this input combination



New Construction #2

Abstracting evaluator’s behavior in [GueronLindelINofPinkas15]:

given gate values
key derived from input labels -~ oo ,

C .= k,'éBO(,’GEBﬂ,‘G’

output label - - virtual row
From the two given values for this garbled gate . ..
. reconstruct “virtual row” ciphertext as linear combination

Compute key unique to this input combination and decrypt virtual row
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a;, i coefficients are bits that depend on input combination.
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a;, Bi coefficients are bits that depend on input combination.
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Want evaluation to work like this:
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New Construction #2

C=Kioa G f G

a;, Bi coefficients are bits that depend on input combination.

[GueronLindelINofPinkas15]: Our idea:

> fixed & public » random & secret

Want evaluation to work like this:
» Garbled gate: G, G’ plus encryptions of (a1,f1),. .., (a4, f4)
» Evaluator can only decrypt appropriate ;, f;
» Computes output label as C := K; ® «;G ® ;G
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To have correctness, we need:

Co =Ky @alGGaﬁlG’
Co = Ky GB(ZQGGB,BzG,
Ci=Ks®a3G® 3G
Co = Ky 690{4063,346'
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To have correctness, we need:
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New Construction #2

To have correctness, we need:

Co=Kioan1Ga ,81 G K 1 0 o 181 Co
Ci=Ky,® G ﬂgcl = Ko . 0 1 as ﬂg Cq
Ci=K;0a3Ga ﬂgG/ K3 ] 1 as ﬁg G
Ci=Ki®asG ﬁ4G’ Ky 0 1 ag ﬁ4 G

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (a;, §;) uniformly, subject to matrix being invertible,
then solves for Cy, C1,G, G’ given Ki,...,Ky

v

Different gate types induce different distribution over (a;, §;) bits

v

Evaluator sees only one particular (a;, 8;) value (others encrypted)

v

Different distributions have same marginals = hides gate type

> (matrix invertible unless this is a constant gate)



New Construction #2

Garbled gate size: 21 bits, plus 8 bits to encrypt «;, f; values

Garbling cost:
> 4 calls to cryptographic function E

» no finite field operations (just xor)

Evaluation cost:
> 1 call to cryptographic function E

» no finite field operations (just xor)

Assumption: PRF

Gates supported: All except the two constant gates



Summary

Two new garbled circuit constructions:

> Gate-hiding

> Minimal size (21 bits/gate)

> Minimal hardness assumption: (PRF)

> More natural class of gates (all gates except two constant gates)

size | garble cost | eval cost |assump.| gates

(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 4 0 1 0 PRF any
GRR3 [NPS99] 304 o |1 o PRF any
[KempkaKikuchiSuziki16] [ 2 3 0 1 0 circ+RK | symm
[WangMalluhi17] 2 3 1 1 1 circ+RK | symm
this paper #1 2 | 4 2 1 1 PRF | non-const
this paper #2 2 | 4 0 1 0 PRF | non-const



the end.
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Starting point:
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Bo, By
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Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#

By, By

K2 = H(Ao,Bl) ~> learn C1

P = uniq deg-2 poly thru
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(2,K2), (5, P(5)), (6, P(6))



New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#

KQ = H(Ao,Bl) ~> learn C1

P(6)

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))
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Starting point:
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I
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A1,B1) ~ learn Cy

II

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, i), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

:Alolji
Bo
P(5)
P(6)
P(G).
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New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

K3 = H(A1,Bg) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, K3), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Bo
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Starting point:
[PinkasSchneiderSmartWilliams09]:
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K3 = H(A1,Bg) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, i), (5, P(5)), (6, P(6))
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New Construction #1

Starting point: Co = P(0); C1 = Q(0)
[PinkasSchneiderSmartWilliams09]:

Aq Co
Idea: Evaluator can know exactly one of: j:)i

K3 = H(A1,Bg) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

P = uniq deg-2 poly thru
(1.K0). (5. P(5)). (6. P(6)) Ay

» Evaluate polynomial at zero Q = uniq deg-2 poly thru
(2. K2). (5, P(5)). (6, P(6))



New Construction #1

Starting point: Co = P(0); C1 = Q(0)
[PinkasSchneiderSmartWilliams09]:

Ao &
Idea: Evaluator can know exactly one of: j:)i
B

P(5)
KQ = H(Ao,Bl) ~> learn C1 P(G)
(2, K.
P(6)
To evaluate a gate: 2y
(0)
» Compute relevant K; & interpolate:

P = uniq deg-2 poly thru
(i, Ki), (5, P(5)), (6, P(6)) (1,K1),(3,K3), (4, Ky)

» Evaluate polynomial at zero Q = uniq deg-2 poly thru
(2. K2). (5, P(5)). (6, P(6))



New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Co,C
Idea: Evaluator can know exactly one of: #

K1 = H(Ap, By) ~ learn Cy
Ko = H(Ag,B1) ~ learn C;
K3 = H(A1,Bg) ~ learn Cy
Ky = H(A1,By) ~ learn Gy

To evaluate a gate:

» Compute relevant K; & interpolate:

P = uniq deg-2 poly thru
i, Ki), (5, P(5)), (6, P(6
(i, Ki). (5, P(5)). (6, P(6)) (1K), (3, Ks), (4, Ka)
» Evaluate polynomial at zero Q = uniq deg-2 poly thru

(2,K2), (5, P(5)), (6, P(6))
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[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate
> odd # of 1s in the truth table (e.g., AND, NOR)

» 3 of (i,K;) on 1 polynomial, other (i, K;) on another polynomial
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New Construction #1

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate
> odd # of 1s in the truth table (e.g., AND, NOR)

» 3 of (i,K;) on 1 polynomial, other (i, K;) on another polynomial

They show a different technique for even-parity gates (e.g., XOR, XNOR)

Our contribution: J

Can make odd-parity evaluation procedure work for even parity gates too!
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Same as before

Evaluator can know exactly one of:

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero
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New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

K1 = H(Ap,By) ~ learn Cy

Ky = H(A1,B1) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Need:
> deg-2 polynomials P& Q
> P(5) = Q(5); P(6) = Q(6)

» Pgoes through (1,K1), (4, Ky)

K1 10 11 12

Ky| = |40 41 42
0 50 51 52 _50 _51 _52
0 69 6! 62 —69 —6! —62
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New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

Ky = H(Ap,B1) ~ learn C;
Ks = H(A1,Bp) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Need:

v

v

v

v

K1
K2
K3
Ky

deg-2 polynomials P& Q
P(5) = Q(5); P(6) = Q(6)

P goes through (1, K1), (4, Ky)
Q goes through (2, Kz), (3, K3)

10 71 72
20 ol 92
30 31 32

T |40 41 42
50 51 52 _50 _51 _52
69 6! 62 —69 —6! —62
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What we need (for evaluation to work):
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Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)
> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))
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What we need (for evaluation to work):

P(1) = Kq K1 10 11 12 po
Q(2) = Ko Ko 20 ol 92| (p
Q(3) = K3 Ks| _ 30 31 32 ||po
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Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)

> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))

Main observation: this matrix is invertible for any non-constant gate
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Main observation: this matrix is invertible for any non-constant gate



New Construction #1

What we need (for evaluation to work):

Q1) = Ky K1 10 11 127 [po
Q(2) = Ko K2 20 2ol 22| p;
P(3) = K3 Ks| |30 3! 32 p2
P(4) = Ky [ T |Kg| T[40 41 42 %
P(5)-Q(5) =0 0 50 51 52 _50 _51 52| [qy
P(6) — Q(6) = 0 0 69 6 62 -6 —6! —62| |q2
Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)

> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))

Main observation: this matrix is invertible for any non-constant gate




