Improvements for
Gate-Hiding Garbled Circuits

Mike Rosulek

D,

\
)

ia.cr/2017/976

Improvements for
Gate-Hiding Garbled Circuits

77

Mike Rosulek

uuuuuuuuuu

??

7

7

(YO

]

ia.cr/2017/976

Garbled circuit framework w.s

__D\ E

Garbled circuit framework s

Garbled circuit framework s

M_D Eo, Ey

lo, 1

Bo,Bl \ FO’Fl
/

Co, C1

Dy, Dy

000 000 0 00 0 0]0 000
0 11 0 11 0 11 0 1|1 0 11
10(0 101 10(0 1 0|0 101
1 1]0 1 1]0 1 11]0 1 1|0 1T 11

Garbling a circuit:

> Pick random labels W,, W; on each wire

Garbled circuit framework s

M_D Eo, Ey

Bo,Bl \ FO’Fl
Co, C1
Dy, Dy

lo, 1

Ao Bo|Eo| |Ao Bo|Fo| |Co Do|Go| |Fo Go|Ho Eo Ho|lo
Ao B1|Ey Ap Bi|A| |Co D1|G1| |Fo Gi|Hy Ep Hi|h
A1 Bo|Eo| |A1 Bo|Fi| |C1 Do|Go| |Ff1 Go|Ho E1 Ho|h
A1 Bi|Eo A1 Bi|fo| |C1 D1|Go| | Gi|Ho Ey Hi|hh

Garbling a circuit:

> Pick random labels W,, W; on each wire

Garbled circuit framework s

M_D Eo, Ey

By, By
Co, C1
Dy, Dy

Ea,,8, (Eo)
EAO,Bl (El)
Ea, .8, (Eo)
Ea,.5, (Eo)

Garbling a circuit:
> Pick random labels W,, W; on each wire

> “Encrypt” truth table of each gate

Garbled circuit framework s

M_D Eo, Ey

By, By
Co, C1
Dy, Dy

Ea,,8, (Eo)
EAO,Bl (El)
Ea, .8, (Eo)
Ea,,5, (Eo)

Garbling a circuit:
> Pick random labels W,, W; on each wire
> “Encrypt” truth table of each gate

> Garbled circuit = all encrypted gates

Garbled circuit framework s

D

By)

7
Co
D
Eaq,8,(E0) | | Eag,8,(F0) | |Ec,,00(C0) | | Ery,,Go (Ho) | | Eky,H, (To)
Eao,8, (E1) | |Eag,8,(F1) | |Ec,,p,(C1) | | ERy,G, (H1) | | Egp,hy (1)
Ea,,8,(Eo) | |Eay,B,(F1) | |Ec,,0,(Go) | | EF,co(Ho) | | EEy,H, (1)
Eay.8 (Eo) | |Eay.8,(Fo) | |Ec,.p,(Go) | |Er.G,(Ho) | |Eg,n, (h)

Garbling a circuit:
> Pick random labels W,, W; on each wire
> “Encrypt” truth table of each gate
> Garbled circuit = all encrypted gates

> Garbled encoding = one label per wire

Garbled circuit framework s

)

By \

)
Co
D
E ,Bo() EAU,B()(FU) ECO,DO(GO) EF(),G(J(HO) EE{J,H{)(’U)
E o (")) |Baps, (F1)| |Eco.p,(C1) | | Ery6, (H1) || EEo,hy (1)
Ea,,B,(E0) | |Eay,8,(F1) | |Ec,,p,(Go) | |EF,c,(Ho) | |EE,Hy(h)
Eay,)| |Eaps, (Fo) | |Ecp.p,(Go) | |EBr.c, (Ho)| |Eeg,m, (1)

Garbling a circuit:
> Pick random labels W,, W; on each wire
> “Encrypt” truth table of each gate
> Garbled circuit = all encrypted gates

> Garbled encoding = one label per wire

Garbled evaluation:

> Only one ciphertext per
gate is decryptable

Garbled circuit framework s

i -

By \] F
)
Co
D

E 8, (") L |E 8o (") | [Eco.00(Go) | |EFRyGo(Ho) | | EEo,H,(lo)
E o COPHE o ()] |Eco.ni(G1) | | By (H1) | | Bk, hy (1)
Ea,,8,(Eo) | |Eay,B,(F1) | |Ec,,0,(Go) | | EF,co(Ho) | | EEy,H, (1)
EAL,)]EAL, () EC],D1(GO) EFlaGL(HO) EEl,Hl(Il)

Garbling a circuit:
> Pick random labels W,, W; on each wire
> “Encrypt” truth table of each gate
> Garbled circuit = all encrypted gates

> Garbled encoding = one label per wire

Garbled evaluation:

> Only one ciphertext per
gate is decryptable

> Result of decryption =
value on outgoing wire

Garbled circuit framework s

i -

By \] F
/i
Co G
Dy
E B (") [B 8o (") | o (©0) || Bro,Go (Ho) || B, o (fo)
B (CO)PHE 0 () [Bey,0, (C1) | ERo, Gy (H1) | B,y (1)
Eay,80(E0) | | Bay8,(FL) | |E .0 (“0) | |ER.co(Ho) | | BEy,Ho (1)
Ea,o ()] [Ba, COF[E o, (“)| |Er.c (Ho) | |EE.H, (h)
Garbling a circuit: Garbled evaluation:
> Pick random labels Wj, W; on each wire > Only one ciphertext per

> “Encrypt” truth table of each gate gate is decryptable

> Result of decryption =

> Garbled circuit = all encrypted gates
value on outgoing wire

> Garbled encoding = one label per wire

Garbled circuit framework s

i -

By \] F
/i
Co G Ho
D
E B (") T E 8o (") | B (C0) | Br Lo (0) || B, o (o)
Eo o () FHE 0 (D) | B, (G1) [HEr 6, (1) | B,y (H)
Ea,,8, (Eo) Ea,.8,(F1) E (“0) P Br,c (1) Egy,Hy ()
]EAL, () E/h () E Dl() EFl,GL(H()) EEl,Hl(Il)
Garbling a circuit: Garbled evaluation:
> Pick random labels Wj, W; on each wire > Only one ciphertext per

> “Encrypt” truth table of each gate gate is decryptable

> Result of decryption =
value on outgoing wire

v

Garbled circuit = all encrypted gates

v

Garbled encoding = one label per wire

Garbled circuit framework s

i S—
lo

By \] F
/i
Co G Ho
D
BB ("0) T E LB () | B (C0) [Br Lo (00) || B, o (To)
Eo o (COPYE e (0) 1 Beony (G1) | Er L6, (V1) | By, (1)
Eay.8,(E0) | |Baybo (FL) [Be 0 (00) [Br, o () | E: Ho (1)
]EAL, () E/h () E Dl() EFL,GL(HO) E s ()
Garbling a circuit: Garbled evaluation:
> Pick random labels Wj, W; on each wire > Only one ciphertext per

> “Encrypt” truth table of each gate gate is decryptable

> Result of decryption =
value on outgoing wire

v

Garbled circuit = all encrypted gates

v

Garbled encoding = one label per wire

Applications: 2PC and more

Applications: 2PC and more

garbled circuit f,
garbled input x,
all labels of output wires

L4

.":}z
N ~
\<

Applications: 2PC and more

garbled circuit f,
garbled input x,
all labels of output wires

input ¢ Y E
oT

wire labels

garbled y

Applications: 2PC and more

garbled circuit f,
garbled input x,
all labels of output wires

(S
input ¢ Y E
—_— OT %
wire labels —

garbled y

N

fixy)

Applications: 2PC and more

garbled circuit f,
garbled input x,
all labels of output wires

>y Y
(S
input ¢ Y E
E—— o] oT N i
wire labels ey
fix.y)

In 2PC: Parties agree on fto evaluate = garbling doesn’t have to hide f

Applications: 2PC and more

garbled circuit f,
garbled input x,
all labels of output wires

>y Y
(S
input ¢ Y E
—_— DR oT NN %
wire labels ey

fixy)

In 2PC: Parties agree on fto evaluate = garbling doesn’t have to hide f

In other applications of garbled circuits it is helpful to hide f.

Gate-Hiding Garbled Circuits

Garbled circuit f + garbled
Input x

reveals no more than

fix) + topology of f

In particular, garbling hides:
> Values on non-output wires of f(including inputs x)
» Type of each gate (AND, OR, XOR, etc).

Garbled circuits: state of the art

size (XA) | garble cost | eval cost |assump.
XOR AND |XOR AND |XOR AND
Textbook Yao 4 4 1 PRF
[Yao86,BMR90]
GRR3 3 4 1 PRF
[NPS99]
Free XOR 0 3 0 4 0 1 | circ+RK
[KS08]
GRR2 2 2 4 4 1 1 PRF
[PSSW09]
Half-gates 0 2 4 4 2 2 | circ+RK
[ZRET5]

Garbled circuits: state of the art

size (XA) | garble cost | eval cost |assump. |gate hiding?
XOR AND |XOR AND |XOR AND
Textbook Yao 4 4 1 PRF yes
[Yao86,BMR90]
GRR3 3 4 1 PRF yes
[NPS99]
Free XOR 0 3 0 4 0 1 | circ+RK no
[KS08]
GRR2 2 2 4 4 1 1 PRF no
[PSSW09]
Half-gates 0 2 4 4 2 2 | circ+RK no
[ZRET5]

Garbled circuits: state of the art

size (XA) | garble cost | eval cost |assump. |gate hiding?

XOR AND | XOR AND |XOR AND
Textbook Yao 4 4 1 PRF yes
[Yao86,BMR90]
GRR3 3 4 1 PRF yes
[NPS99]
Free XOR 0 3 0 4 0 1 | circ+RK no
[KS08]
GRR2 2 2 4 4 1 1 PRF no
[PSSW09]
Half-gates 0 2 4 4 2 2 | circ+RK no
[ZRE15]

“no” = evaluation procedure depends on type of gate (e.g., XOR, AND)

Gate-hiding state of the art

size | garble cost | eval cost |assump.

(xA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF
GRR3 [NP599] 304 0o [1 o0 PRF

Gate-hiding state of the art

size | garble cost | eval cost |assump.
(xA)| H interp | H interp

Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF
GRR3 [NPS99] 3 | 4 0 1 0 PRF
KKS 2 3 0 1 0 circ+RK

[KempkaKikuchiSuziki16]
WM [WangMalluhi17] 2 |3 1 1 1 circ+RK

Gate-hiding state of the art

size | garble cost | eval cost |assump.

(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF
GRR3 [NPS99] 3 |4 0 1 0 PRF
KKS 2 |3 0 1 0 circ+RK
[KempkaKikuchiSuziki16]
WM [WangMalluhi17] 2 3 1 1 1 circ+RK
this paper #1 2 | 4 2 1 1 PRF
this paper #2 2 | 4 0 1 0 PRF

Gate-hiding state of the art

size | garble cost | eval cost |assump.| gates
(XA)| H interp | H interp

Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF

GRR3 [NPS99] 304 0o |1 o0 PRF

KKS 2 3 0 1 0 circ+RK

[KempkaKikuchiSuziki16]

WM [WangMalluhi17] 1 1 1 circ+RK

this paper #1 2 1 1 PRF

this paper #2 0 1 0 PRF

What kind of gates are actually supported?

Gate-hiding state of the art

size | garble cost | eval cost |assump.| gates
(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF any
GRR3 [NPS99] 3 4 0 1 0 PRF any
KKS 2 3 0 1 0 circ+RK
[KempkaKikuchiSuziki16]
WM [WangMalluhi17] 2 3 1 1 1 circ+RK
this paper #1 2 |4 2 1 1 PRF
this paper #2 2 | 4 0 1 0 PRF

What kind of gates are actually supported?

Literally any gate
g:10,1)> - {0,1}

Gate-hiding state of the art

size | garble cost | eval cost |assump.| gates
(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 | 4 0 1 0 PRF any
GRR3 [NPS99] 3 4 0 1 0 PRF any
KKS 2 |3 0 1 0 circ+RK [symmetric
[KempkaKikuchiSuziki16]
WM [WangMalluhi17] 1 1 1 circ+RK | symmetric
this paper #1 2 1 1 PRF
this paper #2 0 1 0 PRF

What kind of gates are actually supported?

Literally any gate
g:10,1)> - {0,1}

Symmetric gates

)

only: g(1,0) = g(0,1)

Gate-hiding state of the art

size | garble cost | eval cost |assump.| gates
(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 4 0 1 0 PRF any
GRR3 [NPS99] 3 4 0 1 0 PRF any
KKS 2 |3 0 1 0 circ+RK [symmetric
[KempkaKikuchiSuziki16]
WM [WangMalluhi17] 1 1 1 circ+RK | symmetric
this paper #1 2 1 1 PRF | non-const
this paper #2 0 1 0 PRF | non-const

What kind of gates are actually supported?

Literally any gate
g:10,1)* = {0,1)

Symmetric gates

)

only: g(1,0) = g(0,1)

All except constant
gla,b) =0, gla,b) =1

Our contribution

Two new garbled circuit constructions:

\4

Gate-hiding

\4

Minimal size
2/ bits/gate matches state of the art for standard garbling

v

Minimal hardness assumption: (PRF)

> More natural class of gates
NOT gates can be absorbed into neighboring gates = free

New Construction #1

| size (XA) | garble cost | eval cost | assump. | gate hiding?

GRR2[Psswoo]| 2 | 4 [1 | PRF | no

New Construction #1

| size (XA) | garble cost | eval cost | assump. | gate hiding?

GRR2[Psswo9]| 2 | 4 | 1 | PRF | no« whynot?

New Construction #1

‘ size (XA) ‘ garble cost ‘ eval cost ‘ assump. ‘ gate hiding?

GRR2 [PSSW09]| 2 |

Odd-parity gate:

—

_ a0 o

Y

« odd # of 1s

(= =

4 | 1 | PRF

Even-parity gate:

no < why not?

—>—

_ a0 o

—_ O = O

«—even # of 1s

«—even # of 1s

New Construction #1

‘ size (XA) ‘ garble cost ‘ eval cost ‘ assump. ‘ gate hiding?
GRR2 [PSSW09] ‘ 2 ‘ 4 ‘ 1 ‘ PRF ‘ no < why not?

Odd-parity gate: Even-parity gate:

—) — @ >

000 0 0|1« even #of 1s
0 1|{1|« odd # of 1s 0 1|0
10(0 10]0
11]0 1 1|1|«< even # of 1s

[PinkasSchneiderSmartWilliams09]: different techniques for odd/even parity!

> Our (simple) observation: can adapt garbler method so that
odd-parity evaluation works for even-parity gates too [details in
backup slides]

New Construction #1

Garbled gate size: 21 bits

Garbling cost:
> Finite field operations ~ 2 interpolations of deg-2 polynomials

> 4 calls to cryptographic function E

Evaluation cost:
> 1 interpolation of deg-2 polynomial

> 1 call to cryptographic function E

Assumption: PRF

Gates supported: All except the two constant gates

New Construction #1

Garbled gate size: 21 bits

Garbling cost:
> Finite field operations ~ 2 interpolations of deg-2 polynomials

> 4 calls to cryptographic function E

Evaluation cost:
» 1interpolation of deg-2 polynomial

> 1 call to cryptographic function E

Assumption: PRF

Gates supported: All except the two constant gates

Standard GC Tricks

Standard GC Tricks

Decouple wire label subscript from truth value

Ao, A
il Go.C1 > random association betwen (0,1) & (T, F)
By, By on each wire

Standard GC Tricks

Decouple wire label subscript from truth value

Ap,A
il Go.C1 > random association betwen (0,1) & (T, F)
B1, By on each wire

Standard GC Tricks

Decouple wire label subscript from truth value

Ap,A
il €1, Go > random association betwen (0,1) & (T, F)
B1, By on each wire

Standard GC Tricks

Ao, A1

B1, By

C1,G

=

Ao
Ao
Al
Al

B1
Bo
B1
Bo

(6]
Co
(6]
G

Decouple wire label subscript from truth value

» random association betwen (0,1) & (T, F)
on each wire

Make wire label subscript public to evaluator

> e.g., least significant bit of label

»

> equivalent to including a “secret NOT gate

Standard GC Tricks

Ao, A1

9|:> C1,G

B1, By

Ao
Ao
Al
Al

B1
Bo
B1
Bo

(6]
Co
(6]
G

Decouple wire label subscript from truth value

» random association betwen (0,1) & (T, F)
on each wire

Make wire label subscript public to evaluator
> e.g., least significant bit of label

»

> equivalent to including a “secret NOT gate

= Evaluator’s behavior can depend on wire
label subscripts (“input combination”)

Standard GC Tricks

Decouple wire label subscript from truth value

Ag, A
é‘:}ﬂ » random association betwen (0,1) & (T,F)

B1, By on each wire

Make wire label subscript public to evaluator

K1 = H(Ao.Bo) | C1 o .
» e.g., least significant bit of label
Ko = H(Ao,B1) | C1 & &)
Kz = H(A1,Bo) | Co » equivalent to including a “secret NOT gate”
Ky = H(A1,B1) | C1

= Evaluator’s behavior can depend on wire
label subscripts (“input combination”)

Use K = H(A;, B)) as unique key for each input
combination

» H can be built from a PRF in a simple way

Standard GC Tricks

Decouple wire label subscript from truth value

Ag, A
é‘:}ﬂ » random association betwen (0,1) & (T,F)

B1, By on each wire

Make wire label subscript public to evaluator

K1 @ Cy o/ .
>
Ko ® Cy e.g., least significant bit of label
K3 ® Co » equivalent to including a “secret NOT gate”
Ky ® Cq

= Evaluator’s behavior can depend on wire
label subscripts (“input combination”)

Use K = H(A;, B)) as unique key for each input
combination

» H can be built from a PRF in a simple way

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Ao, A1 Co,C1
By, By |__"_

Ky @ Cy
Ky ® Cy
Ks @ Cy
Ky ® Cy

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co < {0,1}"
G < {0,1)"

Ao, A1 I:: Co,Cy

Bo, By

Ki® Cy
Ky @ Cq
Ks @ Cy
Ky ® Gy

> Instead of choosing output wire labels randomly . . .

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co = Ki
G < {0,1}"
Ag, A1 I:: Co,Cy
Bo, By
Ki & Cy
Ky & Cq
Ks ® Cy
Ky ® Gy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co = K4
C, < {0,1}"

Ao, A1

Co, Gy

—p

Bo, By

Ki & Cy
Ky @ Cq
Ks @ Cy
Ky ® Gy

« always 0%

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co = Ki
G < {0,1}"

Ao, A1 I:: Co,Cy

Bo, By

Ki ® Cy| « always 07
Ky @ Cq
Ks @ Cy
Ky ® Gy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co=Kq
Ci=Ky® K3 ® Ky

Ao, A1 I:: Co,Cy

Bo, By

Ki ® Cy| « always 07
Ky @ Cq
Ks @ Cy
Ky ® Gy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co=Kq
Ci=Ky® K3 ® Ky

Ao, A1 I:: Co,Cy

By, B1
Ki ® Cy| « always 0*
Ky ® Cy
Ks ® Gy < always xor to 04
Ky ® Cy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co =Ky
Ci=K o Ky ® Ky

Ao, A1 I:: Co,Cy

Bo, By
Ki ® Cy| « always 0*
Ky & Cq
Ks ® Gy < always xor to 04
Ky ® Cy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

> First 2 ciphertexts are linear combination of last 2

New Construction #2

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Co =Ky
Ci=K o Ky ® Ky

Ao, A1 I:: Co,Cy
Bo, By

Ks ® Cy
Ky ® Cy

> Instead of choosing output wire labels randomly . . .

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

> First 2 ciphertexts are linear combination of last 2 = don’t send
them! (evaulator can reconstruct first 2 “virtually”)

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

Ao, A1

j@ e
By, B1 E

Ky ® Cy
Ky ® C;
Ky @ Cy
Ky ® Cy

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

Co < {0,1}"
G < {0,1)"

Ao, A1

ﬂ[: Co.C1

By, By

Ki @ Cy
Ky @ Cq
Ks & C;
Ky ® Gy

> (Same as before) Instead of choosing output wire labels randomly . ..

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

Co =Ky
C, < {0,1}"

Ap, A1

j[: Co.C1

By, By

Ki® Cy
Ky @ Cq
Ks & C;
Ky ® Gy

> (Same as before) Instead of choosing output wire labels randomly . ..

> ... choose them to make Tst ciphertext zero

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

Co =Ky
C, < {0,1}"

Ap, A1

j[: Co.C1

By, By

Ki ® Cy| « always 0*
Ky @ Cq
Ks @ C;
Ky ® Gy

> (Same as before) Instead of choosing output wire labels randomly . ..

> ... choose them to make Tst ciphertext zero

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

Co = Ki
G, < {0,1}"
Fli 3D Co.C1
By, By
Ki ® Cy| « always 04
Ky @& Cq
Ks & Cq
Ky ® Cy

> (Same as before) Instead of choosing output wire labels randomly . ..

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero

New Construction #2

Why doesn’t [GueronLindellNofPinkas15] doesn’t work for even-parity gates?

G, < {0,1}"
Fli 3D Co, C1
Bo, By
Ki ® Cy| « always 04
Ky @& Cq
Ks @ C; — xoris Ko ® K3 ® Ky & Cy
Ky ® Cy

> (Same as before) Instead of choosing output wire labels randomly . ..

> ... choose them to make Tst ciphertext zero, and other 3 ciphertexts
xor to zero 777

> But xor of other 3 ciphertexts already fixed! (C; cancels out!)

New Construction #2

Abstracting evaluator’s behavior in [GueronLindelINofPinkas15]:

given gate values

New Construction #2

Abstracting evaluator’s behavior in [GueronLindelINofPinkas15]:

given gate values

virtual row

From the two given values for this garbled gate . ..

. reconstruct “virtual row” ciphertext as linear combination

New Construction #2

Abstracting evaluator’s behavior in [GueronLindelINofPinkas15]:

given gate values
key derived from input labels -~ oo .

K; OliGEBﬂi G

virtual row

From the two given values for this garbled gate . ..
. reconstruct “virtual row” ciphertext as linear combination

Compute key unique to this input combination

New Construction #2

Abstracting evaluator’s behavior in [GueronLindelINofPinkas15]:

given gate values
key derived from input labels -~ oo ,

C .= k,'éBO(,’GEBﬂ,‘G’

output label - - virtual row
From the two given values for this garbled gate . ..
. reconstruct “virtual row” ciphertext as linear combination

Compute key unique to this input combination and decrypt virtual row

New Construction #2

C = K,'EBOC,‘GGBﬁ,‘G’

a;, i coefficients are bits that depend on input combination.

New Construction #2

C = K,'EBOC,‘GGBﬁ,‘G’

a;, i coefficients are bits that depend on input combination.

[GueronLindellNofPinkas15]:

New Construction #2

C = K,'EBO(,'GGBﬁ,‘G’

a;, i coefficients are bits that depend on input combination.

[GueronLindellNofPinkas15]: Our idea:

New Construction #2

C=Kioa G f G

a;, Bi coefficients are bits that depend on input combination.

[GueronLindelINofPinkas15]: Our idea:

> fixed & public » random & secret

Want evaluation to work like this:

New Construction #2

C=Kioa G f G

a;, Bi coefficients are bits that depend on input combination.

[GueronLindelINofPinkas15]: Our idea:

> fixed & public » random & secret

Want evaluation to work like this:

» Garbled gate: G, G’ plus encryptions of (a1,f1),. .., (a4, f4)

New Construction #2

C=Kioa G f G

a;, Bi coefficients are bits that depend on input combination.

[GueronLindelINofPinkas15]: Our idea:

> fixed & public » random & secret

Want evaluation to work like this:
» Garbled gate: G, G’ plus encryptions of (a1,f1),. .., (a4, f4)

» Evaluator can only decrypt appropriate ;, f;

New Construction #2

C=Kioa G f G

a;, Bi coefficients are bits that depend on input combination.

[GueronLindelINofPinkas15]: Our idea:

> fixed & public » random & secret

Want evaluation to work like this:
» Garbled gate: G, G’ plus encryptions of (a1,f1),. .., (a4, f4)
» Evaluator can only decrypt appropriate ;, f;
» Computes output label as C := K; ® «;G ® ;G

New Construction #2

To have correctness, we need:

Co =Ky @alGGaﬁlG’
Co = Ky GB(ZQGGB,BzG,
Ci=Ks®a3G® 3G
Co = Ky 690{4063,346'

New Construction #2

To have correctness, we need:

Cy = Ki eaalGGB,BlG'
Co = Ky GBOCQG@ﬂQGI
CL = K3 @(XgGGBﬂgG/
Co = Ky @0&16@/346,

K1
K2
K3
Ky

O = =

o = o O

ay
az
a3
ay

P
i
B3
Pa

Co

G/

New Construction #2

To have correctness, we need:

C0:K1®[ch@,516' K 1
C = KQ@C{QG@ﬂQG’ — Ko _ 0
C = K3®0{36€Bﬂ30/ K3 0]
Co = K4®a4GGBﬁ4G’ Ky 1

(different gate types affect first two columns of matrix)

= = = &

ay
az
a3
ay

P
i
B3
Pa

Co

G/

New Construction #2

To have correctness, we need:

C0:K1®[ch@,516' K 1
C = KQ@C{QG@ﬂQG’ — Ko _ 0
C = K3®0{36€Bﬂ30/ K3 0]
C = K4®a4GGBﬁ4G’ Ky 0

(different gate types affect first two columns of matrix)

— == O

ay
az
a3
ay

P
i
B3
Pa

Co

G/

New Construction #2

To have correctness, we need:

Co=Kioan1Ga ,81 G K 1 0 o ‘31 Co
Ci=Ky,® G ﬂQGI = Ko . 0 1 as ﬂg Cq
Ci=K;0a3Ga ﬂgG/ K3] 1 as ﬁg G
Ci=Ki®asG ﬁ4G’ Ky 0 1 ag ﬁ4 G

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (a;, §;) uniformly, subject to matrix being invertible,
then solves for Cy, C1,G, G’ given Ki,...,Ky

New Construction #2

To have correctness, we need:

Co=Kioan1Ga ,Bl G K 1 0 o 181 Co
Ci=Ky,® G ﬂgcl = Ko . 0 1 as ﬂg Cq
Ci=K;0a3Ga ﬂgG/ K3] 1 as ﬁg G
Ci=Ki®asG ﬁ4G’ Ky 0 1 ag ﬁ4 G

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (a;, §;) uniformly, subject to matrix being invertible,
then solves for Cy, C1,G, G’ given Ki,...,Ky

» Different gate types induce different distribution over (;, §;) bits
> Evaluator sees only one particular («;, ;) value (others encrypted)

> Different distributions have same marginals = hides gate type

New Construction #2

To have correctness, we need:

Co=Kioan1Ga ,81 G K 1 0 o 181 Co
Ci=Ky,® G ﬂgcl = Ko . 0 1 as ﬂg Cq
Ci=K;0a3Ga ﬂgG/ K3] 1 as ﬁg G
Ci=Ki®asG ﬁ4G’ Ky 0 1 ag ﬁ4 G

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (a;, §;) uniformly, subject to matrix being invertible,
then solves for Cy, C1,G, G’ given Ki,...,Ky

v

Different gate types induce different distribution over (a;, §;) bits

v

Evaluator sees only one particular (a;, 8;) value (others encrypted)

v

Different distributions have same marginals = hides gate type

> (matrix invertible unless this is a constant gate)

New Construction #2

Garbled gate size: 21 bits, plus 8 bits to encrypt «;, f; values

Garbling cost:
> 4 calls to cryptographic function E

» no finite field operations (just xor)

Evaluation cost:
> 1 call to cryptographic function E

» no finite field operations (just xor)

Assumption: PRF

Gates supported: All except the two constant gates

Summary

Two new garbled circuit constructions:

> Gate-hiding

> Minimal size (21 bits/gate)

> Minimal hardness assumption: (PRF)

> More natural class of gates (all gates except two constant gates)

size | garble cost | eval cost |assump.| gates

(XA)| H interp | H interp
Textbook [Yao86,BMR90] | 4 4 0 1 0 PRF any
GRR3 [NPS99] 304 o |1 o PRF any
[KempkaKikuchiSuziki16] [2 3 0 1 0 circ+RK | symm
[WangMalluhi17] 2 3 1 1 1 circ+RK | symm
this paper #1 2 | 4 2 1 1 PRF | non-const
this paper #2 2 | 4 0 1 0 PRF | non-const

the end.

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Bo, B1

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: ﬁ:}#
Bo, By

K1 = H(Ap, By)
Ko = H(Ao, B1)
K3 = H(A1,Bop)

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#
Bo, By
K1 = H(Ap, By) ~ learn Cy
K2 H(Ao,Bl) ~> learn C1
K3 = H(A1,Bg) ~ learn Cy
K4 H(Al,Bl) ~> learn Co

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#

Bo, By
K1 = H(Ap, By) ~ learn Cy

K3 = H(A1,Bg) ~ learn Cy
K4 = H(Al,Bl) ~> learn Co

(3. K3)

(4. Kq)
oKD O

(]-, Kl)’ (3’ K3)9 (4’ K4)

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#

Bo, By
K1 = H(Ap, By) ~ learn Cy

K3 = H(A1,Bg) ~ learn Cy
K4 = H(Al,Bl) ~> learn Co

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#

By, By

K2 = H(Ao,Bl) ~> learn C1

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

(2,K2), (5, P(5)), (6, P(6))

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Ao, A1 Co.C
Idea: Evaluator can know exactly one of: j:)#

KQ = H(Ao,Bl) ~> learn C1

P(6)

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

5555

I

Ao, By) ~ learn Cy

I

()

(Ao, B1) ~ learn C;
(A1, Bg) ~ learn Cy
()

A1,B1) ~ learn Cy

II

Ao, A1 I:: Co,Cy
Bo, By

p(0)

(0

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

5555

I

Ao, By) ~ learn Cy

I

()

(Ao, B1) ~ learn C;
(A1, Bg) ~ learn Cy
()

A1,B1) ~ learn Cy

II

Ao, A1 I:: Co,C1
By, By
P(5)
£(0) P(6)
P(6)
2(0)

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

5555

I

Ao, By) ~ learn Cy

I

()

(Ao, B1) ~ learn C;
(A1, Bg) ~ learn Cy
()

A1,B1) ~ learn Cy

II

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, i), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Ao, A1 B Co,C1
By, By
P(5)
P(6)

P(6)

P = uniq deg-2 poly thru
(]-, Kl), (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

5555

I

Ao, By) ~ learn Cy

I

()

(Ao, B1) ~ learn C;
(A1, Bg) ~ learn Cy
()

A1,B1) ~ learn Cy

II

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, i), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

:Alolji
Bo
P(5)
P(6)
P(G).
@ F(5)

P = uniq deg-2 poly thru
(]-, Kl), (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

K3 = H(A1,Bg) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, K3), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Bo
P(5)
P(6)
P(ﬁ).
.(3, K3)
@ ~(5)

P = uniq deg-2 poly thru
(]-, Kl), (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

K3 = H(A1,Bg) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, i), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

P = uniq deg-2 poly thru
(]-, Kl)’ (37 K3)9 (4’ K4)

Q = uniq deg-2 poly thru
(2,K2), (5, P(5)), (6, P(6))

New Construction #1

Starting point: Co = P(0); C1 = Q(0)
[PinkasSchneiderSmartWilliams09]:

Aq Co
Idea: Evaluator can know exactly one of: j:)i

K3 = H(A1,Bg) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

P = uniq deg-2 poly thru
(1.K0). (5. P(5)). (6. P(6)) Ay

» Evaluate polynomial at zero Q = uniq deg-2 poly thru
(2. K2). (5, P(5)). (6, P(6))

New Construction #1

Starting point: Co = P(0); C1 = Q(0)
[PinkasSchneiderSmartWilliams09]:

Ao &
Idea: Evaluator can know exactly one of: j:)i
B

P(5)
KQ = H(Ao,Bl) ~> learn C1 P(G)
(2, K.
P(6)
To evaluate a gate: 2y
(0)
» Compute relevant K; & interpolate:

P = uniq deg-2 poly thru
(i, Ki), (5, P(5)), (6, P(6)) (1,K1),(3,K3), (4, Ky)

» Evaluate polynomial at zero Q = uniq deg-2 poly thru
(2. K2). (5, P(5)). (6, P(6))

New Construction #1

Starting point:
[PinkasSchneiderSmartWilliams09]:

Co,C
Idea: Evaluator can know exactly one of: #

K1 = H(Ap, By) ~ learn Cy
Ko = H(Ag,B1) ~ learn C;
K3 = H(A1,Bg) ~ learn Cy
Ky = H(A1,By) ~ learn Gy

To evaluate a gate:

» Compute relevant K; & interpolate:

P = uniq deg-2 poly thru
i, Ki), (5, P(5)), (6, P(6
(i, Ki). (5, P(5)). (6, P(6)) (1K), (3, Ks), (4, Ka)
» Evaluate polynomial at zero Q = uniq deg-2 poly thru

(2,K2), (5, P(5)), (6, P(6))

New Construction #1

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate
> odd # of 1s in the truth table (e.g., AND, NOR)

» 3 of (i,K;) on 1 polynomial, other (i, K;) on another polynomial

New Construction #1

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate
> odd # of 1s in the truth table (e.g., AND, NOR)

» 3 of (i,K;) on 1 polynomial, other (i, K;) on another polynomial

They show a different technique for even-parity gates (e.g., XOR, XNOR)

New Construction #1

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate
> odd # of 1s in the truth table (e.g., AND, NOR)

» 3 of (i,K;) on 1 polynomial, other (i, K;) on another polynomial

They show a different technique for even-parity gates (e.g., XOR, XNOR)

Our contribution: J

Can make odd-parity evaluation procedure work for even parity gates too!

New Construction #1

Same as before

Evaluator can know exactly one of:

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

K1 = H(Ap,By) ~ learn Cy
Ky = H(Ap,B1) ~ learn C;
Ks = H(A1,Bp) ~ learn Cy
Ky = H(A1,B1) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

K1 = H(Ap,By) ~ learn Cy
Ky = H(Ap,B1) ~ learn C;
Ks = H(A1,Bp) ~ learn Cy
Ky = H(A1,B1) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Need:

> deg-2 polynomials P& Q

0]
p1
p2
q0
q1
g2

New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

K1 = H(Ap,By) ~ learn Cy
Ky = H(Ap,B1) ~ learn C;
Ks = H(A1,Bp) ~ learn Cy
Ky = H(A1,B1) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:
(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Need:

> deg-2 polynomials P& Q
> P(5) = Q(5); P(6) = Q(6)

0 50 51 52 _50 _51 _52
0 69 6! 62 —69 —6! —62

New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

K1 = H(Ap,By) ~ learn Cy

Ky = H(A1,B1) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Need:
> deg-2 polynomials P& Q
> P(5) = Q(5); P(6) = Q(6)

» Pgoes through (1,K1), (4, Ky)

K1 10 11 12

Ky| = |40 41 42
0 50 51 52 _50 _51 _52
0 69 6! 62 —69 —6! —62

0]
p1
p2
q0
q1
g2

New Construction #1

Same as before, but even-parity gate:

Evaluator can know exactly one of:

Ky = H(Ap,B1) ~ learn C;
Ks = H(A1,Bp) ~ learn Cy

To evaluate a gate:

» Compute relevant K; & interpolate:

(i, Ki), (5, P(5)), (6, P(6))

> Evaluate polynomial at zero

Need:

v

v

v

v

K1
K2
K3
Ky

deg-2 polynomials P& Q
P(5) = Q(5); P(6) = Q(6)

P goes through (1, K1), (4, Ky)
Q goes through (2, Kz), (3, K3)

10 71 72
20 ol 92
30 31 32

T |40 41 42
50 51 52 _50 _51 _52
69 6! 62 —69 —6! —62

New Construction #1

What we need (for evaluation to work):

P(1) = Kq Ky 10 11 12

Q(2) = Kz K>

Q(3) = K3 Ks| _

P(4) = Ky Ky| — [40 4! 42
P(5)-Q(5) =0 0 50 51 52
P(6) - Q(6) = 0 0 60 6! 62

PO
200 ol 92 [p
30 31 32 (|py

q0

-50 —51 —52| [q1
-60 -6 —62| g2

New Construction #1

What we need (for evaluation to work):

P(1) = K1 K1 10 11 12
Q(2) = Ko Ko 20 ol 92
Q(3) = K3 Ks| _ 30 3t 32
P(4) = Ky [T |Kag| T[40 41 42
P(5)-Q(5) = 0 0 5085 G2R=R0R- 5= 52
P(6) - Q(6) = 0 0 69 6! 62 -6° —6' 62

Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)
> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))

New Construction #1

What we need (for evaluation to work):

P(1) = Kq K1 10 11 12 po
Q(2) = Ko Ko 20 ol 92| (p
Q(3) = K3 Ks| _ 30 31 32 ||po
P(4) = Ky [T |Kag| T[40 41 42 %
P(5)-Q(5) =0 0 50 51 52 —50 51 52| [qy
P(G) — Q(G) =0 0 60 61 62 _60 _61 _62 g0
Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)

> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))

Main observation: this matrix is invertible for any non-constant gate

New Construction #1

What we need (for evaluation to work):

Ql) = K1 K 19 1 127 [po
Q(2) = Ko K2 20 ol 22| |p)
Q(3) = K3 K3| 30 3L 32| |pe
P(4) = Ky [T |Ky| T[40 41 42 %
P(5)-Q(5) =0 0 50 51 52 _50 _51 52| [qy
P(G) — Q(G) =0 0 60 61 62 _60 _61 _62 g0
Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)

> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))

Main observation: this matrix is invertible for any non-constant gate

New Construction #1

What we need (for evaluation to work):

Q1) = Ky K1 10 11 127 [po
Q(2) = Ko K2 20 2ol 22| p;
P(3) = K3 Ks| |30 3! 32 p2
P(4) = Ky [T |Kg| T[40 41 42 %
P(5)-Q(5) =0 0 50 51 52 _50 _51 52| [qy
P(6) — Q(6) = 0 0 69 6 62 -6 —6! —62| |q2
Garbling procedure:
» Compute Kj,...,Ky (depend on incoming wire labels)

> Invert this matrix to solve for polynomials Pand Q
» Garbled gate is (P(5),Q(5))

Main observation: this matrix is invertible for any non-constant gate

