
RESE ARCH FE ATURE

61JUNE 2010Published by the IEEE Computer Society0018-9162/10/$26.00 © 2010 IEEE

ping changes that cause a merge conflict, dependency
violations that cause a build failure, or the development
of a test suite independently of the code, which can cause
an integration failure.

Coordination technology consists of tools that support
collaborative software development, and an overwhelm-
ing number of such tools are available. Frameworks are
useful in comparing and contrasting coordination technol-
ogy according to a specific paradigm, such as structured
processes or information discovery. However, traditional
frameworks address only a single paradigm, which offers
a limited perspective.

To broaden that perspective, we have created the Coor-
dination Pyramid, which relates five distinct coordination
paradigms and classifies coordination technologies ac-
cording to which paradigm they primarily support. The
Coordination Pyramid helps organizations assess and
articulate their coordination needs and find the toolset
that matches those needs. Because it views technology
in a hierarchy of coordination paradigms, the pyramid
helps in documenting and framing trends and in identi-
fying promising new research directions and application
areas.

The Coordination Pyramid also explicitly recognizes
the technological advancements and changes in organiza-

E
ffective coordination, central to any group
work, is essentially the management of task
dependencies,1,2 with tasks being pooled,
sequential, or reciprocal. In software develop-
ment, the lack of coordination can result in

project delays and increased effort. Even coordinating
a single colocated project takes a significant percentage
of development work because the team must manage
multiple dependencies for each artifact. Distributing
developers across subteams, buildings, or countries
greatly increases coordination efforts, and coordination
breaks down, despite a plethora of tools and adherence
to well-established processes: recommendation systems
point to the same expert, configuration management
systems fail to detect incompatible changes to different
artifacts, and so on.

The coordination optimum is to communicate the right
information to the right stakeholders at the right time. It
is the hypothetically perfect project in terms of coordi-
nation overhead, work integration, and overall progress.
Coordination problems are any intentional or accidental
deviations from that optimum. Thus, the objective of co-
ordination tools is twofold: to decrease the occurrences
of coordination problems and to mitigate the impact of
problems that do occur. Such problems might be overlap-

Categorizing
the Spectrum
of Coordination
Technology

 Anita Sarma, University of Nebraska, Lincoln

 David Redmiles and André van der Hoek, University of California, Irvine

Most frameworks that categorize technology for collaborative software
development look at only one aspect of coordination support. The
Coordination Pyramid classifies technologies according to multiple
coordination paradigms, offering a unified, complementary perspec-
tive and a structure for evaluating emerging technology.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

RESE ARCH FE ATURE

COMPUTER 62

changes to a common set of interdependent artifacts (ar-
tifact management). Although tools can handle some of
that coordination work, developers will always need to
communicate with one another (communication), as well
as plan and manage their tasks (task management). As the
figure implies, our focus is primarily on tools that support
coordination during the implementation phase—coordi-
nation support during this phase has received the most
attention and is the most mature to date.

The three strands blend at the higher layers. This blend-
ing reflects the reality that coordination tools have begun
to integrate these three aspects to provide the insight into
potential coordination problems that will lead to more
well-rounded solutions. Integration at the higher layers is
evident in the shrinking cells. The problems are no less
complex, nor is tool adoption easier; rather, the cells’ di-
minishing size implies that, as the strands increasingly
integrate, coordination grows closer to the optimum. In-
creased integration is also key to future advances, which
is why the pyramid is open—new paradigms will emerge
as coordination support matures.

PARADIGM-BASED CLASSIFICATION

Table 1 gives a sample of the coordination technology
that corresponds to each pyramid cell, and the “Sampling

tional and product structure that prompt paradigm shifts.
Typically, these shifts drive new generations of coordina-
tion technology, enabling more sophisticated tools and
practices.

A PROGRESSIVE FRAMEWORK

Most frameworks for categorizing coordination tech-
nologies examine only a specific class, such as groupware
or conflict management, or view tools from only one per-
spective, such as time versus space.

As Figure 1 shows, the Coordination Pyramid takes
a complementary, unified perspective in relating tool
classes. It organizes existing and emerging coordination
technology hierarchically according to the underlying co-
ordination paradigm—the overarching philosophy and
rules that govern coordination. Over time, four paradigm
shifts have emerged, and a fifth one is nascent. Each layer
in the pyramid identifies the technical capabilities that
support a paradigm, which are cross-categorized along
three coordination aspects: communication, artifact man-
agement, and task management. These three aspects, or
strands, abstract the basic coordination activities in soft-
ware development, irrespective of development practice.
This additional categorization recognizes that all soft-
ware developers must coordinate individual access and

Figure 1. The Coordination Pyramid. Unlike other frameworks that classify coordination technology, the Coordination Pyramid takes a
complementary perspective, organizing technology according to five coordination paradigms. Each layer identifies the kinds of technical
capabilities that support a paradigm and is cross-categorized along three coordination aspects: communication, artifact management, and
task management.

Communication Artifact management Task management

Continuous coordination

• Task-centric
 development
• Executive project
 summarizing

• Project visualization
• Artifact tagging

• Communication
 gap analysis
• Expertise location

—
• Workspace awareness
• Artifact recommendation

• Interruption and
 overload management
• Automatic expertise
 recommendation

• Process de�nition
 and enactment
• Work�ow and
 issue tracking

• Software con�guration
 management
• Shared editing

Automated message
triggers and noti�cations

Rudimentary task-allocation
and planning tools

• Archival and retrieval of
 common artifact sets
• Access to artifacts in
 central repository

Basic computer-mediated
communication

Ba
sic

fun
cti

on
ali

ty
Str

uc
tur

ed
pro

ces
ses

Inf
orm

ati
on

dis
cov

ery
Co

nte
xtu

ali
zed

inf
orm

ati
on

Int
eg

rat
ed

op
era

tio
ns

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

63JUNE 2010

of Advanced Coordination Technologies” sidebar describes
tools in the upper layers in more depth. Because layers
move from basic functionality to increasingly more so-
phisticated coordination support, tools at one layer either
directly build on or have been enabled by the technology in
the preceding layer. Tools at higher layers often use automa-
tion to avoid, detect, or resolve coordination problems that
preceding layers did not address. Of course, tools cannot
avoid problems entirely or always automate their resolu-
tion. Indeed, in some cases, manual effort increases, such
as when an individual must add tags or specify a current
task in more detail. However, the higher the layer, the less
time the team should be spending on coordination overall.

Basic functionality

Technology at this layer focuses on moving a team from
purely manual coordination to strategies that minimally
involve automated tools. These tools provide bare-bones
functionality, generally with each tool focusing on a single
coordination aspect. Developers must still decide when
to coordinate, with whom, about what, and how. The re-
maining time and effort depend on the developers’ product
knowledge, their willingness to share that knowledge, and
the organizational context.

Tools that fit this layer are e-mail, discussion boards,
shared file systems and tools for first-generation configu-
ration management, project allocation, and scheduling.
Some of these tools, among the first to support team
coordination, have modern versions (Google groups vs.
Usenet), but the underlying functionality remains primar-
ily asynchronous communication, basic artifact sharing,
and stand-alone project management.

Structured processes
Tools in this layer revolve around automating the deci-

sions that tools in the basic functionality layer left open.
The focus is on encoding these decisions in well-defined
coordination processes that are typically modeled and
enacted explicitly through a workflow environment or im-
plicitly as part of a user interaction protocol for a particular
technology. The latter form could be a copy-edit-merge in
configuration management systems or an open-resolve-
close in an issue tracker. Some tools that fit this layer are
shared editors, second-generation configuration man-
agement systems, issue trackers, workflow engines, and
process-modeling environments. The tools’ underlying
goal is to enforce a particular protocol for editing, manag-
ing, and relating changes to project artifacts.

Most mature organizations will use tools from this layer
because of their desire to conform to the Capability Matu-
rity Model. Well-articulated processes also make it easier
to scale an organization and its projects. Many open source
software projects also use suites of tools that reside at this
layer. Even the minimal processes espoused by the open
source community must have enough coordination struc-
ture to allow operation in a distributed setting.

Relative to the basic functionality layer, tools at this
layer reduce a developer’s coordination effort because
many rote decisions are now encoded in the processes
that the tools enact. On the other hand, it takes time to set
up the desired process, and adopting a tool suite requires
carefully aligning protocols for its use. Thus, the cost of
technology in this layer might be initially high, but an or-
ganization can recoup that cost by choosing its processes
carefully and changing them infrequently.

Table 1. Representative tools corresponding to cells in the Coordination Pyramid.

Layer aspect Communication Artifact management Task management

Basic functionality IM: IRC, ICQ, AOL
E-mail: LotusNotes, Outlook, Yahoo,
 Google

SCCS, RCS, Kongsberg software
 suite

Milos, Autoplan, MS Project

Structured processes Event notification: Elvin, Cassius
Information triggers: SCM commit
 messages, CVS watch, Coven

SCM systems: Adele/Celine, Clear
 Case, Git
Shared editors: Grove, VNC,
 SynchronEyes, Sangam, ShrEdit

Workflow systems: FlowMark,
 Inconcert
Process environments: SPADE, Epos
Issue trackers: Bugzilla, Trac

Information discovery Expertise queries: Expert browser,
 OSS browser
Sociotechnical analysis: Ariadne,
 Tesseract, SmallBlue

Project visualization: SeeSoft,
 Augur, Creole/Xia, CodeCity
Artifact tags: TeamTracks, eMoose

Dashboards: Hackystat, project
 management dashboard, soft-
 ware process dashboard initiative
Integrated environments: Jazz,
 Travis

Contextualized information Information overload: Step_In
Interruption management: MyVine,
 Oasis
Expert recommender: EEL

Workspace awareness: Palantir,
 Chianti, Lighthouse, CollabVS
Artifact recommender: Hipikat,
 ROSE, Mylyn

—

*CVS: Concurrent versions system; EEL: emergent expertise locator; ICQ: Internet chat query; IRC: Internet relay chat; IM: instant messaging; RCS: revision
control system; ROSE: reengineering of software evolution; SCCS: source-code control system; SCM: software configuration management; SPADE: Software
Process Analysis Design and Enactment; VNC: virtual network computing

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

RESE ARCH FE ATURE

COMPUTER 64

SAMPLING OF ADVANCED COORDINATION TECHNOLOGIES

The tools in the Coordination Pyramid’s basic functionality and
structured processes layers are well established. Except for

Mylyn, Hackystat, and Jazz, tools in the top two layers are

research prototypes, so their functions are less well known. Table
A describes tools in the information discovery layer. Table B
describes tools in the contextualized information layer.

Table A. Sampling of tools in the information discovery layer.
Tool Description Source

Communication
Expertise
Browser

Stand-alone interactive expertise recommender that provides a
list of experienced developers once a user selects a code
artifact

A. Mockus and J. Herbsleb, “Expertise Browser: A Quantitative Approach
to Identifying Expertise,” Proc. 2002 Int’l Conf. Software Eng. (ICSE 02), ACM
Press, 2002, pp. 503-512.

Tesseract Interactive project exploration environment that visualizes
entity relationships among code, developers, bugs, and com-
munication records

A. Sarma et al., “Tesseract: Interactive Visual Exploration of Socio-Techni-
cal Relationships in Software Development,” Proc. Int’l Conf. Software Eng.
(ICSE 09), ACM Press, 2009, pp. 23-33.

Artifact management
SeeSoft Stand-alone tool for visualizing aspects of the evolution of a

source code base
T. Ball and S.G. Eick, “Software Visualization in the Large,” Computer, vol.
29, no. 4, 1996, pp. 33-43.

Creole Stand-alone tools for visualizing change frequencies and
dependencies among source code modules

R. Lintern et al., “Plugging-in Visualization: Experiences Integrating a Vis-
ualization Tool with Eclipse,” Proc. 2003 ACM Symp. Software Visualization
(SoftVis 03), ACM Press, 2003, pp. 47–56.

CodeCity Interactive 3D-visualization tool that uses a city metaphor to
depict object-oriented software systems; classes are “buildings”
and packages are “districts.”

R. Wettel and M. Lanza, “CodeCity: 3D Visualization of Large-Scale Soft-
ware,” Companion of the 30th Int’l Conf. Software Eng. (ICSE 08), ACM Press,
2008, pp. 921-922.

Team Tracks Recommender system that analyzes file and class browsing
activities to identify artifact visiting patterns and related task
context

R. DeLine et al., “Towards Understanding Programs through Wear-Based
Filtering,” Proc. 2005 ACM Symp. Software Visualization (SoftVis 05), ACM
Press, 2005, pp. 183-192.

Task management
Jazz IDE features that facilitate collaboration via integrated plan-

ning, tracking of developer effort, project dashboards, reports,
and process support

http://www-306.ibm.com/software/rational/jazz

Hackystat Open source framework for collecting, analyzing, visualizing,
and interpreting software development process and product
data, operating through embedded sensors in development
tools with associated Web-based queries

P.M. Johnson and S. Zhang, “We Need More Coverage, Stat! Classroom
Experiences with the Software ICU,” Proc. 3rd Int’l Symp. Empirical Software
Eng. and Measurement (ESEM 09), IEEE Press, 2009, pp. 168-178.

Table B. Sampling of tools in the contextualized information layer
(communication and artifact management).

Tool Description Source
Communication
Oasis Interruption management system that defers notifications until

users performing interactive tasks reach a breakpoint
S.T. Iqbal and B.P. Bailey, “Effects of Intelligent Notification Management
on Users and their Tasks,” Proc. 26th Ann. SIGCHI Conf. Human Factors in
Computing Systems (CHI 08), ACM Press, 2008, pp. 93-102.

Step_In Expertise recommendation framework to guide tool design;
considers information overload, interruption management, and
social network benefits

Y. Ye et al., “A Socio-Technical Framework for Supporting Programmers,”
Proc. 6th Joint Meeting European Software Eng. Conf. and the ACM SIGSOFT
Int’l Symp. Foundations Software Eng. (ESEC-FSE 07), ACM Press, 2007, pp.
351-360.

EEL Expertise recommender that uses emergent team information
and artifact structure to propose experts as a user works on a
task

S. Minto and G.C. Murphy, “Recommending Emergent Teams,” Proc. 4th
Int’l Workshop Mining Software Repositories (MSR 07), IEEE Press, 2007, p. 5.

Palantír Eclipse extension that supports early detection of emerging
conflicts through peripheral workspace awareness

A. Sarma et al., “Empirical Evidence of the Benefits of Workspace Aware-
ness in Software Configuration Management,” Proc. 16th ACM SIGSOFT
Int’l Symp. Foundations Software Eng. (SIGSOFT 08/FSE-16), ACM Press,
2008, pp. 113-123.

Artifact management
Chianti Testing tool integrated with the development environment that

identifies test cases needing regeneration because of local
changes

X. Ren et al., “Chianti: A Tool for Change Impact Analysis of Java Pro-
grams,” Proc. 19th Ann. ACM SIGPLAN Conf. Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA 04), ACM Press, 2004, pp.
432-448.

Mylyn Task-centric, Eclipse-based environment that leverages infor-
mation to reduce context switching and provide developers
with just the artifacts and information necessary for their cur-
rent code modification task

M. Kersten and G.C. Murphy, “Using Task Context to Improve Programmer
Productivity,” Proc. 14th ACM SIGSOFT Int’l Symp. Foundations Software
Eng. (SIGSOFT 06/FSE-14), ACM Press, 2006, pp. 1-11.

CollabVS Visual Studio extension that informs users of emerging direct
and indirect conflicts via a “conflict inbox” and enables IM
conversation

P. Dewan and R. Hegde, “Semi-Synchronous Conflict Detection and Reso-
lution in Asynchronous Software Development,” Proc. 10th European
Conf. Computer-Supported Cooperative Work (ECSCW 07), Springer, 2007,
pp. 159-178.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

65JUNE 2010

coordination information to create a work context and
gently guide developers as they perform their daily activi-
ties. The idea is to provide the right information to the right
person at the right time, unobtrusively sharing only what
is relevant. The tools in this layer present subtle awareness
cues to which the developers respond. The crux of this
layer is in the interplay between those cues and responses:
the stronger the work context the tools provide, the greater
the opportunity for developers to proactively and swiftly
resolve any emerging coordination problems.

This layer includes tools for interruption management
and workspace awareness, change impact predictors, and
expertise recommendation systems. Workspace awareness
tools provide information about potentially conflicting ac-
tivities that users are performing in parallel to embellish
the development environment.7,8 Interruption management
systems inform a user of other users’ availability; some
such systems even attempt to detect availability automati-
cally by closely monitoring users’ communication and
work patterns.9

Most tools in this layer are still in the exploratory phase.
The notion of situational awareness drove much of the
early work, which directly juxtaposed awareness with
process-based approaches.7,8 More recent work has con-
centrated on integrating awareness with process, yielding
more powerful, scalable, and contextualized solutions. To
date, integration work has focused on identifying artifacts
and experts to make it easier for individuals to manage
their tasks, but it has not yet addressed how to improve
task management for the team as a whole. No task man-
agement tools that we know of fit the proactive nature that
this layer requires, which is why Table 1 has no entry for
this layer and strand.

In the previous layer, the integration of coordination
aspects was explorative; in the contextualized information
layer, such integration is required. Tools must draw on
multiple and diverse information sources to enable organic
forms of self-coordination.

Emerging layers

The pyramid’s top layer is empty and open, which
signifies our belief that paradigms for coordination sup-
port will continue to evolve with new technology and
organizational practices. The ultimate goal is continuous
coordination—flexible work practices supported by tools
that continuously adapt their behavior and functionality
so as to minimize the number and impact of coordination
problems.3 In this ideal, developers will not even realize
that separate coordination tools exist because the develop-
ment workbench will seamlessly merge coordination and
work. Of course, coordination technology will not reach
this vision in one paradigm shift; attaining it will require
multiple, incremental generations of coordination technol-
ogy, approaches, and work practices.

Information discovery
Processes are but one coordination component. The in-

formal practices that surround formal processes also need
support3—the primary aim of tools in the information
discovery layer. Because informal coordination requires
users to gain information that establishes a context for
their work, tools in this layer empower users to proactively
seek and assemble information to build this context. Some
examples are software visualization systems, project dash-
boards, and tools that help locate coordination expertise
and identify process gaps.

Technology in the information discovery layer aims to
automate tasks such as identifying an expert and request-
ing status reports on task completion and overall progress.
The tools typically rely on information that developers
already provide in other tasks (commit logs, work item
status), although some of the more recent tools require

developers to add information for later use, such as an-
notating code with tags.

Other users can directly query the collected informa-
tion or use visualizations with relevant and contextualized
formats. New interactive development environments let
developers leave clearly identifiable tags in the code that
other developers can search for and interpret. Visualization
tools let users investigate development history or patterns
to plan their work. Such tools are critical to supporting co-
ordination in a distributed setting, where distance hinders
the essentially subconscious buildup of context.4

In this layer, the benefits of blending communication, ar-
tifact management, and task management become clear. A
visualization that shows where code is traditionally buggy is
useful to both developers and project managers. A developer
can assess the possibility that a new change will introduce
bugs; a project manager can decide to put more personnel
on those parts. A sociotechnical network analysis might not
only reveal coordination gaps5 but also identify artifacts that
developers usually modify together. Finally, tags that link to
discussions on design rationale not only communicate infor-
mation about an artifact’s state but also provide important
information for overall task management.6

Contextualized information

Tools in the information discovery layer enable devel-
opers to be proactive; but tools at this layer are themselves
proactive because they automatically provide the right

So far, the focus has been on making
individual task management easier.
Efforts have not addressed how to
improve task management for the
team as a whole.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

RESE ARCH FE ATURE

COMPUTER 66

layers offer benefits: workspace awareness tools save time
and decrease the number of conflicts,7,8 recommender
systems boost productivity,10 and interruption manage-
ment systems shorten the time to resume activities and
decrease the team’s frustration.9 But reaping these benefits
requires a certain amount of organizational and individual
readiness. In our years of industry collaboration, we have
met managers who actively promote parallel changes to
the same artifacts as well as managers who insist on using
locks to prohibit parallel work. If these managers adopt the
same workspace awareness technology, the outcomes are
bound to be very different.

Organizational readiness is not just a managerial issue.
Successfully inserting coordination technologies requires
that individual developers be willing to share information
about their development practices and at times spend extra
effort to benefit the team. For example, some workspace
awareness tools rely on nonempty commit comments;11

others expect developers to add themselves to a team
portal and actively participate in it; still others mandate
that individuals set their activity level to reflect current
work.12 Training and education are essential, particularly
if an organization wants to use the more sophisticated
tools in the pyramid’s upper layers, since these tools often
necessitate work practice changes.

Sometimes the grass-roots adoption of higher-level tech-
nology leads to organizational change. IM is the prime
example: in some cases, developers have established
remarkably effective informal conventions that have
changed the organization from within.

Successfully adopting sophisticated tools also requires
generating trust and respecting privacy. Because tools
at the higher layers typically rely on sharing detailed in-
formation about individuals, their tasks, and their task
progress, it can be tempting to misuse this information.
Managers might exert too much control over detailed ac-
tivities or, worse, create a competitive situation in which
developers feel pressured to produce the best public image
by writing the most lines of code or processing the most
work items. This competitive atmosphere is at odds with
effective tool use. Indeed, even the perception of potential
misuse can lead to distrust and unanticipated counterpro-
ductive practices. In moving up the Coordination Pyramid,
an organization must carefully establish an increasingly
open and honest work environment with corresponding
organizational policies.

N
o one has yet precisely quantified the cost of
coordination problems, and such an effort
might very well be impossible. Most organiza-
tions accept that rework, unnecessary work,
and missed opportunities are all too common

in development projects. Even when a problem is simply

TOOL USE AND WORK PRACTICES
The Coordination Pyramid shows that paradigm shifts

alternate between enabling new capabilities that require
significant manual effort and encoding manual work pat-
terns into automated tool capabilities. As its name implies,
the basic functionality layer enables only basic forms of
coordination; any complicated processes still require con-
siderable manual work. The structured processes layer
brings automated, highly structured processes, but the
resulting approaches are rigid. The next layer overcomes
this rigidity by enabling developers to proactively look for
information, but it requires significant context switch-
ing and knowledge of what to look for. Contextualized
information addresses this problem by making the tools
themselves more proactive and by carefully integrating the
tools into the development environment. We fully expect
this interleaving pattern to continue for the reasons de-
scribed in the “Capabilities and Context” sidebar.

Organizations often mix tools from different layers. On
finding a potential conflict using a workspace awareness
tool (contextualized information layer), a developer might
contact a colleague over IM (basic functionality layer). After
Developer A realizes that Developer B is working on differ-
ent parts of the file, the two might decide to modify their
parts in sequence, with Developer A using tags (informa-
tion discovery layer) to inform Developer B of a change’s
nature and impact. This mixed-layer tool use is not surpris-
ing, since most organizations acquire tools one at a time.

When moving up the Coordination Pyramid, however,
organizations must not assume that a suite of coordination
tools will automatically ensure the adoption of sophisti-
cated work practices. For example, a company might adopt
some sophisticated recommendation tool, but developers
could still refuse to divulge the work details that the tool
needs for a recommendation, perhaps fearing competition
from colleagues. Evidence is emerging that tools at higher

CAPABILITIES AND CONTEXT

A symbiotic relationship exists between the technical capa-
bilities that comprise a layer and the context in which

these capabilities are used. Technical advances enable new
forms of coordination, which in turn can lead to new organiza-
tional structures. Object-oriented programming and robust
build and test systems, for example, have enabled agile devel-
opment. Likewise, new organizational structures demand new
forms of coordination, which in turn require new technical
capabilities. Geographical separation, for example, has
prompted the development of videoconferencing, and dis-
tributed synchronization algorithms have fueled configuration
management repositories.

It is not clear if technical advances drive changes in organization
structures or vice versa, since the two tend to evolve in unison.
However, some kind of interrelationship is evident from the way
existing paradigms have evolved.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

67JUNE 2010

 6. M.-A. Storey et al., “Shared Waypoints and Social Tagging
to Support Collaboration in Software Development,” Proc.
20th Anniversary Conf. Computer-Supported Cooperative
Work (CSCW 06), ACM Press, 2006, pp. 195-198.

 7. P. Dewan and R. Hegde, “Semi-Synchronous Conflict
Detection and Resolution in Asynchronous Software
Development,” Proc. 10th European Conf. Computer-Sup-
ported Cooperative Work (ECSCW 07), Springer, 2007, pp.
159-178.

 8. A. Sarma et al., “Empirical Evidence of the Benefits of
Workspace Awareness in Software Configuration Manage-
ment,” Proc. 16th ACM SIGSOFT Int’l Symp. Foundations of
Software Eng. (SIGSOFT 08/FSE-16), ACM Press, 2008, pp.
113-123.

 9. S.T. Iqbal and B.P. Bailey, “Effects of Intelligent Notification
Management on Users and Their Tasks,” Proc. 26th Ann.
SIGCHI Conf. Human Factors in Computing Systems (CHI
08), ACM Press, 2008, pp. 93-102.

 10. M. Kersten and G.C. Murphy, “Using Task Context to Im-
prove Programmer Productivity,” Proc. 14th ACM SIGSOFT
Int’l Symp. Foundations of Software Eng. (FSE 06), ACM
Press, 2006, pp. 1-11.

 11. G. Fitzpatrick et al., “CVS Integration with Notification and
Chat: Lightweight Software Team Collaboration,” Proc.
20th Anniversary Conf. Computer-Supported Cooperative
Work (CSCW 06), ACM Press, 2006, pp. 49-58.

 12. L.-T. Cheng et al., “Building Collaboration into IDEs,” ACM
Queue, vol. 1, no. 9, 2003, pp. 40-50.

Anita Sarma is an assistant professor in the Department
of Computer Science and Engineering at the University of
Nebraska, Lincoln. Her research interests include under-
standing and facilitating coordination in distributed work.
Sarma received a PhD in information and computer science
from the University of California, Irvine. She is a member
of IEEE and the ACM. Contact her at asarma@cse.unl.edu.

David Redmiles is an associate professor and chair of the
Department of Informatics in the Donald Bren School of
Information and Computer Sciences at the University of
California, Irvine. His research interests include software
engineering, human-computer interaction, computer-sup-
ported cooperative work, and most recently collaborative
software engineering. Redmiles received a PhD in computer
science from the University of Colorado. He is a member of
IEEE, the ACM, and the Association for the Advancement of
Artificial Intelligence. Contact him at redmiles@ics.uci.edu.

André van der Hoek is a professor in the Department of
Informatics in the Donald Bren School of Information and
Computer Sciences and a faculty member of the Institute
for Software Research, both at the University of Califor-
nia, Irvine. His research focuses on understanding and
advancing the role of design, coordination, and education
in software engineering. Van der Hoek received a PhD in
computer science from the University of Colorado. He is a
member of IEEE and the ACM. Contact him at andre@ics.
uci.edu.

a nuisance, such as when a repeatedly recommended
expert chooses to ignore questions or to answer only
select developers, the consequences can undermine a
collaborative effort. A developer looking for an answer
and not receiving one might interrupt other developers
or spend considerable time trying to solve the problem
without help. The literature is rife with accounts of crucial
coordination problems that have resulted in severe time
delays, serious developer expenses, decreased quality of
critical code, and even failed projects.

Our Coordination Pyramid can serve as a road map
for improving an organization’s coordination practices.
An organization can more easily locate the coordination
paradigms it currently follows, review the tools in other
paradigms, and gain the insight into the conditions for
transitioning to a new paradigm. The pyramid also high-
lights the necessity of the informal practices surrounding
the more formal tools and processes that an organization
can institute. We believe that effective coordination is a
matter of providing the right infrastructure yet allowing
developers to compensate for tool shortcomings by estab-
lishing individual strategies for optimum coordination.

Our coordination tool classification can also help in-
spire and guide future research. Charting how technologies
have evolved—matured and expanded from cell to cell and
layer to layer—makes it easier to anticipate next steps. An
organization might feel more confident about increasing
coordination support by moving up the pyramid and in
so doing blend the three key coordination aspects. With
the increasing pressures of global software development,
burgeoning size and complexity of software systems, and
never-ending technological advances, new coordination
needs will always arise. The Coordination Pyramid pro-
vides the impetus for reaching toward future paradigms
that address the next generation of coordination chal-
lenges and opportunities.

References
 1. J. Thompson, Organizations in Action: Social Science Bases

of Administrative Theory, McGraw-Hill, 2003.
 2. C.R.B. de Souza and D. Redmiles, “An Empirical Study of

Software Developers’ Management of Dependencies and
Changes,” Proc. 30th Int’l Conf. Software Eng. (ICSE 08),
IEEE CS Press, 2008, pp. 241-250.

 3. D. Redmiles et al., “Continuous Coordination: A New
Paradigm to Support Globally Distributed Software De-
velopment Projects,” Wirtschaftsinformatik, vol. 49, 2007,
pp. S28-S38.

 4. J. Herbsleb and A. Mockus, “An Empirical Study of Speed
and Communication in Globally Distributed Software De-
velopment,” IEEE Trans. Software Eng., vol. 29, 2003, pp.
1-14.

 5. M. Cataldo et al., “Software Dependencies, Work De-
pendencies and Their Impact on Failures,” IEEE Trans.
Software Eng., vol. 99, 2009, pp. 864-878.

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

Authorized licensed use limited to: OREGON STATE UNIV. Downloaded on August 20,2020 at 20:37:37 UTC from IEEE Xplore. Restrictions apply.

