Improvements for Gate-Hiding Garbled Circuits

Mike Rosulek Oregon State

Improvements for Gate-Hiding Garbled Circuits

Mike Rosulek Oregon State

Garbling a circuit:

▶ Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

▶ Pick random **labels** W_0 , W_1 on each wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Carbled circuit** ≡ all encrypted gates

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Carbled encoding =** one label per wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- **Garbled circuit** ≡ all encrypted gates
- **Carbled encoding =** one label per wire

Garbled evaluation:

Only one ciphertext per gate is decryptable

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

Garbling a circuit:

- ▶ Pick random **labels** W_0 , W_1 on each wire
- "Encrypt" truth table of each gate
- Garbled circuit ≡ all encrypted gates
- **Carbled encoding =** one label per wire

- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire

garbled circuit f,
garbled input x,
all labels of output wires

In 2PC: Parties agree on f to evaluate \Rightarrow garbling doesn't have to hide f

In 2PC: Parties agree on f to evaluate \Rightarrow garbling doesn't have to hide f. In other applications of garbled circuits it is helpful to **hide** f.

Gate-Hiding Garbled Circuits

Garbled circuit f + garbled input x

reveals no more than

$$f(x)$$
 + topology of f

In particular, garbling hides:

- ► Values on non-output wires of *f* (including inputs *x*)
- ► Type of each gate (AND, OR, XOR, etc).

Garbled circuits: state of the art

		$(\times \lambda)$ AND	garble cost XOR AND				assump.	
Textbook Yao [Yao86,BMR90]		4	4		1		PRF	
GRR3 [NPS99]		3	4	4	1	1	PRF	
Free XOR [KS08]	0	3	0	4	0	1	circ+RK	
GRR2 [PSSW09]	2	2	4	4	1	1	PRF	
Half-gates [ZRE15]	0	2	4	4	2	2	circ+RK	

Garbled circuits: state of the art

		$(\times \lambda)$	garble cost				assump.	gate hiding?
	XOR	AND	XOR	AND	XOR	AND		
Textbook Yao [Yao86,BMR90]	4	1	4		1		PRF	yes
GRR3 [NPS99]		3	4	1		1	PRF	yes
Free XOR [KS08]	0	3	0	4	0	1	circ+RK	no
GRR2 [PSSW09]	2	2	4	4	1	1	PRF	no
Half-gates [ZRE15]	0	2	4	4	2	2	circ+RK	no

Garbled circuits: state of the art

		(×λ) AND	garble cost XOR AND				assump.	gate hiding?
Textbook Yao [Yao86,BMR90]	,	4	4		1		PRF	yes
GRR3 [NPS99]		3	2	4 1		PRF	yes	
Free XOR [KS08]	0	3	0	4	0	1	circ+RK	no
GRR2 [PSSW09]	2	2	4	4	1	1	PRF	no
Half-gates [ZRE15]	0	2	4	4	2	2	circ+RK	no

[&]quot;no" = evaluation procedure depends on type of gate (e.g., XOR, AND)

	size	garble cost		eval cost		assump.	
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	
GRR3 [NPS99]	3	4	0	1	0	PRF	

	size	garble cost		ev	al cost	assump.	
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	
GRR3 [NPS99]	3	4	0	1	0	PRF	
KKS [KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	
WM [WangMalluhi17]	2	3	1	1	1	circ+RK	

	size	gar	ole cost	ev	al cost	assump.	
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	
GRR3 [NPS99]	3	4	0	1	0	PRF	
KKS [KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	
WM [WangMalluhi17]	2	3	1	1	1	circ+RK	
this paper #1	2	4	2	1	1	PRF	
this paper #2	2	4	0	1	0	PRF	

	size	garble cost		eval cost		assump.	gates
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	
GRR3 [NPS99]	3	4	0	1	0	PRF	
KKS [KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	
WM [WangMalluhi17]	2	3	1	1	1	circ+RK	
this paper #1	2	4	2	1	1	PRF	
this paper #2	2	4	0	1	0	PRF	

What kind of gates are actually supported?

	size	garble cost		ev	al cost	assump.	gates
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	any
GRR3 [NPS99]	3	4	0	1	0	PRF	any
KKS [KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	
WM [WangMalluhi17]	2	3	1	1	1	circ+RK	
this paper #1	2	4	2	1	1	PRF	
this paper #2	2	4	0	1	0	PRF	

What kind of gates are actually supported?

Literally **any** gate $g: \{0,1\}^2 \rightarrow \{0,1\}$

	size	garble cost		ev	al cost	assump.	gates
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	any
GRR3 [NPS99]	3	4	0	1	0	PRF	any
KKS [KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	symmetric
WM [WangMalluhi17]	2	3	1	1	1	circ+RK	symmetric
this paper #1	2	4	2	1	1	PRF	
this paper #2	2	4	0	1	0	PRF	

What kind of gates are actually supported?

Literally **any** gate $g: \{0,1\}^2 \rightarrow \{0,1\}$

Symmetric gates only: g(1,0) = g(0,1)

	size	e garble cost		ev	al cost	assump.	gates
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	any
GRR3 [NPS99]	3	4	0	1	0	PRF	any
KKS [KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	symmetric
WM [WangMalluhi17]	2	3	1	1	1	circ+RK	symmetric
this paper #1	2	4	2	1	1	PRF	non-const
this paper #2	2	4	0	1	0	PRF	non-const

What kind of gates are actually supported?

Literally **any** gate $g: \{0,1\}^2 \rightarrow \{0,1\}$

Symmetric gates only: g(1,0) = g(0,1)

All except constant g(a,b) = 0, g(a,b) = 1

Our contribution

Two new garbled circuit constructions:

- Gate-hiding
- Minimal size
 2λ bits/gate matches state of the art for standard garbling
- ► Minimal hardness assumption: (PRF)
- More natural class of gates
 NOT gates can be absorbed into neighboring gates ⇒ free

	size ($\times \lambda$)	garble cost	eval cost	assump.	gate hiding?
GRR2 [PSSW09]	2	4	1	PRF	no

	size ($\times \lambda$)	garble cost	eval cost	assump.	gate hiding?
GRR2 [PSSW09]	2	4	1	PRF	no ← why not?

	size ($\times \lambda$)	garble cost	eval cost	assump.	gate hiding?
GRR2 [PSSW09]	2	4	1	PRF	no ← why not?

Odd-parity gate:

Even-parity gate:

	size ($\times \lambda$)	garble cost	eval cost	assump.	gate hiding?
GRR2 [PSSW09]	2	4	1	PRF	no ← why not?

Odd-parity gate:

Even-parity gate:

[PinkasSchneiderSmartWilliams09]: different techniques for odd/even parity!

 Our (simple) observation: can adapt garbler method so that odd-parity evaluation works for even-parity gates too [details in backup slides]

Garbled gate size: 2λ bits

Garbling cost:

- ► Finite field operations ~ 2 interpolations of deg-2 polynomials
- ▶ 4 calls to cryptographic function **E**

Evaluation cost:

- 1 interpolation of deg-2 polynomial
- ightharpoonup 1 call to cryptographic function $\mathbb E$

Assumption: PRF

Gates supported: All except the two constant gates

Garbled gate size: 2λ bits

Garbling cost:

- ► Finite field operations ~ 2 interpolations of deg-2 polynomials
- ▶ 4 calls to cryptographic function **E**

Evaluation cost:

- 1 interpolation of deg-2 polynomial
- ightharpoonup 1 call to cryptographic function $\mathbb E$

Assumption: PRF

Gates supported: All except the two constant gates

Decouple wire label subscript from **truth value**

▶ random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Decouple wire label subscript from truth value

▶ random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Decouple wire label subscript from truth value

▶ random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Decouple wire label subscript from truth value

► random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Make wire label subscript **public** to evaluator

- e.g., least significant bit of label
- equivalent to including a "secret NOT gate"

Decouple wire label subscript from truth value

► random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Make wire label subscript **public** to evaluator

- e.g., least significant bit of label
- equivalent to including a "secret NOT gate"

⇒ Evaluator's behavior can depend on wire label subscripts ("input combination")

Decouple wire label subscript from truth value

► random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Make wire label subscript **public** to evaluator

- e.g., least significant bit of label
- equivalent to including a "secret NOT gate"

⇒ Evaluator's behavior can **depend on wire label subscripts** ("input combination")

Use $K = H(A_i, B_j)$ as unique key for each input combination

H can be built from a PRF in a simple way

Decouple wire label subscript from truth value

▶ random association betwen $(0,1) \leftrightarrow (T,F)$ on each wire

Make wire label subscript **public** to evaluator

- e.g., least significant bit of label
- equivalent to including a "secret NOT gate"

⇒ Evaluator's behavior can **depend on wire label subscripts** ("input combination")

Use $K = H(A_i, B_j)$ as unique key for each input combination

H can be built from a PRF in a simple way

Inspired by [GueronLindellNofPinkas15] technique for odd-parity gates only:

Instead of choosing output wire labels randomly . . .

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero
- ► First 2 ciphertexts are **linear combination** of last 2

- Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero
- First 2 ciphertexts are linear combination of last 2 ⇒ don't send them! (evaulator can reconstruct first 2 "virtually")

Why doesn't [GueronLindellNofPinkas15] doesn't work for even-parity gates?

► (Same as before) Instead of choosing output wire labels randomly . . .

- ► (Same as before) Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero

- ► (Same as before) Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero

- (Same as before) Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero

- (Same as before) Instead of choosing output wire labels randomly . . .
- ... choose them to make 1st ciphertext zero, and other 3 ciphertexts xor to zero ???
- But xor of other 3 ciphertexts already fixed! (C₁ cancels out!)

Abstracting evaluator's behavior in [GueronLindellNofPinkas15]:

From the two given values for this garbled gate . . .

Abstracting evaluator's behavior in [GueronLindellNofPinkas15]:

From the two given values for this garbled gate . . .

... reconstruct "virtual row" ciphertext as linear combination

Abstracting evaluator's behavior in [GueronLindellNofPinkas15]:

From the two given values for this garbled gate . . .

... reconstruct "virtual row" ciphertext as linear combination Compute key unique to this input combination

Abstracting evaluator's behavior in [GueronLindellNofPinkas15]:

key derived from input labels --
$$lpha_i = K_i \oplus lpha_i G \oplus eta_i G'$$
 output label -- virtual row

From the two given values for this garbled gate . . .

... reconstruct "virtual row" ciphertext as linear combination

Compute key unique to this input combination and decrypt virtual row

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

[GueronLindellNofPinkas 15] :

fixed & public

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

[GueronLindellNofPinkas15]:

fixed & public

Our idea:

random & secret

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

[GueronLindellNofPinkas15]:

fixed & public

Our idea:

random & secret

Want evaluation to work like this:

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

[GueronLindellNofPinkas15]:

▶ fixed & public

Our idea:

random & secret

Want evaluation to work like this:

► Garbled gate: G, G' plus **encryptions** of $(\alpha_1, \beta_1), \ldots, (\alpha_4, \beta_4)$

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

[GueronLindellNofPinkas15]:

► fixed & public

Our idea:

random & secret

Want evaluation to work like this:

- ► Garbled gate: G, G' plus **encryptions** of $(\alpha_1, \beta_1), \ldots, (\alpha_4, \beta_4)$
- Evaluator can only decrypt appropriate α_i, β_i

$$C := K_i \oplus \alpha_i G \oplus \beta_i G'$$

 α_i , β_i coefficients are **bits** that depend on input combination.

[GueronLindellNofPinkas15]:

► fixed & public

Our idea:

random & secret

Want evaluation to work like this:

- ► Garbled gate: G, G' plus **encryptions** of $(\alpha_1, \beta_1), \ldots, (\alpha_4, \beta_4)$
- Evaluator can only decrypt appropriate α_i, β_i
- ► Computes output label as $C := K_i \oplus \alpha_i G \oplus \beta_i G'$

To have correctness, we need:

$$C_0 = K_1 \oplus \alpha_1 G \oplus \beta_1 G'$$

$$C_0 = K_2 \oplus \alpha_2 G \oplus \beta_2 G'$$

$$C_1 = K_3 \oplus \alpha_3 G \oplus \beta_3 G'$$

$$C_0 = K_4 \oplus \alpha_4 G \oplus \beta_4 G'$$

To have correctness, we need:

To have correctness, we need:

$$\begin{array}{c} C_0 = K_1 \oplus \alpha_1 G \oplus \beta_1 G' \\ \hline \textbf{C_1} = K_2 \oplus \alpha_2 G \oplus \beta_2 G' \\ \hline \textbf{C_1} = K_3 \oplus \alpha_3 G \oplus \beta_3 G' \\ \hline \textbf{C_0} = K_4 \oplus \alpha_4 G \oplus \beta_4 G' \\ \end{array} \iff \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \alpha_1 & \beta_1 \\ 0 & 1 & \alpha_2 & \beta_2 \\ 0 & 1 & \alpha_3 & \beta_3 \\ 1 & 0 & \alpha_4 & \beta_4 \end{bmatrix} \begin{bmatrix} C_0 \\ C_1 \\ G \\ G' \end{bmatrix}$$

(different gate types affect first two columns of matrix)

To have correctness, we need:

(different gate types affect first two columns of matrix)

To have correctness, we need:

$$\begin{array}{c} C_0 = K_1 \oplus \alpha_1 G \oplus \beta_1 G' \\ C_1 = K_2 \oplus \alpha_2 G \oplus \beta_2 G' \\ C_1 = K_3 \oplus \alpha_3 G \oplus \beta_3 G' \\ C_1 = K_4 \oplus \alpha_4 G \oplus \beta_4 G' \end{array} \iff \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \alpha_1 & \beta_1 \\ 0 & 1 & \alpha_2 & \beta_2 \\ 0 & 1 & \alpha_3 & \beta_3 \\ 0 & 1 & \alpha_4 & \beta_4 \end{bmatrix} \begin{bmatrix} C_0 \\ C_1 \\ G \\ G' \end{bmatrix}$$

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (α_i, β_i) uniformly, **subject to matrix being invertible**, then solves for C_0, C_1, G, G' given K_1, \ldots, K_4

To have correctness, we need:

$$\begin{array}{c} C_0 = K_1 \oplus \alpha_1 G \oplus \beta_1 G' \\ C_1 = K_2 \oplus \alpha_2 G \oplus \beta_2 G' \\ C_1 = K_3 \oplus \alpha_3 G \oplus \beta_3 G' \\ C_1 = K_4 \oplus \alpha_4 G \oplus \beta_4 G' \end{array} \iff \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \alpha_1 & \beta_1 \\ 0 & 1 & \alpha_2 & \beta_2 \\ 0 & 1 & \alpha_3 & \beta_3 \\ 0 & 1 & \alpha_4 & \beta_4 \end{bmatrix} \begin{bmatrix} C_0 \\ C_1 \\ G \\ G' \end{bmatrix}$$

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (α_i, β_i) uniformly, **subject to matrix being invertible**, then solves for C_0, C_1, C, C' given K_1, \ldots, K_4

- ▶ Different gate types induce **different distribution** over (α_i, β_i) bits
- Evaluator sees only one **particular** (α_i, β_i) value (others encrypted)
- ▶ Different distributions have same marginals ⇒ hides gate type

To have correctness, we need:

$$\begin{array}{c} C_0 = K_1 \oplus \alpha_1 G \oplus \beta_1 G' \\ C_1 = K_2 \oplus \alpha_2 G \oplus \beta_2 G' \\ C_1 = K_3 \oplus \alpha_3 G \oplus \beta_3 G' \\ C_1 = K_4 \oplus \alpha_4 G \oplus \beta_4 G' \end{array} \iff \begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \alpha_1 & \beta_1 \\ 0 & 1 & \alpha_2 & \beta_2 \\ 0 & 1 & \alpha_3 & \beta_3 \\ 0 & 1 & \alpha_4 & \beta_4 \end{bmatrix} \begin{bmatrix} C_0 \\ C_1 \\ G \\ G' \end{bmatrix}$$

(different gate types affect first two columns of matrix)

Key idea

Garbler samples (α_i, β_i) uniformly, **subject to matrix being invertible**, then solves for C_0, C_1, C, C' given K_1, \ldots, K_4

- ▶ Different gate types induce **different distribution** over (α_i, β_i) bits
- **Evaluator** sees only one **particular** (α_i, β_i) value (others encrypted)
- ▶ Different distributions have same marginals ⇒ hides gate type
- (matrix invertible unless this is a constant gate)

Garbled gate size: 2λ bits, plus 8 bits to encrypt α_i , β_i values

Garbling cost:

- 4 calls to cryptographic function E
- no finite field operations (just xor)

Evaluation cost:

- ▶ 1 call to cryptographic function E
- no finite field operations (just xor)

Assumption: PRF

Gates supported: All except the two constant gates

Summary

Two new garbled circuit constructions:

- Gate-hiding
- ► **Minimal size** (2λ bits/gate)
- Minimal hardness assumption: (PRF)
- ► More natural class of gates (all gates except two constant gates)

	size	garble cost		eval cost		assump.	gates
	$(\times \lambda)$	Н	interp	Н	interp		
Textbook [Yao86,BMR90]	4	4	0	1	0	PRF	any
GRR3 [NPS99]	3	4	0	1	0	PRF	any
[KempkaKikuchiSuziki16]	2	3	0	1	0	circ+RK	symm
[WangMalluhi17]	2	3	1	1	1	circ+RK	symm
this paper #1	2	4	2	1	1	PRF	non-const
this paper #2	2	4	0	1	0	PRF	non-const

the end.

any questions?

Starting point:

[PinkasSchneiderSmartWilliams09]:

Starting point:

[PinkasSchneiderSmartWilliams09]:

$$\begin{array}{c|c} A_0, A_1 \\ \hline B_0, B_1 \end{array} \qquad \begin{array}{c|c} C_0, C_1 \\ \hline \end{array}$$

$$K_1=H(A_0,B_0)$$

$$K_2 = H(A_0, B_1)$$

$$K_3=H(A_1,B_0)$$

$$K_4 = H(A_1, B_1)$$

Starting point:

[PinkasSchneiderSmartWilliams09]:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

$$B_0, B_1$$
 C_0, C_1

Starting point:

[PinkasSchneiderSmartWilliams09]:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

$$A_0, A_1$$
 C_0, C_1

$$\bullet^{(3,\,\mathcal{K}_3)}$$

$$(1, K_1), (3, K_3), (4, K_4)$$

Starting point:

[PinkasSchneiderSmartWilliams09]:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

Starting point:

[PinkasSchneiderSmartWilliams09]:

$$K_1 = H(A_0, B_0) \rightarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightarrow \text{learn } C_0$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$(2, K_2), (5, P(5)), (6, P(6))$$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightarrow \text{learn } C_0$

P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$

Q = uniq deg-2 poly thru(2, K_2), (5, P(5)), (6, P(6))

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$

Q = uniq deg-2 poly thru $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

Q = uniq deg-2 poly thru

 $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero

P = uniq deg-2 poly thru

 $(1, K_1), (3, K_3), (4, K_4)$ **Q** = uniq deg-2 poly thru

 $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$Q = \text{uniq deg-2 poly thru}$$
 $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$Q = \text{uniq deg-2 poly thru}$$

 $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$Q = \text{uniq deg-2 poly thru}$$
 $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero

P = uniq deg-2 poly thru $(1, K_1), (3, K_3), (4, K_4)$

Q = uniq deg-2 poly thru $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$Q = \text{uniq deg-2 poly thru}$$

 $(2, K_2), (5, P(5)), (6, P(6))$

Starting point:

[PinkasSchneiderSmartWilliams09]:

Idea: Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_0$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

$$P = \text{uniq deg-2 poly thru}$$

 $(1, K_1), (3, K_3), (4, K_4)$

$$Q = \text{uniq deg-2 poly thru}$$

 $(2, K_2), (5, P(5)), (6, P(6))$

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate

- odd # of 1s in the truth table (e.g., AND, NOR)
- ▶ 3 of (i, K_i) on 1 polynomial, other (i, K_i) on another polynomial

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate

- odd # of 1s in the truth table (e.g., AND, NOR)
- ▶ 3 of (i, K_i) on 1 polynomial, other (i, K_i) on another polynomial

They show a different technique for even-parity gates (e.g., XOR, XNOR)

[PinkasSchneiderSmartWilliams09] technique works for any odd-parity gate

- odd # of 1s in the truth table (e.g., AND, NOR)
- ▶ 3 of (i, K_i) on 1 polynomial, other (i, K_i) on another polynomial

They show a different technique for even-parity gates (e.g., XOR, XNOR)

Our contribution:

Can make odd-parity evaluation procedure work for even parity gates too!

Same as before

Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0)$$

 $K_2 = H(A_0, B_1)$
 $K_3 = H(A_1, B_0)$
 $K_4 = H(A_1, B_1)$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Same as before, but even-parity gate:

Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_1$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Same as before, but even-parity gate:

Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_1$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K*_i & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero

Need:

deg-2 polynomials P & Q

$$\left[\begin{array}{c} \\ \\ \\ \end{array}\right] = \left[\begin{array}{c} \\ \\ \\ \\ \end{array}\right] \left[\begin{array}{c} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{array}\right]$$

Same as before, but even-parity gate:

Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_1$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero

Need:

- deg-2 polynomials P & Q
- P(5) = Q(5); P(6) = Q(6)

$$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \\ p_4 \\ p_6 \\ p_6$$

Same as before, but even-parity gate:

Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \rightsquigarrow \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \rightsquigarrow \text{learn } C_1$
 $K_3 = H(A_1, B_0) \rightsquigarrow \text{learn } C_1$
 $K_4 = H(A_1, B_1) \rightsquigarrow \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero

Need:

- ▶ deg-2 polynomials P & Q
- P(5) = Q(5); P(6) = Q(6)
- ▶ P goes through $(1, K_1), (4, K_4)$

$$\begin{bmatrix} K_1 \\ K_4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1^0 & 1^1 & 1^2 \\ 4^0 & 4^1 & 4^2 \\ 5^0 & 5^1 & 5^2 & -5^0 & -5^1 & -5^2 \\ 6^0 & 6^1 & 6^2 & -6^0 & -6^1 & -6^2 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{bmatrix}$$

Same as before, but even-parity gate:

Evaluator can know exactly one of:

$$K_1 = H(A_0, B_0) \sim \text{learn } C_0$$

 $K_2 = H(A_0, B_1) \sim \text{learn } C_1$
 $K_3 = H(A_1, B_0) \sim \text{learn } C_1$
 $K_4 = H(A_1, B_1) \sim \text{learn } C_0$

To evaluate a gate:

► Compute relevant *K_i* & interpolate:

$$(i, K_i), (5, P(5)), (6, P(6))$$

Evaluate polynomial at zero

Need:

- ▶ deg-2 polynomials P & Q
- P(5) = Q(5); P(6) = Q(6)
- P goes through $(1, K_1), (4, K_4)$
- Q goes through $(2, K_2), (3, K_3)$

$$\begin{bmatrix} K_1 \\ K_2 \\ K_3 \\ K_4 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1^0 & 1^1 & 1^2 & & & & \\ & & 2^0 & 2^1 & 2^2 \\ & & 3^0 & 3^1 & 3^2 \\ 4^0 & 4^1 & 4^2 & & \\ 5^0 & 5^1 & 5^2 & -5^0 & -5^1 & -5^2 \\ 6^0 & 6^1 & 6^2 & -6^0 & -6^1 & -6^2 \end{bmatrix} \begin{bmatrix} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{bmatrix}$$

What we need (for evaluation to work):

$$\left\{ \begin{array}{l} P(1) = K_1 \\ Q(2) = K_2 \\ Q(3) = K_3 \\ P(4) = K_4 \\ P(5) - Q(5) = 0 \\ P(6) - Q(6) = 0 \end{array} \right\} \iff \left[\begin{array}{l} K_1 \\ K_2 \\ K_3 \\ K_4 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{l} 1^0 \ 1^1 \ 1^2 \\ & 2^0 \ 2^1 \ 2^2 \\ & 3^0 \ 3^1 \ 3^2 \\ 4^0 \ 4^1 \ 4^2 \\ 5^0 \ 5^1 \ 5^2 \ -5^0 \ -5^1 \ -5^2 \\ 6^0 \ 6^1 \ 6^2 \ -6^0 \ -6^1 \ -6^2 \end{array} \right] \left[\begin{array}{l} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{array} \right]$$

What we need (for evaluation to work):

$$\left\{ \begin{array}{l} P(1) = K_1 \\ Q(2) = K_2 \\ Q(3) = K_3 \\ P(4) = K_4 \\ P(5) - Q(5) = 0 \\ P(6) - Q(6) = 0 \end{array} \right\} \Longleftrightarrow \left[\begin{array}{l} K_1 \\ K_2 \\ K_3 \\ K_4 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{l} 1^0 \ 1^1 \ 1^2 \\ & 2^0 \ 2^1 \ 2^2 \\ & 3^0 \ 3^1 \ 3^2 \\ 4^0 \ 4^1 \ 4^2 \\ 5^0 \ 5^1 \ 5^2 \ -5^0 \ -5^1 \ -5^2 \\ 6^0 \ 6^1 \ 6^2 \ -6^0 \ -6^1 \ -6^2 \end{array} \right] \left[\begin{array}{l} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{array} \right]$$

Garbling procedure:

- ► Compute $K_1, ..., K_4$ (depend on incoming wire labels)
- ► Invert this matrix to solve for polynomials P and Q
- Garbled gate is (P(5), Q(5))

What we need (for evaluation to work):

$$\left\{ \begin{array}{l} P(1) = K_1 \\ Q(2) = K_2 \\ Q(3) = K_3 \\ P(4) = K_4 \\ P(5) - Q(5) = 0 \\ P(6) - Q(6) = 0 \end{array} \right\} \Longleftrightarrow \left[\begin{array}{l} K_1 \\ K_2 \\ K_3 \\ K_4 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{l} 1^0 \ 1^1 \ 1^2 \\ & 2^0 \ 2^1 \ 2^2 \\ & 3^0 \ 3^1 \ 3^2 \\ 4^0 \ 4^1 \ 4^2 \\ & 5^0 \ 5^1 \ 5^2 \ -5^0 \ -5^1 \ -5^2 \\ 6^0 \ 6^1 \ 6^2 \ -6^0 \ -6^1 \ -6^2 \end{array} \right] \left[\begin{array}{l} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{array} \right]$$

Garbling procedure:

- ► Compute $K_1, ..., K_4$ (depend on incoming wire labels)
- ▶ Invert this matrix to solve for polynomials *P* and *Q*
- Garbled gate is (P(5), Q(5))

Main observation: this matrix is invertible for any non-constant gate

What we need (for evaluation to work):

$$\left\{ \begin{array}{l} Q(1) = K_1 \\ Q(2) = K_2 \\ Q(3) = K_3 \\ P(4) = K_4 \\ P(5) - Q(5) = 0 \\ P(6) - Q(6) = 0 \end{array} \right\} \Longleftrightarrow \left[\begin{array}{l} K_1 \\ K_2 \\ K_3 \\ K_4 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} 1^0 & 1^1 & 1^2 \\ 2^0 & 2^1 & 2^2 \\ 3^0 & 3^1 & 3^2 \\ 4^0 & 4^1 & 4^2 \\ 5^0 & 5^1 & 5^2 & -5^0 & -5^1 & -5^2 \\ 6^0 & 6^1 & 6^2 & -6^0 & -6^1 & -6^2 \end{array} \right] \left[\begin{array}{c} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{array} \right]$$

Garbling procedure:

- ► Compute $K_1, ..., K_4$ (depend on incoming wire labels)
- ▶ Invert this matrix to solve for polynomials *P* and *Q*
- Garbled gate is (P(5), Q(5))

Main observation: this matrix is invertible for any non-constant gate

What we need (for evaluation to work):

$$\left\{ \begin{array}{l} Q(1) = K_1 \\ Q(2) = K_2 \\ P(3) = K_3 \\ P(4) = K_4 \\ P(5) - Q(5) = 0 \\ P(6) - Q(6) = 0 \end{array} \right\} \Longleftrightarrow \left[\begin{array}{l} K_1 \\ K_2 \\ K_3 \\ K_4 \\ 0 \\ 0 \end{array} \right] = \left[\begin{array}{c} 1^0 & 1^1 & 1^2 \\ 2^0 & 2^1 & 2^2 \\ 3^0 & 3^1 & 3^2 \\ 4^0 & 4^1 & 4^2 \\ 5^0 & 5^1 & 5^2 & -5^0 & -5^1 & -5^2 \\ 6^0 & 6^1 & 6^2 & -6^0 & -6^1 & -6^2 \end{array} \right] \left[\begin{array}{c} p_0 \\ p_1 \\ p_2 \\ q_0 \\ q_1 \\ q_2 \end{array} \right]$$

Garbling procedure:

- ► Compute $K_1, ..., K_4$ (depend on incoming wire labels)
- ▶ Invert this matrix to solve for polynomials *P* and *Q*
- Garbled gate is (P(5), Q(5))

Main observation: this matrix is invertible for any non-constant gate