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Recommending Participants for 
Collaborative Merge Sessions 

Catarina Costa, Jair Figueirêdo, João Felipe Pimentel, Anita Sarma, and Leonardo Murta 

Abstract—Development of large projects often involves parallel work performed in multiple branches. Eventually, these branches 
need to be reintegrated through a merge operation. During merge, conflicts may arise and developers need to communicate to 
reach consensus about the desired resolution. For this reason, including the right developers to a collaborative merge session is 
fundamental. However, this task can be difficult especially when many different developers have made significant changes on 
each branch over a large number of files. In this paper, we present TIPMerge, an approach designed to recommend participants 
for collaborative merge sessions. TIPMerge analyzes the project history and builds a ranked list of developers who are the most 
appropriate to integrate a pair of branches (Developer Ranking) by considering developers’ changes in the branches, in the 
previous history, and in the dependencies among files across branches. Simply selecting the top developers in such a ranking is 
easy, but is not effective for collaborative merge sessions as the top developers may have overlapping knowledge. To support 
collaborative merge, TIPMerge employs optimization techniques to recommend developers with complementary knowledge 
(Team Recommendation) aiming to maximize joint knowledge coverage. Our results show a mean normalized improvement of 
49.5% (median 50.4%) for the joint knowledge coverage with the optimization techniques for assembling teams of three 
developers for collaborative merge in comparison to choosing the top-3 developers in the ranked list. 

Index Terms— Version Control, Branch Merging, Collaborative Merge, Developer Recommendation, Optimization  
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1 INTRODUCTION 
he software development process often requires paral-
lel work made by multiple people because of a host of 

reasons, such as time-to-market, maintenance of old ver-
sions, and implementation of a subsystem. Such parallel 
work is usually isolated from each other by using branches. 
A branch provides an isolated area where changes can be 
made, designs explored, and code tested in parallel with 
other teams working in other branches [1]. 

Changes made in branches need to be reintegrated pe-
riodically through a merge operation. The effort involved 
in such an integration is usually dependent on how much 
work went on in the branch and also in the other branches 
in the intervening time [2], especially in situations when 
conflicts occur [3]. 

In the case of conflicts, developers often need to discuss 
their choice of conflict resolution with other developers 
since conflicts also suggest differences in opinions and 
strategies [4]. In such situations, some developers may not 
have enough knowledge to make the right decision. There-
fore, the collective knowledge of project members can help 
such conflict resolutions, with all involved parties partici-
pating in a collaborative effort [4], [5]. For instance, a sur-
vey of 164 developers [6] showed that when performing a 
merge, people frequently (75%) contacted other developers 
to resolve the conflicts together. 

Inviting the right set of developers to a collaborative 
merge session is a key requirement for dealing with this 
problem. However, this requires knowledge about the pro-
ject to prioritize among developers [3]: who are aware of 

the project history, the dependencies in the project, and the 
changes in the branches. Inviting all involved developers 
to a merge session is infeasible due to cost and developer 
availability. Moreover, some developers may have similar 
knowledge, as they may have changed the same files. In 
this case, recommending such developers could lead to an 
overlap in knowledge. Therefore, a global view of 
knowledge distribution among developers is fundamental. 

Existing approaches do not address how to select devel-
opers who are the best suited to perform a collaborative 
merge. Some proposals focus on supporting collaborative 
model merging [4], [7] and collaborative real-time editor 
[5], [8]. These studies aim at enabling all involved partici-
pants to work in a collaborative fashion. We also found 
works that assign developers to software activities, mainly 
assigning developers to issues [9]–[16] or pull request [17]–
[23]. However, assigning developers to a collaborative 
merge session brings additional challenges due to the 
number of developers, the time interval between branch 
synchronizations, and the number of commits per branch. 
Finally, dependencies among files across branches add fur-
ther complexity to the merge process. 

In this paper, we propose TIPMerge, an approach de-
signed to recommend developers for collaborative merge 
sessions. TIPMerge builds a ranked list of developers who 
are the most appropriate to integrate a pair of branches (the 
Developer Ranking). As the top developers in the ranking 
may have similar knowledge, this ranked list is then used 
to detect knowledge coverage of the artifacts. TIPMerge 
checks the developer’s knowledge coverage of changed 
files and methods and shows which set of developers have 
the highest joint coverage (the Team Recommendation). As 
the number of developers in the ranking can be high, we 
use an optimization algorithm to find which developers 
make the best team to deal with a specific merge case. 

In previous a paper [3], we presented the first version of 
TIPMerge, which builds a ranked list of suitable candidates 
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to perform the merge based on a medal count system. Alt-
hough useful for conventional merge, in which just one de-
veloper is selected for the task, picking the top developers 
from a ranked list is not appropriate for collaborative 
merges. This work complements our previous work by in-
troducing the concept of joint knowledge coverage and 
providing an optimization strategy to select developers 
that form the most suitable team for the merge. As shown 
by our experiments, optimizing the joint knowledge cov-
erage when assembling teams of three developers for col-
laborative merge leads to a mean normalized improve-
ment of 49.5% in the knowledge coverage when compared 
to choosing the top-3 developers in the ranked list. 

In summary, our main contributions are: 
Approach - We present an approach that analyzes 

change history in branches, file dependencies, and the past 
history to build a ranked list of developers who are the 
most appropriate to integrate a pair of branches. Using this 
ranked list, our approach is able to recommend the most 
suitable developers in terms of joint knowledge coverage to 
team up in a collaborative merge session. 

Implementation - We implemented our approach in a 
tool that is able to build a ranked list of suitable candidates 
to perform the merge based on a medal count system. It 
also recommends the maximum knowledge coverage for a 
collaborative merge session. Given the number n of devel-
opers provided by the user, TIPMerge recommends the n de-
velopers that maximize the joint knowledge coverage. 

Empirical Evaluation - We quantitatively evaluated 
TIPMerge over 25 real-world projects. We verified the nor-
malized improvement in joint knowledge coverage of the 
TIPMerge team recommendation for collaborative merge 
over the selection of the top developers from the ranked 
list. In summary, our evaluation was designed to answer 
the following research question: Does the n-developer TIP-
Merge Team Recommendation for collaborative merge improve 
the percentage of joint knowledge coverage over teaming up the 
top-n developers from the Developer Ranking? 

2 TIPMERGE 
The primary goal of TIPMerge is to recommend teams for 
a collaborative merge session with the expertise to inte-
grate changes across two branches. Our approach has the 
following steps, shown in Fig. 1: (1) It extracts data from 
the repository until the branch tips – the two most recent 
commits of the two branches that will be merged (see Sec-
tion 2.2); (2) It detects dependencies among files by identi-
fying files that were frequently committed together. We 
calculate dependencies from the data before the branch 
creation (see Section 2.3); (3) It Identifies developers who 
edited key files – files that were edited in both branches or 
had dependencies across branches (see Section 2.4); (4) It 
builds a ranked list of suitable candidates to perform the 
merge based on a medal count system (see Section 2.5); (5) 
It recommends a team of developers that have together the 
maximum knowledge coverage over the key files for a col-
laborative merge session, considering the ranking and con-
tributions of each developer (see Section 2.6). 

 
Fig. 1. Steps of the approach 

2.1 Scenario 
Here is an intentionally simple scenario that we use as a 
running example to explain how TIPMerge works. Con-
sider a hypothetical project, Calculator, which employs a 
feature branch in parallel to the master branch to imple-
ment advanced operations. Fig. 2 presents a commit his-
tory that includes these two branches, and five developers: 
Alice, Alex, Bob, Peter, and Tom. Let us assume that Bob 
creates a feature branch from the master (C50) and per-
forms three commits (C51, C54, and C56). Alex and Tom 
also committed to this branch (C57 and C59, respectively). 
Alice and Peter continue to work in the master branch in 
parallel. Alice performs two commits (C52 and C53), fol-
lowed by two commits from Peter (C55 and C58). Let us 
further assume that Alice and Bob change the same files, 
QuadraticEquation and Subtraction, across the branches (see 
Table 1 and Table 2). Alex also changed the file Subtraction 
in the feature branch. Peter changed the files Multiplication 
and Division in the master branch. Tom changed only the 
file IEquation in the feature branch. However, there is a log-
ical dependency in this scenario: file QuadraticEquation de-
pends on file IEquation.  

 
Fig. 2. Example of Merging Branches 

TABLE 1 
COMMITS IN THE MASTER BRANCH 

File Name  Alice Peter 
QuadraticEquation 2 (C52, C53) 0 
Subtraction 1 (C53) 0 
Multiplication 0 2 (C55, C58) 
Division 0 2 (C55, C58) 

TABLE 2 
COMMITS IN THE FEATURE BRANCH 

File Name  Alex Bob Tom 
QuadraticEquation  0 2 (C51, C56) 0 
Subtraction  1 (C57) 3 (C51, C54, C56) 0 
IEquation 0 0 1 (C59) 

In our example, developers are unaware of changes 
made in the other branch. Therefore, Alice does not know 
about the parallel changes in the feature branch made by 
Bob to QuadraticEquation and Subtraction, and made by 
Alex to Subtraction. An automatic merge of the branches 
could fail due to direct conflicts. Further, Tom changed IE-
quation in the feature branch, on which QuadraticEquation 
depends, and was changed by Alice in the master branch. 
A merge of these branches could also generate build or test 
failure due to indirect conflicts. 

Additionally, Table 3 shows a hypothetical change his-
tory of the project files before the branching. Alex had ed-
ited all the five files and Anna four of the five files. 

We analyze information about changes across branches 
and those in the previous history since both are relevant. 
Developers who have made changes in the branches know 
about recent changes that need to be integrated. Develop-
ers who have modified files in the past may know about 
the history and goals of the implementation. 
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C52 C53 C55 C58 C60

Bob Tom
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TABLE 3 
CONTRIBUTIONS IN HISTORY BEFORE BRANCHING  

File Name  Alex Alice Anna Bob Tom 
QuadraticEquation 14 0 4 0 0 
Subtraction 3 0 0 2 0 
Multiplication 4 0 2 0 0 
Division 1 0 3 0 0 
IEquation 6 0 2 0 4 

2.2 Data Extraction 
The first step in our approach is extracting the data about 
branches from the projects. Formally, we can define a pro-
ject 𝑝 as a tuple (𝐹, 𝐷, 𝐶), where F is a set of files, D is a set 
of developers, and C is a set of commits. Each commit 𝑐) ∈
𝐶 is a tuple (𝐹), 𝑎), 𝑃)), where 𝐹) ⊆ 𝐹 is the set of files 
changed (add, remove, or edit) by 𝑐); 𝑎) ∈ 𝐷 is the author 
of 𝑐); and 𝑃) ⊂ 𝐶 is the set of parent commits of 𝑐). 

Commits are organized in a directed acyclic graph (e.g., 
Fig. 2), where the first commit of the project has no parent 
(e.g., commit C0 in Fig. 2), revision commits have only one 
parent (e.g., commit C53 in Fig. 2), and merge commits have 
two or more parents (e.g., commit C60 in Fig. 2). All reach-
able commits from 𝑐) form its history, including 𝑐) itself and 
the transitive closure over its parents. In Fig. 2, {C0, …, C51, 
C54, C56, C57, C59} is the history of commit C59. The his-
tory of 𝑐) ∈ 𝐶 is 𝐻) = 1𝑐 ∈ 𝐶2𝑐 = 𝑐) ∨ ∃𝑝5: (𝑝5 ∈ 𝑃) ∧ 𝑐 ∈ 𝐻5)8. 

Two commits 𝑐), 𝑐5 ∈ 𝐶 that do not reach each other (i.e., 
𝑐) ∉ 𝐻5 ∧ 𝑐5 ∉ 𝐻)) are called variants (e.g., commits C58 and 
C59 in Fig. 2). Variants may have a common history, which 
comprises all commits that exist in both histories. In Fig. 2, 
{C0, …, C50} is the common history of commits C58 and 
C59. The common history of 𝑐), 𝑐5 ∈ 𝐶 is 𝐶𝐻),5 = 𝐻) ∩ 𝐻5. 

The history of each variant also comprises commits that 
do not belong to the common history, forming an inde-
pendent line of development called branch history. For ex-
ample, {C51, C54, C56, C57, C59} is the branch history of 
C59 when merging with C58; and {C52, C53, C55, C58} is 
the branch history of C58 when merging with C59 (Fig. 2). 
As branches can be created from other branches, the 
branch history may vary depending on the opposing 
branch, as a consequence of different common histories. 
The branch history of 𝑐) ∈ 𝐶 when merging with 𝑐5 ∈ 𝐶 is 
𝐵𝐻),5 = 𝐻)\𝐻5. 

Each branch history comprises a set of files changed by 
its commits. The files changed in the branch history of 𝑐) ∈
𝐶 when merging with 𝑐5 ∈ 𝐶 is 𝐹),5 = ⋃ 𝐹?@A∈BCD,E . 

In addition, files changed in the common history (i.e., 
⋃ 𝐹?@A∈FCD,E ) are extracted to determine expertise over the 
key files. Currently, we collect data of all past commits, but 
the approach can be easily adapted to only consider 
changes in a given time frame (e.g., past release) to accom-
modate decay in expertise [24]. 

2.3 Dependency Detection 
Next, TIPMerge identifies dependencies among files that 
are edited across branches. This is vital since parallel 
changes to dependent files can cause indirect conflicts 
when the branches are integrated. The majority of software 
projects often use a combination of different programming 
languages. Therefore, we use logical dependencies [25] in-
stead of structural coupling [26] in TIPMerge. 

TIPMerge uses the change history of the project (before 
branching) to determine dependencies between pairs of 

files. Of course, it is possible that these dependencies might 
change based on edits in the branches. However, the past 
history provides us a baseline of these dependencies.   

We assume that all commits within the same branch 
have already been integrated: in our scenario, since Peter 
and Alice are working on the same (master) branch, we as-
sume that Peter has integrated his changes with Alice’s 
prior to his commits. 

In order to understand how we compute the logical de-
pendencies across files, let’s assume that each file 𝑓H ∈ 𝐹 has a 
set of dependencies 𝐷𝑒𝑝H ⊂ 𝐹 that are obtained by using an 
association rule mining technique. An association rule is a 
pair (𝑋, 𝑌) of two disjoint sets 𝑋, 𝑌 ⊂ 𝐹. In the notation 𝑋 →
𝑌, 𝑋 is called antecedent and 𝑌 is called consequent [27]. It 
means that, when 𝑋 occurs, 𝑌 also occurs, even if they are 
not structurally related [28]. However, its probabilistic in-
terpretation is based on the evidence in the transactions 
[25], which is determined by two metrics [27]: (1) support, 
the joint probability of having both antecedent and conse-
quent, and (2) confidence, the conditional probability of 
having the consequent when the antecedent is present. 

The confidence value can range from 0 to 1, where 1 
means that every time that the antecedent is changed, the 
consequent is also changed. In this case, the use of a thresh-
old is necessary because low confidence implies low prob-
ability that changing a file causes impact in the dependent 
file. Therefore, the use of confidence (instead of support) 
allows us to define the direction in the dependencies. De-
velopment teams have the freedom to decide the threshold 
above which a dependency becomes relevant. Our ap-
proach parameterizes the threshold and uses the value set 
by the user. Here, after some empirical tests, we have cho-
sen a confidence threshold of 0.6 to determine dependency. 
We wanted a considerable value, a little above the middle, 
thus we tested thresholds of 0.6 and 0.8. We found that 0.6 
provided higher normalized improvement of the Devel-
oper Ranking accuracy in contrast with the top-k develop-
ers who performed most of the merges in the past. 

In our scenario, we have dependencies between the files 
QuadraticEquation and IEquation. IEquation was changed in 
12 commits. Let us assume that of these 12 commits, 8 also 
included changes to QuadraticEquation (Table 3). The confi-
dence of the association rule (IEquation →QuadraticEqua-
tion) is 8/12 = 0.66. Based on a threshold of 0.6, we say that 
QuadraticEquation depends on IEquation. As confidence is 
not symmetric, the confidence of the rule QuadraticEquation 
→IEquation can be different. In our scenario, QuadraticEqua-
tion was changed in 18 commits, and of these 18 commits, 
8 also included changes to IEquation. The confidence of this 
rule is 8/18 = 0.44. Therefore, IEquation does not depend 
on QuadraticEquation. 

2.4 Key File Editors Identification 
The next step in our approach is to identify the developers 
who have modified files that are relevant to the merging of 
the branches. We term these files as key files: 

𝐾𝐹),5 =

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑓? ∈ 𝐹
R

R

S𝑓? ∈ 𝐹),5 ∩ 𝐹5,)T ∨
S𝑓? ∈ 𝐹),5 ∧ 𝐷𝑒𝑝? ∩ 𝐹5,) ≠ ∅T ∨
S𝑓? ∈ 𝐹5,) ∧ 𝐷𝑒𝑝? ∩ 𝐹),5 ≠ ∅T ∨
S𝑓? ∈ 𝐷𝑒𝑝H ∩ 𝐹),5 ∧ 𝑓H ∈ 𝐹5,)T ∨
S𝑓? ∈ 𝐷𝑒𝑝H ∩ 𝐹5,) ∧ 𝑓H ∈ 𝐹),5T ⎭

⎪⎪
⎬

⎪⎪
⎫

 

Key files are files changed in parallel in both branches 
(e.g., Subtraction and QuadraticEquation) – captured in the 
first line of the equation – or files that were changed in one 
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branch (e.g., IEquation), but have a dependency with files 
that were changed in the other branch (e.g., QuadraticEqua-
tion) – captured in the second and third lines of the equa-
tion. As both the dependent and the dependency are con-
sidered key files, the fourth and fifth lines of the equation 
are necessary to capture the dependencies. Changes to the 
former class of files can cause a merge failure (direct con-
flicts), whereas changes to the latter class can potentially 
lead to build or test failures (indirect conflicts). Only key 
files are relevant for us, as all other files can be automati-
cally merged safely.  

Once we have identified the key files, we identify the 
developers who have changed these files: (1) in a branch, 
which signals expertise in the change, or (2) in the previous 
history, which signals expertise in the file. 

In our scenario, the key files are QuadraticEquation, Sub-
traction, and IEquation. According to Table 1 and Table 2, 
Alice changed QuadraticEquation twice and Subtraction 
once in the master branch. Bob changed the same files in 
the feature branch: two and three times, respectively. Alex 
changed Subtraction once in the feature branch. Moreover, 
Tom changed IEquation once in the feature branch. Accord-
ing to Table 3, Alice did not change any file in previous his-
tory, Bob changed Subtraction, and Tom changed IEquation. 
Further, Alex changed all the key files and Anna changed 
two of them (QuadraticEquation and IEquation).  

2.5 Developer Ranking 
Next, TIPMerge uses an algorithm that counts the number 
and type of contribution – changes in a branch or in the 
previous history – to build a ranking of suitable candidates 
for performing the merge. We use a medal system to rank 
developers. This is analogous to how countries are ranked 
in the Olympic Games, based on medal counts. The follow-
ing rules define when developers receive gold, silver, or 
bronze medals.  

A gold medal is awarded when a developer changes a key 
file in a branch. The rationale is that developers who 
changed a key file are the most knowledgeable about the 
change and its implications. They probably are also well 
versed with the file in general, and therefore, likely to be 
able to perform additional edits during a merge if neces-
sary. Gold medals are defined as: 

𝐺),5(𝑑) = \ ] 𝐹? ∩ 𝐾𝐹),5
@A∈BCD,E∧^A_`

\ + \ ] 𝐹? ∩ 𝐾𝐹),5
@A∈BCE,D∧^A_`

\ 

A silver medal is awarded when a developer has changed 
a key file in the past. Developers who created or edited files 
in the past likely possess knowledge about the goals and 
requirements of these files, which can be helpful. Silver 
medals are defined as:  

𝑆),5(𝑑) = \ ] 𝐹? ∩ 𝐾𝐹),5
@A∈FCD,E∧^A_`

\	

A bronze medal is awarded when a developer changes a 
file that depends on another file. We assume that develop-
ers who have changed a dependent file may have learned 
about the API of the file that they are using. Consequently, 
they may know the goals and expectations of such a file, 
which may help in determining the impact of a change. 
Bronze medals are defined as: 

𝐵),5(𝑑) = \ ] ] 𝐷𝑒𝑝H ∩ 𝐹5,)
de∈fA@A∈BCD,E∧^A_`

\ + \ ] ] 𝐷𝑒𝑝H ∩ 𝐹),5
de∈fA@A∈BCE,D∧^A_`

\	

TIPMerge assigns a medal for each edited file, irrespec-
tive of the number of commits made. In our scenario, Alice, 
Alex, and Bob each get one gold medal for Subtraction, even 
though Alice committed the file once in the master branch, 
and Bob committed it three times and Alex once in the fea-
ture branch. Similarly, Bob and Alex each get one silver 
medal for Subtraction, because of their past changes (before 
branching). As commits may have different granularities 
[29], counting commits for distinguishing the relevance of 
the contribution over files could lead to incorrect interpre-
tations. Moreover, in our approach we assume that when a 
developer edits a file, that developer has knowledge about 
the entire file. While our approach can support a finer-
grained expertise calculation at the method level, we leave 
it for future work as such fine-grained analysis would be 
language dependent. 

Our algorithm prioritizes developers with gold medals 
since: (1) they are the expert on the change, and (2) they 
have the most recent knowledge about the changed file. In 
the case of a tie in the number of gold medals, we use the 
number of silver medals to break the tie. This is because, 
everything being equal, a developer who has more experi-
ence overall is likely to be more suitable in merging 
changes. Finally, when there is a tie in the number of silver 
medals, we consider bronze medals. The notion is that if 
two developers have an equal knowledge of the changes 
and an equal knowledge of the project history, a developer 
who has additional knowledge about another file is more 
suitable for the merge. This medal ranking is formally de-
fined as: 

𝑅),5 =

⎝

⎜
⎜
⎜
⎜
⎛

𝑑k ∈ 𝐷

R

R

𝐺),5(𝑑k) + 𝑆),5(𝑑k) + 𝐵),5(𝑑k) > 0 ∧

⎝

⎜
⎜
⎛

𝐺),5(𝑑k) > 𝐺),5(𝑑kno) ∨

⎝

⎜
⎛

𝐺),5(𝑑k) = 𝐺),5(𝑑kno) ∧

p
𝑆),5(𝑑k) > 𝑆),5(𝑑kno) ∨

q
𝑆),5(𝑑k) = 𝑆),5(𝑑kno) ∧
𝐵),5(𝑑k) > 𝐵),5(𝑑kno)

r
s

⎠

⎟
⎞

⎠

⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎞

	

Table 4 shows that Alice and Bob changed Quadrat-
icEquation in the master and feature branches, respectively 
– earning them gold medals. Alex and Anna also changed 
it in the previous history, each receiving a silver medal. Al-
ice, Alex, and Bob changed Subtraction in the branches, 
earning them a gold medal each. Alex and Bob get silver 
medals for editing Subtraction file in the previous history. 
Only Tom modified file IEquation in the feature branch 
(earning a gold medal), and Tom, Alex, and Anna changed 
this file in the previous history (earning silver medals). Al-
ice receives a bronze medal for IEquation, because she ed-
ited QuadraticEquation. Remember, file IEquation is a key 
file because it was changed in the feature branch and Quad-
raticEquation, changed on the master branch, depends on 
it. Moreover, our assumption is that to be able to under-
stand and edit the dependent file (QuadraticEquation), the 
developer must have some knowledge about the depend-
ency (in this case the interface IEquation). 

TABLE 4 
MEDALS (GOLD | SILVER | BRONZE) 

File  Alex Alice Anna Bob Tom 
QuadraticEquation 0 | 1 | 0 1 | 0 | 0 0 | 1 | 0 1 | 0 | 0 0 | 0 | 0 
Subtraction 1 | 1 | 0 1 | 0 | 0 0 | 0 | 0 1 | 1 | 0 0 | 0 | 0 
IEquation 0 | 1 | 0 0 | 0 | 1 0 | 1 | 0 0 | 0 | 0 1 | 1 | 0 

By counting the medals and tie-breaking when neces-
sary, TIPMerge generates a Developer Ranking. In our sce-
nario, Bob has the same number of gold medals as Alice, 
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but he has a silver medal, which places him in the first po-
sition (Table 5). Here, the first four candidates (Bob, Alice, 
Alex, and Tom) all have gold medals. For the ones that 
know about equal “amounts” of recent changes performed 
in the branches (Bob and Alice with two gold medals each, 
and Alex and Tom with one gold medal each), the tiebreak-
ers involving past changes or dependency information dif-
ferentiate them. 

TABLE 5 
DEVELOPER RANKING 

Developer  Gold Medal Silver Medal Bronze Medal 
Bob 2 1 0 
Alice 2 0 1 
Alex 1 3 0 
Tom 1 1 0 
Anna 0 2 0 

2.6 Team Recommendation for Collaborative 
Merge 

Collaborative merge recommendation considers the rank-
ing, the contributions of each developer, and the team size 
to recommend a team of developers that together have the 
maximum knowledge coverage over the key files to per-
form the merge. 

TIPMerge identifies developers who have complemen-
tary expertise based on changes made in the key files in the 
branches and previous history. Although the ranking de-
tailed in Section 2.5 sorts developers based on their exper-
tise, the top developers in the ranking may have similar 
knowledge, as they may have changed the same files. In 
this case, selecting these developers could lead to an over-
lap in knowledge and, consequently, in an ineffective col-
laborative merge session.  

Recommending the optimal team of developers is a 
combinatorics problem with the complexity of 𝑂(2y) for 𝑛 
developers. Since the number of developers who have 
made some changes to the project (and are therefore in the 
ranking) can be high, it is desirable to have solutions that 
do not require trying all the combinations to optimize the 
combination of developers that TIPMerge recommends. 
Meta-heuristics can achieve it and speedup the process at 
the expense of having a chance of not finding the optimal 
solution. In this work, we implemented a Tabu search me-
taheuristic algorithm [30]. However, other metaheuristics 
are also suitable for this problem. 

The user can parametrize the algorithm with a mini-
mum coverage threshold. The algorithm ignores all solu-
tions with less coverage than the threshold, speeding up 
the process. For example, a threshold of 40% indicates that 
teams with coverage of less than 40% of the total absolute 
coverage considering all developers would be discarded. 
On the other hand, a threshold of 0% indicates that all pos-
sible teams would be considered during the optimization. 

Given n, the number of desired developers that a user 
wants to invite to a collaborative merge, TIPMerge creates 
an initial solution with the top n developers from the de-
veloper ranking. Then, the Tabu search looks for solutions 
in the neighborhood that optimizes the current best solu-
tion until the execution time reaches the maximum dura-
tion or the algorithm performs a number of iterations with-
out changes. Both stop conditions are provided by the user 
as configuration parameters. 

The algorithm updates the current best solution as soon 
as it finds a new solution with a higher coverage, given by 
a fitness function. We keep older solutions in a temporary 

Tabu list to avoid recalculations. The fitness function is 
𝑓),5(𝑆) = 𝑊| × 𝐺),5~ (𝑆) +𝑊� × 𝑆),5~ (𝑆) +𝑊B × 𝐵),5~ (𝑆), where 

𝐺),5~ (𝑆) = \ ] 𝐹? ∩ 𝐾𝐹),5
@A∈BCD,E∧^A∈�

\ + \ ] 𝐹? ∩ 𝐾𝐹),5
@A∈BCE,D∧^A∈�

\	

𝑆),5~ (𝑆) = \ ] 𝐹? ∩ 𝐾𝐹),5
@A∈FCD,E∧^A∈�

\	

𝐵),5~ (𝑆) = \ ] ] 𝐷𝑒𝑝H ∩ 𝐹5,)
de∈fA@A∈BCD,E∧^A∈�

\ + \ ] ] 𝐷𝑒𝑝H ∩ 𝐹),5
de∈fA@A∈BCE,D∧^A∈�

\	

This value is based on the number of unique medals that 
the combination of developers has and the weight of these 
medals. That is, developers with medals obtained from the 
same files in the same branch contribute only once to the 
solution. TIPMerge also explores solutions with fewer de-
velopers with the same fitness value, as fewer developers 
needed for a collaborative merge is considered better. 

For our running example we used 𝑊| 	= 	1,𝑊� 	=
	0.8, 𝑎𝑛𝑑	𝑊B 	= 	0.3,  but users can parameterize weights 
according to their needs. 

When exploring the solution space, TIPMerge first tries 
to increase the size of the team to improve the knowledge 
coverage if the current solution has less than n developers, 
where n is the user-specified number of developers to at-
tend the merge session. Then, it tries to decrease the num-
ber of developers but keeping the same coverage. Finally, 
it generates mutations of the solution by replacing devel-
opers in the solution with other developers. 

We now describe the TIPMerge team recommendation 
process to select two developers (n = 2) for the merge ses-
sion presented in Section 2.1. Since the top two developers 
are Bob and Alice (see Table 5), they comprise the initial 
solution. 

Bob and Alice. In the master branch, Alice has two gold 
medals because she changed two key files. In the feature 
branch, Bob has two gold medals because he changed two 
key files. Considering the history, Bob has a silver medal. 
Finally, Alice has a bronze medal. By combining their med-
als (as there is no intersection among changed files) Bob 
and Alice have four gold medals (two in each branch), a 
silver medal, and a bronze medal. Thus, their fitness value 
is 1 × (2 + 2) + 0.8 × 1 + 0.3 × 1 = 5.1. 

With this solution, TIPMerge tests to see if the number 
of developers should be increased. It stops since the solu-
tion already has the maximum allowed number of devel-
opers (n = 2 in this example). Then, it tries to reduce the 
number of developers, generating the following solutions: 

Bob has two gold medals in the feature branch and a 
silver medal. His fitness value alone is 1 × 2 + 0.8 × 1	 =
	2.8.  

Alice has two gold medals in the master branch and a 
bronze medal. Her fitness value is 1 × 2 + 0.3 × 1 = 2.3. 

Both solutions are worse than Bob and Alice together. 
Thus, TIPMerge mutates the current best solution. TIP-
Merge follows the ranking order for the mutations. Thus, 
it replaces Bob with Alex, creating the following mutation: 

Alex and Alice. Alice has two gold medals in the master 
branch and a bronze medal. Alex has a gold medal in the 
feature branch and three silver medals. Together, they have 
three gold medals, three silver medals, and a bronze 
medal. Thus, their fitness value is 1 × (2 + 1) + 0.8 × 3 +
0.3 × 1 = 5.7, which is higher than the current solution. 
Thus, this solution becomes the current best solution. 
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Since there is a better solution, TIPMerge stops the mu-
tations and restarts the algorithm. Thus, it tries to reduce 
the number of developers, creating the following solution:  

Alex has a gold medal in the feature branch and three 
silver medals. His fitness value is 1 × 1 + 0.8 × 3 = 3.4. 
This value is lower than the current best solution.  

Note that TIPMerge does not generate a new solution 
for Alice since her solution is already on the temporary 
Tabu list. Then, TIPMerge tries to mutate the solution, gen-
erating the following solutions: 

Bob and Alex. Alex has a gold medal in the feature 
branch, but this medal is the same as one of the two gold 
medals that Bob has in the feature branch. Similarly, Bob 
has a silver medal, but it is the same as one of the three 
silver medals that Alex has. Thus, together they have 2 
gold medals and 3 silver medals, and their fitness value is 
1 × 2 + 0.8 × 3 = 4.4. This value is lower than the current 
best solution. 

Alex and Tom. Alex has a gold medal in the feature 
branch and three silver medals. Tom has a gold medal in 
the feature branch and a silver medal. Since Tom and Alex 
have the same silver medal, together they have two gold 
medals and three silver medals. Their fitness value is 
1 × 2 + 0.8 × 3 = 4.4. This value is lower than the current 
best solution. 

Alex and Anna. Alex has a gold medal in the feature 
branch and three silver medals. Anna has two silver med-
als that Alex also has. Thus, Anna does not contribute to 
this solution and their solution together has the same fit-
ness function as Alex’s solution alone (3.4). 

At this moment, the algorithm already tried all combi-
nations that replace Alice. Therefore, it tries to replace 
Alex. The first solution is Bob and Alice, but it is already 
in the temporary Tabu list. It continues the mutations as 
follows: 

Alice and Tom. Alice has two gold medals in the master 
branch and a bronze medal. Tom has a gold medal in the 
feature branch and a silver medal. Together, they have 
three gold medals, a silver medal, and a bronze medal. 
Their fitness value is 1 × (2 + 1) + 0.8 × 1 + 0.3 × 1 = 4.1. 
This value is lower than the current best solution. 

Alice and Anna. Alice has two gold medals in the mas-
ter branch and a bronze medal. Anna has two silver med-
als. Together, they have two gold medals, two silver med-
als, and a bronze medal. Their fitness value is 1 × 2 +
0.8 × 2 + 0.3 × 1 = 3.9. This value is lower than the current 
best solution. 

At this point, it is not possible to perform other muta-
tions to improve the current best solution. The algorithm 
recognizes this after a number of iterations without 
changes and stops. The ranking of candidates for a collab-
orative merge with a team of two developers is in Table 6. 
Alice and Alex, at the second and the third positions in the 
developer ranking (Table 5), respectively, have together the 
maximum knowledge coverage for this example.  

TABLE 6 
TEAM RECOMMENDATION (TOP-6) 

Developers Gold 
Medal 

Silver 
Medal 

Bronze 
Medal Coverage 

Alice, Alex 3 3 1 5.7 (74%) 
Bob, Alice 4 1 1 5.1 (66%) 
Bob, Alex 2 3 0 4.4 (57%) 
Alex, Tom 2 3 0 4.4 (57%) 
Alice, Tom 3 1 1 4.1 (53%) 
Alice, Anna 2 2 1 3.9 (50%) 

The coverage is represented as a percentage, which is 
calculated as follows: before the algorithm starts, the total 
absolute coverage value is calculated considering all devel-
opers available for the merge. This value is used to calcu-
late the percentage of each combination. In the case of Alice 
and Alex, for example, 74% corresponds to the absolute 
value of Alice and Alex (5.7) divided by the total absolute 
value considering all developers (7.7). 

3 IMPLEMENTATION 
TIPMerge is an open-source project available at 
https://github.com/gems-uff/tipmerge under the MIT 
License. It is implemented in Java and analyzes projects 
versioned on Git independently of their programming lan-
guage. TIPMerge is language agnostic when analyzing ex-
pertise at the file-level. For Java projects, TIPMerge can de-
tect method level changes, which allows for future utiliza-
tion of our approach. It however requires a parser that can 
identify method level changes. 

We use an adapted version of Dominoes [24], [31] to 
identify logical dependencies among files across branches. 
Dominoes organizes data extracted from software reposi-
tories into matrices to denote relationships among soft-
ware entities. For example, [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒] denotes the files 
that were changed by commits in the project. These matri-
ces are combined to depict higher-order relationships, such 
as logical dependencies among files: [𝑓𝑖𝑙𝑒|𝑓𝑖𝑙𝑒] =
[𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]� × [𝑐𝑜𝑚𝑚𝑖𝑡|𝑓𝑖𝑙𝑒]. Dominoes runs matrix 
transformations in GPU, speeding up the analysis process. 

To get the recommendations for a collaborative merge, 
a user first needs to select the two branches to merge via 
the TIPMerge UI (Fig. 3 (a)). The user can also fine tune the 
analysis to specific file extensions (Fig. 3 (b)). Once TIP-
Merge analyzes the project information, it shows the files 
that each developer has edited and the editing frequency 
in terms of commits (Fig. 3 (c)). This information is pro-
vided for each branch, for the intersection of both 
branches, and for the previous history. The user can also 
check the logical dependencies by clicking on the Get De-
pendencies button (Fig. 3 (d)). 

 
Fig. 3. Information about changed files in the branches and history 

In the Dependencies Analysis window (Fig. 4), the user 
can configure the confidence threshold (Fig. 4 (a)) to deter-
mine the direction of logical dependencies among files. 
The user can see the information about dependencies 
across branches (Branch One -> Branch Two and Branch 
Two -> Branch One) (Fig. 4 (b)). The Developer Ranking is 
obtained by clicking on the Get Ranking button (Fig. 4 (c)). 
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Fig. 4. File Dependencies 

TIPMerge presents a ranked list of developers in the De-
veloper Ranking window (Fig. 5). For each developer and 
each file (Fig. 5 (a)), it indicates the gold, silver, and bronze 
medals. It also shows the branch in which the change was 
made or if the change was made in the previous history 
(Fig. 5 (b)). Further information can be obtained through a 
tool tip, by hovering over the medal count. After getting 
the ranking, the user can ask for a team recommendation 
for collaborative merge by clicking on the Recommend Col-
laborative Merge button (Fig. 5 (c)). 

In the Collaborative Merge Configuration window (Fig. 6), 
the user can configure the maximum number of develop-
ers (Fig. 6 (a)), the minimum coverage threshold, and the 
weights of each medal (Fig. 6 (b)). The user can also filter 
developers (Fig. 6 (c)). Finally, the user can set the stop con-
ditions: the maximum time duration and the number of it-
erations that result in no changes (Fig. 6 (d)). 

 
Fig. 5. Developer Ranking 

 
Fig. 6. Collaborative merge configuration 

The Team Recommendation for Collaborative Merge win-
dow (Fig. 7) provides the maximum joint knowledge cov-
erage for n developers (Fig. 7 (a)). Here (Table 6) Alice and 
Alex are in the first position since they have the highest 
joint knowledge coverage of 74% (Fig. 7 (b)). This window 
also shows the files that they changed together (Fig. 7 (c)). 

 
Fig. 7. Team Recommendation for Collaborative Merge 

4 EVALUATION  
In order to assess the recommendation provided by TIP-
Merge, we answered the research question “Is the top-n 
TIPMerge recommendation using the Developer Ranking more 
accurate than the top-n developers who performed the most 
merges in the past?” in a previous paper [3]. The results in-
dicated that 85% of the top-3 developers from the Devel-
oper Ranking correctly included the developer who per-
formed the merge. Best (accuracy) results of recommenda-
tions were at 98%. Moreover, in 82% of the merges, TIP-
Merge obtained higher accuracy than selecting the devel-
oper who performed most of the previous merges (i.e., the 
majority class). Our interviews with developers of two pro-
jects revealed that in cases where the TIPMerge recommen-
dation did not match the actual merge developer, the rec-
ommended developer had the expertise to perform the 
merge, or was involved in a collaborative merge session. 

In this paper, we answer the research question “Does the 
n-developer TIPMerge Team Recommendation for collabora-
tive merge improve the percentage of joint knowledge coverage 
over teaming up the top-n developers from the Developer Rank-
ing?”. We compared the knowledge coverage of the n-de-
veloper in the Team Recommendation (n = 2 & 3) with that 
of teaming up the top-n developers from the Developer 
Ranking. We checked the accuracy of n = 2 since pairing 
developers is a common practice, especially in Agile Meth-
ods. We explored n = 3 to increase the team size to the next 
level.  

4.1 Materials and Methods 
To form the project corpus for our experiment, we started 
from the 1,997,541 GitHub projects collected by Menezes et 
al. [32]. We then selected the top 1,000 unique projects or-
dered by the number of developers. From this set, we se-
lected projects that were not forks and did not have a clear 
integrator for analysis. For each project, we checked: (1) 
whether the project includes merges, and (2) whether it 
does not comprise a sole developer performing the major-
ity of the merges (majority class > 50%). The first criterion 
is self-explanatory. The second criterion is used to filter out 
those projects that either have an integration manager or a 
small subset of developers who are responsible for per-
forming the merge. For instance, the project Git has a de-
veloper who performed 9,385 out of 9,699 total merges 
(96.76%). Such projects do not need a recommendation sys-
tem and are filtered out from the dataset. After applying 
these criteria, we had 27 projects. 
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Ideally, we would like to select only branch merges. But 
we cannot identify such merges post hoc, as branches are 
merely pointers to the tip commit and do not leave traces 
in prior commits. Thus, we included a selection criterion: 
merges should include (1) changes performed by two or 
more developers in each branch and (2) key files. This cri-
terion only includes branch merges; but we may overlook 
some simple branch merges with only one developer in a 
branch. This dataset thus errs on the side of being too much 
selective, eventually leading to false negatives. In two pro-
jects no merges fit the criteria. Consequently, this study an-
alyzed 2,040 branch merges in total, from 25 projects (see 
Table 7), which represent the top 6% most complex merge 
cases in those projects.  

TABLE 7  
PROJECT CORPUS 

Project Lang Dev Date 
activemerchant/active_merchant Ruby 402 11/23/15 
akka/akka Scala 201 08/14/15 
dschmidt/amarok Ruby 196 05/07/12 
angular/angular TS 155 09/22/15 
astropy/astropy Python 142 09/30/15 
apache/Cassandra Java 103 06/01/15 
mozilla/releases-comm-central TS 300 11/20/15 
errbit/errbit Ruby 202 11/24/15 
Netflix/eureka Java 36 08/10/15 
Netflix/falcor JS 21 02/19/15 
mozilla-mobile/firefox-ios C 40 08/13/15 
jquery/jquery JS 227 12/06/09 
Katello/katello Ruby 61 08/14/15 
dib-lab/khmer Python 56 05/20/15 
getlantern/lantern Go 48 08/20/15 
apache/maven Java 45 06/22/15 
nasa/mct Java 13 06/11/12 
Perl/perl5 Perl 373 06/12/15 
apache/phoenix Java 30 02/4/14 
ComputationalRadiationPhysics/picongpu C++ 12 08/01/13 
Netflix/Priam Java 27 06/02/15 
gems-uff/sapos Ruby 10 07/30/15 
spree/spree Ruby 638 11/20/15 
sympy/sympy Python 385 03/01/16 
voldemort/voldemort Java 55 07/29/15 

Next, we calculated the Developer Ranking joint 
knowledge coverage of top-2 and top-3 recommendations. 
We then compared the Team Recommendation joint 
knowledge coverage for 2 and 3 developers with the De-
veloper Ranking joint knowledge coverage for top-2 and 
top-3, respectively. With these two values, we calculated 
the joint knowledge coverage improvement of the Team 
Recommendation to that of selecting from the Developer 
Ranking. 

As the Team Recommendation requires to set the num-
ber of developers and the weights of the medals, we cali-
brated the weights of the medals through a sensitivity test. 
It used the following steps: (1) we randomly selected 120 
merge cases of our dataset from four real projects (Akka, 
Sympy, Katello, and Cassandra) – these merges were dis-
carded from the evaluation to avoid bias; (2) we set the 
number of developers to n = 2 and 3; (3) we set different 
medals weights varying from 1 to 0 with a step value of 0.1. 
For instance, 𝑊� 	= 	1,𝑊� 	= 	0.9,𝑊� 	= 	0.8;		𝑊� 	= 	1,𝑊� 	=
	0.9,𝑊� 	= 	0.7;	𝑊� 	= 	1,𝑊� 	= 	0.9,𝑊� 	= 	0.6;… ;	𝑊� 	=
	0.3,𝑊� 	= 	0.2,𝑊� 	= 	0.1	, where 𝑊� > 𝑊� and 𝑊� > 𝑊�. In 
total, the test had 120 different combinations of weights for 
each merge case. 

Considering the 120 merge cases and the 120 different 
combinations of weights, we checked the number of 

merges where we had improvement. Four combinations of 
weights had the highest value (159 of 240 merges consider-
ing n = 2 and 3): 𝑊� 	= 	1,𝑊� 	= 	0.8,𝑊� 	= 	0.3;		𝑊� 	=
	0.9,𝑊� 	= 	0.8,𝑊� 	= 	0.4;	𝑊� 	= 	0.8,𝑊� 	= 	0.7,𝑊� 	=
	0.4;	𝑊� 	= 0.7,𝑊� 	= 	0.6,𝑊� 	= 	0.3. Since we needed to 
choose a combination of weights, we defined in our exper-
iment the following: 	𝑊� 	= 	1,𝑊� 	= 	0.8,𝑊� 	= 	0.3. How-
ever, as discussed before, users can parameterize weights 
according to their needs. 

Directly comparing our dependent variable (i.e., joint 
knowledge coverage) by their difference or direct propor-
tion may lead to inflated results (>100% improvement), 
therefore, we use a measure for normalized improvement 
in knowledge coverage.  

Fig. 8 shows two scenarios where the joint knowledge 
coverage difference between TR (Team Recommendation) 
and DR (Developer Ranking) is 10%. In the first scenario 
(Fig. 8 (a)), TR is 100% greater than DR (20% vs. 10%). In 
the second scenario (Fig. 8 (b)), TR is just 12% greater than 
DR (90% vs. 80%). If we simply calculate the difference in 
knowledge coverage, it would indicate that both scenarios 
are equivalent. On the other hand, if we perform a propor-
tional comparison, it would indicate a much higher in-
crease in the first scenario (100% vs. 12%).  

 
Fig. 8.  Examples of improvement in a dependent variable 

Intuitively, it is clear that creating an algorithm that im-
proves an already high DR by 10% is much more difficult 
(and useful) than improving on a low DR by the same 
amount. For instance, the room for improving over DR in 
the first scenario is 90% (from 10% to 100%) and TR only 
reached 11% (10% ÷ 90%) of this potential. On the other 
hand, the room for improving over DR in the second sce-
nario is only 20% (from 80% to 100%), but TR achieved 50% 
(10% ÷ 20%) of this gain. 

We thus normalize the percentage of improvement in 
joint knowledge coverage by considering “the room for im-
provement” by using 𝑓� [14]: 

𝑓� =

⎩
⎪
⎨

⎪
⎧𝑇𝑅� − 𝐷𝑅�

1 − 𝐷𝑅�
	, 𝑖𝑓	𝑇𝑅� > 	𝐷𝑅�

𝑇𝑅� − 𝐷𝑅�
𝐷𝑅�

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒									
 (Eq. 1) 

Where 𝑇𝑅� represents the mean joint knowledge cover-
age obtained by the Team Recommendation for project 𝑝, 
and 𝐷𝑅� represents the mean joint knowledge coverage of 
the Developer Ranking for project 𝑝. 

4.2 Results and Discussion 
In our dataset (1,920 merges after discarding 120 merges 
used in the sensitivity test), we calculated the normalized 
improvement of joint knowledge coverage by the Team 
Recommendation over that of the Developer Ranking.  

Table 8 lists the mean joint knowledge coverage for the 
top-2 developers in the Developer Rankings and for the 
optimized Team Recommendation (n = 2) for each project. 
We also list the normalized improvement of joint 
knowledge coverage (Eq. 1) by the Team Recommendation 
(color coded in the table). Team Recommendation led to 
improvements in coverage for all projects except the MCT 
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project. These improvements ranged from 2.2% (Falcor) to 
52.4% (Phoenix), with a mean of 24.2% (median 21.2%). 
Projects with already high coverage in the Developer 
Rankings still improved with the Team Recommendations. 
The MCT project is an outlier as it had only one merge case 
with two developers in each branch. In this case, the devel-
opers in the top-2 Developer Ranking were the same as the 
Team Recommendation for two developers. 

Table 8 also presents similar data for three-developer 
teams. The mean normalized improvement for three-de-
veloper teams is 49.5% (median 50.4%). In the Eureka pro-
ject, the normalized improvement is 100% and in Phoenix 
it is 94.2% (from 91.3% to 99.5%), showing that the recom-
mendation with three developers can achieve a very high 
or even full knowledge coverage. 

TABLE 8 
NORMALIZED IMPROVEMENT (NI) OF THE TEAM RECOMMENDA-

TION (TR) OVER THE DEVELOPER RANKING (DR) 
Project Two-developer Teams Three-developer Teams 

DR (%) TR (%) NI (%) DR (%) TR (%) NI (%) 
Active Merchant 74.0 86.3 47.4 86.3 93.3 50.8 
Akka 84.3 86.9 16.2 91.7 96.2 54.7 
Amarok 68.0 71.5 10.8 77.8 81.9 18.6 
Angular 56.5 61.3 11.0 73.1 75.3 8.3 
Astropy 89.7 94.5 46.6 95.8 99.4 84.8 
Cassandra 80.2 83.1 14.5 87.4 90.7 26.0 
Comm-central 76.0 79.1 13.2 85.2 88.2 19.9 
Errbit 73.1 78.3 19.6 85.4 88.7 22.2 
Eureka 98.3 99.0 40.9 99.0 100.0 100.0 
Falcor 93.2 93.4 2.2 96.0 98.8 69.5 
Firefox for iOS 84.1 88.5 27.8 94.2 98.2 68.9 
jQuery 79.1 89.0 47.1 87.8 97.7 80.8 
Katello 74.0 78.0 15.7 84.2 88.4 26.8 
Khmer 91.3 94.3 34.3 94.3 99.2 86.4 
Lantern 89.5 92.5 29.1 91.3 97.4 70.7 
Maven 89.2 92.4 29.1 95.8 96.2 10.7 
MCT 74.1 74.1 0.0 89.7 89.7 0.0 
Perl5 81.8 84.2 13.3 88.9 92.1 29.0 
Phoenix 90.2 95.3 52.4 91.3 99.5 94.2 
PIConGPU 88.1 92.9 40.4 95.6 98.6 68.9 
Priam 93.6 94.7 18.1 96.3 99.1 76.0 
Sapos 85.1 86.3 7.9 95.1 97.5 48.5 
Spree 78.7 83.7 23.6 87.6 92.2 37.2 
Sympy 80.3 84.5 21.2 89.1 92.9 34.5 
Voldemort 81.2 85.7 24.0 91.5 95.8 50.4 
Mean   24.2   49.5 
Median   21.2   50.4 

Fig. 9 uses box plots to compare the joint knowledge 
coverages from the Team Recommendation and the Devel-
oper Ranking for two- and three-developer teams. It shows 
that the Team Recommendation consistently does better. 

 
Fig. 9. Developer Ranking (DR) and Team Recommendation (TR) joint 
knowledge coverage distributions 

To test for normality in the knowledge coverage data, 
we used Shapiro-Wilk test (HØ = population is normally 
distributed). We observed normality in the data for two-
developer teams (Developer Ranking p-value = 0.438 and 
Team Recommendation p-value = 0.090) at 95% confidence 
level. We did not observe normality in the data for three-
developer teams (Developer Ranking p-value = 0.052 and 
Team Recommendation p-value = 0.001) at 95% confidence 
level.  

Thus, for the two-developer teams we used Fisher’s F 
test (HØ = both populations have the same variance) to 
check homoscedasticity and found that the variance is the 
same (p-value = 0.750). Therefore, we applied the paired t-
test and observed a statistically significant difference (p-
value < 0.001) at 95% confidence level. We applied Wilcox 
paired test for three-developer teams. We again observed a 
statistically significant difference (p-value < 0.001) at 95% 
confidence level.  

We thus conclude that Team Recommendation for two 
and three developers has higher joint knowledge coverage 
in comparison to Developer Ranking for top-2 and top-3 
developers. Finally, we checked the paired Cohen’s d effect 
size (used for normal population) for two-developer team 
and the Cliff’s Delta effect size (used for non-normal pop-
ulation) for three-developer teams. We observed a large ef-
fect size (1.416) [34] in the former and a medium effect size 
(0.451) [35] in the latter. A lower effect size for three-devel-
oper teams was expected. As stated before, increasing an 
already high value is harder. However, the mean normal-
ized improvement for three-developer teams is expressive 
(49.6%). 

We also analyzed whether the project characteristics, 
such as number of commits, number of developers, num-
ber of merges, and number of branch merging, correlate 
with the results, but we could not find any relevant corre-
lation. 

In terms of execution time, TIPMerge presented differ-
ent times for different merge cases. TIPMerge generated 
the Developer Ranking in few seconds for some cases, but 
took more than one hour for others. The execution time de-
pends on the number of changed files; the larger the num-
ber of files the longer it is to check the dependencies. For 
example, in a usual merge case with 29 files changed in 
parallel and with dependencies, TIPMerge generated the 
Developer Ranking with 7 developers in 1 second and 709 
milliseconds, running on a i7 4790k (4GHz) with 4 cores 
and 16 GB of memory (2 x 8 GB DDR3 1600). On the other 
hand, in a more extreme merge case with 237 files changed 
in parallel and with dependencies, TIPMerge needed 1 
hour, 75 minutes, and 94 seconds to generate the Developer 
Ranking with 265 developers, running on the same com-
puter. After obtaining the Developer Ranking, we applied 
our optimization algorithm in the latter case, and we ob-
tained the Team Recommendation for two developers in 3 
minutes and 1 second, and for three developers in 5 
minutes and 6 seconds, in addition to the time needed to 
obtain the Developer Ranking. This shows that the over-
head for obtaining the Team Recommendation is just a 
small fraction of the total time, which includes the compu-
tation of the Developer Ranking. 

5 THREATS TO VALIDITY 
As in any study, our study has limitations. First, our ap-
proach uses the committers’ Git ID to identify developers. 
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It is possible that developers use multiple aliases. We man-
ually verified the TIPMerge ranking with the merge devel-
oper to fix possible mistakes by considering their ID simi-
larity. Although this suffices in most cases, we may have 
missed some cases when the aliases are lexically different.  

Second, we checked for merges with at least two unique 
developers in each branch. In these cases, there is no work-
space merge, which is a simpler scenario than branches 
with a large number of contributors. However, we are ex-
posed to false negatives, as some merges of branches may 
not be listed (branch merges with only one person on a 
branch). 

Finally, although we have commented about consider-
ing only changes in a given time frame (e.g., past release) 
to accommodate decay in expertise, we considered all the 
project history in our experiments. As the projects have dif-
ferent time frames, it can have some impact on the results. 

6 RELATED WORK 
To the best of our knowledge, there is no work that ad-
dresses recommendation of teams to collaborative merge 
of branches. The more closely related works provide sup-
port for the identification of experts in software projects. 
Besides that, some proposals focus on supporting collabo-
rative model merging. 

6.1 Identification of Experts 
Some approaches, such as Dominoes [24], [31], Emergent 
Expertise Locator [36], Expertise Browser [37], and Usage 
Expertise [38], aim at identifying experts in software pro-
jects. Some of these approaches (Dominoes and Emergent 
Expertise Locator) are based on the approach by Cataldo et 
al. [39], [40], who developed a technique to measure task 
dependencies among people. They use matrices to repre-
sent various dependency relationships. From this, they aim 
at answering who must coordinate with whom to get the 
work done. Dominoes [24], [31] allows different kinds of 
explorations over matrices, and can be used to identify ex-
perts for a given project or software artifact. Dominoes 
[24], [31] is capable of using GPU for processing opera-
tions, which enables the analysis of large-scale data. Emer-
gent Expertise Locator [36] produces a ranked list of the 
most likely emergent team members with whom to com-
municate, given a set of files currently deemed to be of in-
terest. Expertise Browser [37] identifies experts over re-
gions of the code, such as modules or even subsystems by 
using the concept of: (1) Experience Atoms (EAs), which 
are basic units of experience in change management sys-
tems, and (2) the atomic change (delta) made to the source 
code or to the project’s documentation. Finally, the concept 
of Usage Expertise [38] is introduced to recommend ex-
perts for files, where the developer accumulates expertise 
not only by editing methods, but also by calling (using) 
them. 

All these approaches extract information from the Ver-
sion Control Systems and Issue Tracking Systems. Similar 
to TIPMerge, some of these approaches analyze changes 
performed via commits. Other approaches check for differ-
ent kinds of information, such as a method calls, opened 
and closed issues, etc. While all these approaches identify 
experts, they only take into consideration previous history, 
and do not discern changes in branches. As a result, equal 
weights are assigned to all files. However, in our situation 

we know that changes across branches and their depend-
encies might have a bigger impact on the merge decision 
than prior changes alone.  

Other studies on identification of experts have focused 
on pull request assignment [17]–[23] and factors that influ-
ence the reviewer assignment to pull requests [41]. Yu et al. 
[19]–[21] proposed an approach that combines information 
retrieval with social network analysis to help project man-
agers find a suitable reviewer for each pull request. Jiang 
et al. [22], [23] proposed CoreDevRec to recommend core 
members for contribution evaluation in GitHub. Core-
DevRec [23] uses support vector machines to analyze 
different kinds of features, including file paths of modified 
code, relationships between contributors and core mem-
bers, and activeness of core members. De Lima Júnior et al. 
[17], [18] proposed the use data mining to identify the most 
appropriate developers to analyze a pull request. They use 
a set of attributes and classification strategies to suggest 
developers to analyze pull requests. Also using data min-
ing, Soares et al. [41] mined association rules from 22,523 
pull requests belonging to 3 projects and identified factors 
that influence the reviewer assignment to pull requests, 
such as that some reviewers have more chances to analyze 
pull requests containing files that they have recently 
changed. 

These works are closely related to the recommendation 
of developers for branch merging, as they aim to recom-
mend developers to verify the actual contribution and pos-
sibly merge it with the rest of the project. Nevertheless, in 
general, pull requests contain commits of a single devel-
oper and are small [42]. Moreover, the author of the pull 
request usually syncs their forked branch in advance to 
ease reintegration, making the process more like a work-
space merge. In the more general case of merging branches, 
the number of developers, the syncing interval, and the 
number of commits per branch is variable and can be high 
in some situations. 

6.2 Collaborative Merge Support 
Some proposals focus on supporting collaborative model 
merging [4], [7] and collaborative real-time editor [5], [8]. 
Koegel et al. [4] propose an approach to collaborative 
merging to facilitate discussion on conflicts and collabora-
tive conflict resolution. The approach is based on the appli-
cation and integration of Rationale Management into 
Model Merging [4]. Brosch et al. [7] propose to use a model 
checker to detect semantic merge conflicts in the context of 
model versioning. This technique is used to check the se-
mantic consistency of an evolving UML sequence diagram 
with respect to state machine diagrams that remain un-
changed [7]. Lautamäki et al. [8] and Nieminen [5] present 
a process for real-time collaborative merging as well as a 
web-based tool supporting the process, CoRED. A collabo-
rative real-time editor must somehow manage concurrent 
edits by different users by applying each users' changes 
into the shared document as well as possible [5].  

These studies aim at enabling all involved participants 
to work in a collaborative fashion. However, they do not 
address how people should be chosen to participate in the 
collaborative merge session. Studies based on model 
checkers try to create strategies to facilitate the collabora-
tive modeling and works based on collaborative real-time 
editors try to create an environment to help people resolve 
the conflicts collaboratively. Nevertheless, these ap-
proaches still need support for choosing the right people to 
collaborate, being complementary to TIPMerge. 
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7 CONCLUSION 
In this research, we propose TIPMerge, a novel approach 
that analyzes changes in branches, file dependencies, and 
the past history to build a ranked list of developers who 
are supposed to be the most appropriate to integrate a pair 
of branches. Using this ranked list, TIPMerge is able to rec-
ommend the most suitable developers in terms of joint 
knowledge coverage to a collaborative merge session. TIPMerge 
can help software teams in complex merge cases, where 
changes in key files can lead to direct and indirect conflicts. 

We quantitatively evaluated TIPMerge over 25 real-
world projects. The Team Recommendation for two- or 
three-developer teams led to a normalized improvement of 
21.2% (median) and 50.4% (median) for collaborative 
merge in comparison to choosing the top-2 or top-3 devel-
opers in the ranked list, respectively.  

As a future work, we intend to qualitatively evaluate 
the TIPMerge Team Recommendation in contrast to the 
team composed by the top-n developers in the Developer 
Ranking by interviewing the involved developers and ask-
ing which team is the most appropriate for some merge 
case. Besides that, we would like to identify attributes that 
indicate when merges should be performed by a single de-
veloper or team. TIPMerge could also consider other infor-
mation to recommend developers, such as developer skills 
and social relationships. For instance, the skills on specific 
design patterns or programming language features could 
be considered during assignment. Besides that, as TIP-
Merge already has the option of not considering one or 
more developers for a recommendation, we suggest that 
TIPMerge could have an option to force someone to be part 
of the recommendation for a collaborative merge, helping 
on-boarding new developers. 
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