
Debugging Support for End-User Mashup Programming

Sandeep Kaur Kuttal, Anita Sarma, Gregg Rothermel
University of Nebraska - Lincoln

(skuttal, asarma, grother)@cse.unl.edu

ABSTRACT
Programming for the web can be an intimidating task,
particularly for non-professional (“end-user”) programmers.
Mashup programming environments attempt to remedy this
by providing support for such programming. It is well known,
however, that mashup programmers create applications that
contain bugs. Furthermore, mashup programmers learn from
examples and reuse other mashups, which causes bugs to
propagate to other mashups. In this paper we classify the bugs
that occur in a large corpus of Yahoo! Pipes mashups. We
describe support we have implemented in the Yahoo! Pipes
environment to provide automatic error detection techniques
that help mashup programmers localize and correct these
bugs. We present the results of a think-aloud study compar-
ing the experiences of end-user mashup programmers using
and not using our support. Our results show that our debug-
ging enhancements do help these programmers localize and
correct bugs more effectively and efficiently.

Author Keywords
End-user programming; end-user software engineering;
mashups; Yahoo! Pipes; debugging; programming barriers

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: User
Interfaces– Evaluation/methodology

General Terms
Human Factors

INTRODUCTION
Web mashups are situational applications that allow their
users to scrape information from the web. Professional and
non-professional (“end-user”) programmers create these ap-
plications by combining web services and processing their
outputs in various ways. Examples of such applications in-
clude those for alerting drivers to the presence of traffic jams,
tracking flights, finding apartments for rent in a given loca-
tion, and so forth. Mashup programming environments such
as Yahoo! Pipes [33], IBM mashup maker [12], xfruit [32],
Apatar [2], Deri pipes [8], and JackBe [13] provide facilities
for constructing such applications.

Like any programming activity, mashup programming can be
difficult, and mashup programmers can create applications
that contain bugs. Mashups interact with the web, and the
web is a complex ecosystem of heterogeneous formats, ser-
vices, protocols, standards and languages [7] all of which
tend to evolve. The dependence of mashups on this com-
plex ecosystem makes them vulnerable to unexpected behav-
iors. A further complication involves the interfaces by which
mashups are created: mashup environments facilitate mashup
creation by providing visual interfaces, which abstract the un-
derlying code as black box features. While this black box
structure allows users to "cobble together" solutions from ex-
isting resources, it can obscure the sources of bugs and hide
distinctions between different types of bugs [15] – an under-
standing of which is important for debugging. These prob-
lems are exacerbated by the typical programming practices
used to create mashup, which involve learning from exam-
ples and reuse of other mashups [30] – both of which can
propagate bugs to other mashups.

To better understand the bugs found in mashups, we stud-
ied a large corpus (25,734) of Yahoo! Pipes mashups. We
found that more than 64.1% of these pipes contained bugs.
Moreover, 56.3% of the pipes were “cloned” (copied from
existing pipes) and 27.4% of the pipes contained at least one
sub-pipe (a pipe present separately in the repository). Clearly,
the prevalence of bugs in pipes and the tendency for users to
reuse pipes create problems for mashup dependability.

One implication of this data is that users frequently debug
mashups. Debugging mashups, however, intrinsically in-
volves distance and visibility issues due to distributed and
black box dependencies, and this renders it time and effort
intensive. In a study in which end users designed and created
mashups, they spent 76.3% of their time in debugging [4].
We anticipate that the time required to debug mashups that
inherit faults through reuse will be just as substantial.

The difficulties of debugging mashups are exacerbated by the
debugging support available in mashup programming envi-
ronments, which is limited to console output messages [10].
In general, mashup debugging activities require mashup pro-
grammers themselves to localize and fix bugs [7]. Debugging
techniques such as static or dynamic debugging and source
code manipulation are not available in these environments.
This hinders developers from understanding when a particu-
lar piece of code is executed and in what context. Further,
mashups are constrained by API boundaries and the reliance
on external sources, which continuously evolve. As a result,
run-time observation of program behavior is the primary ap-
proach used for debugging mashups [7].

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1609

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2013, April 27–May 2, 2013, Paris, France.
Copyright © 2013 ACM 978-1-4503-1899-0/13/04...$15.00.

Runtime observations are not always sufficient in debugging.
Our prior work has shown that understanding barriers (diffi-
culty in correctly comprehending the feedback) pose the most
significant problem faced by mashup programmers when de-
bugging [22]; these barriers occur when externally visible be-
havior obscures what a mashup does (or does not do) at run-
time. Often runtime observations generate inadequate error
messages, which raises the understanding barrier for end-user
programmers. When mashup creators cannot understand er-
ror messages, fixing bugs becomes difficult.

After identifying the cause of a bug, to correct it a mashup
programmer must understand the usage of the program ele-
ments (e.g., modules) involved. Past studies have found that
end users struggle with this (due to use barriers [18]) in tasks
such as selecting the appropriate modules and comprehend-
ing their usage [22]. Therefore, to facilitate debugging for
end users there is a need for approaches that integrate various
strategies for overcoming understanding and use barriers.

To investigate the issues involved in debugging mashups, and
devise approaches that make the task easier for mashup pro-
grammers, we have implemented enhanced support for de-
bugging in the Yahoo! Pipes environment. We provide tech-
niques for detecting the presence of bugs in pipes, and feed-
back to mashup programmers that can help them locate and
correct bugs more efficiently and effectively. In this paper,
we describe our debugging support, and present the results
of an empirical study investigating the impact of our debug-
ging support on the experiences of end-user programmers.
Our study shows that our debugging enhancements do help
mashup programmers localize and correct bugs effectively
and efficiently.

This work makes the several contributions, including contri-
butions that generalize beyond the class of pipes considered
in this particular paper, as follows:

• We identify specific classes of faults found in Yahoo! Pipes
programs that can be used directly, or as a starting point,
for identifying fault classes in other end-user programming
domains, including web-development and visual program-
ming paradigms.

• We provide empirical results about the classes of faults that
arise because of program nesting, silent failures of pro-
grams, and program reuse and their effects on debugging
by end users; these too have implications for attempts to
apply our approach to other domains.

• We provide guidelines about the implications of the above
effects on design and debugging support in end-user pro-
gramming domains that generalize beyond Yahoo! Pipes
to other programming environments.

• Finally, we illustrate an overall research approach that can
be applied in other programming environments to help end-
user programmers. This approach involves a methodology
for identifying fault classes, defining and implementing de-
tectors for faults in those classes, creating appropriate mes-
sages about detected faults and providing instructions for
fixing those faults.

RELATED WORK ON DEBUGGING FOR END USERS
Most end-user programming environments support debug-
ging only through consoles that print debugging output [10].
A few improvements, however, have been proposed.

“What You See Is What You Test" (WYSIWYT) [26] sup-
plements the conventions by which spreadsheets provide vi-
sual feedback about values by adding feedback about “test-
edness”. The WYSIWYT methodology can also be useful
for other visual programming languages [16] and for debug-
ging of machine-learned classifiers by end users [20]. Our ap-
proach is similar to WYSIWYT, while also providing a “To-
fix" list of errors and guidance for fixing them.

Topes [27] is a data model that helps end users validate and
manipulate data in spreadsheets. A similar strategy could be
used to identify mismatches in data formats. Whyline [17]
allows programmers to ask “why did” and “why didn’t” ques-
tions about program output in visual programming languages
such as Alice, as well as in Java. It employs both static and
dynamic analyses of programs to provide answers when a
programmer selects a question.

Assertions have been used to find faults in web macros [19]
whose creation involves copying and pasting techniques, i.e.,
once data is entered by the user it is saved in the clipboard
and before the data is reused it is tested for existence and
datatypes. We use assertions but do not depend on data saved
on clipboards; instead, our checks are based on anomaly clas-
sifications (discussed later).

Most mashup programming environments support debug-
ging by providing a debugger console for the program. Ya-
hoo! Pipes is the only such environment that provides a de-
bugger console for every module. The only other debugging
support for mashup environments that we are aware of is from
our prior work [21], which allows mashup programmers to
“tag” faulty and tested mashups. Faults can then be localized
by “differencing” faulty and correct versions of a pipe.

YAHOO! PIPES
Yahoo! Pipes is a web-based visual programming environ-
ment introduced in 2007 to enable users to “rewire the
web” [33]. Yahoo! Pipes [14] is arguably the most popular
mashup programming environment, and is being used by pro-
fessional and end-user programmers. As a visual program-
ming environment, Yahoo! Pipes is well suited to represent-
ing solutions to dataflow based processing problems.

Yahoo! Pipes “programs” combine simple commands to-
gether in the form of modules. The Yahoo! Pipes engine also
facilitates the wiring of modules together and the transfer of
data between them. Figure 1(a) shows the Yahoo! Pipes pro-
gramming environment interface with our debugging support
extension in the upper-right corner. (Figure 1(b) presents a
closeup of this extension and is described later). The Ya-
hoo! Pipes programming environment consists of three major
components: the canvas, library, and debugger. The library
is located to the left of the pipe editor and consists of a list
of modules categorized according to their functionality. The
canvas is the central area in which users create their pipes by
placing modules on the canvas and connecting them together

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1610

(a) The Yahoo! Pipes interface overview. (b) Close up view of our debugging support extension.

Figure 1. Yahoo! Pipes with debugging support

with wires. The debugger helps users see the output from
specific modules as well as the final output of the pipe.

Inputs to pipes can be HTML, XML, JSON, KML, RSS feeds
and other formats, and outputs can be RSS, JSON, KML and
other formats. Inputs and outputs between modules are pri-
marily RSS feed items. RSS feeds consist of item parame-
ters and descriptions. Yahoo! Pipes modules provide manip-
ulation actions that can be executed on these RSS feed pa-
rameters. Yahoo! Pipes also allows users to define various
datatypes such as url, text, number, and date-time.

A CLASSIFICATION OF BUG TYPES PRESENT IN PIPES
To better understand the types of bugs found in Yahoo! Pipes
programs, we studied pipes extracted from the Yahoo! Pipes
repository and created a classification scheme (Table 1). Col-
umn 1 of the table lists the types of bugs that we found.
Broadly speaking, we categorize bugs as “intra-module” or
“inter-module”. Intra-module bugs occur within individual
Yahoo! Pipes modules, while “inter-module” bugs are related
to interactions between modules.

Intra-module Bugs
Intra-module bugs involve links, missing expected content or
parameters, problems with mismatched values, and syntax.

Link bugs occur when a web page referenced in a module
cannot be found, such as when pages no longer exist, or when
page access restrictions or server errors occur. Yahoo! Pipes
detects these bugs, but the error message displayed is cryptic,
typically of the form “Error fetching [url]. Response forbid-
den (403)”.

Missing bugs occur when the contents of web pages utilized
by a pipe no longer include expected elements, or the val-
ues of parameters used in modules are missing. A typical
Content bug involves the absence, in a fetched web page, of
specific required source, such as delimiters that precede data
being searched for. A typical Parameter bug occurs when a
user omits a parameter value. Yahoo! Pipes provides no infor-
mation regarding these bugs – pipes that contain them simply

fail, or worse, provide incorrect results with no indication that
a problem has occurred.

Mismatch bugs involve errors in the format of data contained
in parameters, or ranges of values used in checks supported
by Yahoo! Pipes modules. A typical Format bug can result
from a user expressing data in a non-supported format (e.g.,
MM.DD.YYYY). A typical Range bug can result from a user
entering an inappropriate range in a data checking context.
Yahoo! Pipes provides no information regarding these bugs.

Syntax bugs are specific to particular modules, and oc-
cur when incorrect syntax has been used for operators
or parameters. For example, the Filter module lets
users filter web contents by defining filtering rules. If
the user wishes to filter on titles that include a spe-
cific name, they can do this by defining a rule of the
form <parameter1><criteria><parameter2>, (for example,
<title><contains><Obama>). In such cases, selecting incom-
patible parameters can lead to problems; for example, <ti-
tle><less than><Obama> is incorrect because the “less than”
criterion requires both parameters to be of type “number”.
Yahoo! Pipes provides no information regarding these bugs.
Inter-module Bugs
Inter-module bugs involve modules, connectors, and errors in
data types.

Module bugs occur when pipe components themselves are
missing, where components are deprecated modules, sub-
modules, or sub-pipes. A typical Deprecated Module bug
occurs when the module used in a pipe is no longer entirely
supported by the environment. A typical Sub-Module bug
can occur when a sub-module required for pipe functional-
ity is not present in a pipe; for example, when a programmer
fails to specify a submodule for inclusion in a loop module.
A typical Sub-Pipe bug can occur when a sub-pipe employed
by a programmer at an earlier point in time no longer exists.
Yahoo! Pipes provides error messages for deprecated mod-
ules, but not for other module bugs.

Connector bugs occur when wires required for correct com-
putation are missing, an extreme case of which involves the

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1611

Table 1. Classification of Yahoo! Pipes Bug Types
Bug Type Details Detection Mechanism Freq. in Pipes

(across 20200)
Freq. in Sub-
pipes (5534)

Yahoo!
Errors

INTRA-MODULE
Link Web page no longer exists, page access re-

striction or server error
Website check 6386 1572 Yes

Missing
Content Web page contents missing Static analysis of code, web page 2289 182 No
Parameter Parameter value missing Static analysis of code 12233 3446 No

Mismatch
Format Data in non-supported format Regular expressions or Topes NA NA No
Range Inappropriate range of numbers Assertions 12 4 No

Syntax Syntax for operators/parameters should be
followed correctly

Static analysis of code 3651 1070 No

INTER-MODULE
Module

Deprecated Module Module no longer supported Static analysis of code 4637 1308 Yes
Sub-Module Sub-module inside a module is not present Static analysis of code 1 0 No
Sub-pipes Sub-pipe of pipe does not exist Database check 2 2 No

Connector Wire missing between modules Static analysis of code 1369 493 No
Data-Type Incompatible modules attached to each other Topes 1639 712 No

presence of an unconnected (“orphan”) module [9]. Ya-
hoo! Pipes provides no information regarding these bugs.

DataType bugs occur when type compatibilities exist be-
tween data elements being passed between modules. Ya-
hoo! Pipes provides no information about these bugs.

AN APPROACH FOR DETECTING YAHOO! PIPES BUGS
Figure 2 illustrates the support architecture by which we en-
hance Yahoo! Pipes so that it automatically detects bugs.
A proxy server (Squid 3.1.41) manages communications be-
tween the client (web browser) and the Yahoo! Pipes server.
Using the Internet Content Adaptation Protocol (ICAP2), a
proxy wrapper intercepts request and response messages ex-
changed between a client and the server; among these it inter-
cepts user events (e.g., requests to save or run a pipe) and
message contents and stores them in a MySQL database.
When a user makes requests of the Yahoo! Pipes user in-
terface (UI), responses related to the interface are redirected
to the Proxy Wrapper. The Proxy Wrapper modifies re-
sponse messages by inserting “widgets” and code into the Ya-
hoo! Pipes UI before delivering them to the client, where they
are decoded by the Result Decoder.

Part (b) of Figure 2 illustrates the architecture of our Anomaly
Detector. The Code Extractor begins by extracting pipe code
from the local database – this is JSON code containing all
relevant information about the pipe, including modules, pa-
rameters and connection information. The Execution Trace
Extractor extracts information pertaining to the execution of
the pipe, by sending the pipe code to the Yahoo! Pipes server
and retrieving the information it produces, which includes the
outputs of each module and error messages. Next, the De-
coder decodes the pipe code and execution traces. Specific
anomaly checkers (Link Checker, Parameter Checker, Dep-
recated Module Checker, Content Existence Checker, and so
forth) then analyze the decoded data to detect anomalies. The
Result Encoder generates a log file for the pipe providing in-
formation on anomalies and errors found in that pipe.
1Squid: http://www.squid-cache.org/Versions/
2ICAP: http://www.icap-forum.org/

Figure 2. System architecture: (a) Overview (b) Anomaly Detector

A key technical contribution of this work involves the pro-
cesses used by specific anomaly checkers to detect the pres-
ence of the various classes of bugs described in Table 1. Col-
umn 3 of the table summarizes the detection mechanisms
used for each class of bug; we now provide additional details.

On intra-module bugs our anomaly checkers work as follows:

• Link bugs are detected by parsing pipe code for urls. Http
requests for accessing these urls are sent to their respective
servers and explicit statuses are analyzed. For status 200
(successful access to the page) no action is needed, but for
other erroneous statuses a bug is made note of.

• Missing:Content bugs are detected by analyzing the pipe
code for the parameters specified by users within the pipe.
The contents of the web page accessed can be selected us-
ing DOM elements. The existing parameters are matched
against the source code of the web page and checked to see
whether these parameters exist in the requested page. If
they do not, a bug is made note of.

• Missing:Parameter bugs are detected by statically check-
ing fields of parameters. If a parameter value is empty the
location is noted.

• Mismatch:Format bugs can be detected by using regular
expressions or Topes [27]; however, our implementation
does not yet support this functionality.

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1612

• Mismatch:Range bugs are detected by using assertions
that check ranges of numbers used during pipe execution.

• Syntax bugs are detected by static analysis of the code.
Our current analysis examines the structure of the rules de-
fined for the modules being considered, and assigns a data
type to each parameter of the rule. For example, in RSS
feeds, attribute “title” is of type “text”, “pubdate” is of type
“date” and so on. We (dynamically) check the data types
of parameters to determine whether they are appropriate,
and check the operations performed on the parameters to
determine whether they are compatible.

On inter-module bugs our anomaly checkers work as follows:

• Module:Deprecated-Module bugs are detected by stati-
cally checking for the presence of a module name that is
no longer supported by the environment.

• Module:Sub-Module bugs are detected by statically
checking modules that require sub-modules for the pres-
ence of a module name.

• Module:Sub-Pipe bugs are detected by statically analyz-
ing pipes for inclusion of sub-pipes, and then sending a
request to run the sub-pipe to the Yahoo! Pipes server; an
empty response signifies that the pipe no longer exists.

• Connector bugs are detected by statically analyzing mod-
ules for the presence of incoming and outgoing wires.

• Data-Type bugs are detected by checking the type infor-
mation outgoing from and incoming to a module, by stati-
cally analyzing the dataflow structure of the pipe.

AN ANALYSIS OF BUG PREVALENCE IN PIPES
To assess the occurrences of bugs in Yahoo! Pipes programs,
we examined a large corpus of pipes. To do this we wrote
a web crawler that collected unique pipe identifiers using a
snowball sampling approach. Pipes accessible through the
browsing mechanism were collected and their most frequent
modules were extracted as keywords. These keywords were
used to initiate searches for pipes containing them, and iden-
tifiers for those pipes were collected. Finally, identifiers of
sub-pipes referenced in pipes were collected in the same way.
This process retrieved 25,734 unique pipe identifiers. For
each identifier we obtained the code for the pipe.

We executed our Anomaly Detector on the source for each
pipe. Table 1, columns 4 and 5, show the numbers of bugs
found in our sample of pipes. The most prominent class of
bugs involved missing parameters. The next highest instances
of bugs involved missing links and content. Bugs involving
deprecated modules, missing connector elements, and data
types were also relatively common.

We analyzed the outputs of buggy pipes to determine how
Yahoo! Pipes responded to them. We found that 54.36% of
the pipes containing bugs included at least one buggy module
that emitted no error message on the console, 37.83% pro-
duced no output at all when executed, and 28.24% produced
one or more Yahoo! error messages. Figure 3 illustrates the
distribution of these types of outputs.

Because sub-pipes are implicated as a cause of bugs, we also
analyzed the pipes that we had downloaded to obtain data on

Figure 3. Types of pipe outputs and error messages observed

sub-pipe usage. Of the 25,734 unique pipes, we discovered
that 20,200 were “top-level” pipes, and 5,534 were used in
one or more of these as sub-pipes (“nested”). The number
of sub-pipes used in a given pipe ranged from 0 to 22, and
the maximum level of nesting of subpipes was seven. In fact,
among the pipes that did use subpipes, 21.28% contained one
or more sub-pipes at a nesting level of 1, and 16.86% con-
tained one or more subpipes at a nesting level of 2.

CONNECTING USERS TO DEBUGGING SUPPORT
As noted earlier, run-time observation of program behavior
is the primary means by which mashup programmers debug
their mashups. However, users often face understanding bar-
riers when there is insufficient or complex feedback from
the Yahoo! Pipes environment [22]. To connect our debug-
ging support to users, we designed an interface with two pri-
mary goals: (1) reducing understanding barriers to help users
quickly locate and understand the causes of bugs, and (2) re-
ducing use barriers by providing guidance on the correct us-
age of modules. We did this by (1) designing an automated
approach for identifying bugs, (2) informing users of bugs
and their causes through a user-friendly UI and messages, and
(3) offering guidance on ways to fix bugs.

Our Anomaly Detector identifies bugs currently identified by
Yahoo! Pipes and bugs that currently occur silently. Here
we discuss our extensions to the Yahoo! Pipes user inter-
face and the feedback messages we provide. We largely fol-
lowed Neilsen’s heuristics [25] in designing the interface with
the main goal of reducing cognitive load on users [28], and
Schneiderman’s guidelines [29] for designing error messages.
Figure 1(b) shows our user interface extensions, which in-
clude the following elements.

To-fix list of bugs: Prior work [11] on end-user debug-
ging found that the use of a to-do list was a common de-
bugging strategy, was consistently employed by users irre-
spective of individual differences, and helped reduce cogni-
tive load. However, unlike professional development envi-
ronments (e.g., Eclipse IDE), current end-user environments
(Yahoo! Pipes, Excel) do not support to-do lists. Thus, to
facilitate fault localization our UI provides a To-fix list task
pane that is populated with information on bugs that need to
be resolved and their properties.

The To-fix list is overlaid on the top, right-hand side of the
canvas so that users can view both the pipe and the list of
bugs. In the implementation we study here, we list erroneous

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1613

modules in the order in which the modules appear on the can-
vas (top to bottom, left to right). Users might prefer this ap-
proach because a common debugging strategy involves spa-
tially following the data-flow in a program [11]. An alterna-
tive option would be to list bugs grouped by type, allowing
users to resolve all bugs of a particular type at one time; this
could reduce the chance that the interface will overwhelm the
user with too many alternatives [6].

An overarching goal of our interface is to provide a simple
UI and provide information to users contextualized for their
current task. Therefore, our To-fix list is designed as an ac-
cordion list, where only the bug that is in focus is expanded,
while all other information is collapsed (Figure 1(b)). After a
bug is resolved it is removed from the list.

The To-fix list is populated when the user saves or executes
the pipe, or clicks on the “Find Error” button on the lefthand
side of the canvas, actions that activate the Anomaly Detec-
tor. Note that in this work, the Anomaly Detector was invoked
only when the Find Error button was used. To reduce cogni-
tive load, we provide relevant information in the context of
each To-fix item in the list; that is, we tie each bug in the list
to the faulty module so that when a user clicks on a bug in the
list, the erroneous module is highlighted (marked in orange)
and parameters implicated in the bug (if any) are marked in
red. We also provide reverse functionality; that is, when an
erroneous module is selected (or hovered over) the To-fix list
expands to reveal the bug(s) in that module.

Error Messages: We followed Neilsen’s Heuristic (help
users recognize, diagnose, and recover from bugs) to design
error messages that are clear, concise, and use plain language.
For example, a Yahoo! Pipes error message of the form: “Er-
ror [url] Response code. Error: [Invalid XML document.]
Root cause: org.xml.sax.SAXParseException: [root element
must be well-formed]”, is translated to “Website does not
contain RSS feed”.

We provide constructive steps to help users arrive at solutions
to bugs. Because users with different skill levels may require
different amounts of information, we also provide a “Hint”
button that can be expanded to provide further details for re-
solving the problem. In the foregoing example, we provide
hints on how to find a similar website for the missing RSS
feed and external documentation on how RSS feeds need to
be structured. In other cases, we provide references to third
party web applications such as FireBug that allow a user to
inspect the elements of the webpage.

EMPIRICAL STUDY
To investigate the use of our debugging support we conducted
an empirical study of our extension to Yahoo! Pipes. Our goal
was to understand whether our approach can help mashup
programmers locate and correct bugs in their mashups.

Study Setup
Participants
We sent emails to several departments in our university invit-
ing students to participate in the study, promising a $20 gra-
tuity for participation. We asked respondents to complete an
online background questionnaire. To take part in our study,

participants were required to have experience with at least
one web language. Background in computer science was
not allowed beyond the rudimentary requirements of majors.
We selected 16 participants of varying backgrounds, namely:
statistics, engineering, biological systems, actuarial science,
physics, classics, entomology, and food science. We em-
ployed stratified sampling to categorize participants based
on their experience with the web, programming languages
known, gender, and knowledge of the Yahoo! Pipes interface.
Participants were divided into two groups: eight participants
(five males and three females) served as a control group, and
eight other participants (five males and three females) served
as a treatment group. Only two of the participants had knowl-
edge of Yahoo! Pipes, and these were assigned to the control
and treatment groups, respectively. Statistical tests (paired
t-tests) on questionnaire data showed no significant differ-
ences (p=0.731) between the groups in grade point average,
Yahoo! Pipes experience, web language experience or pro-
gramming experience.
Procedure and Tutorial
To avoid learning effects we employed a between-subjects
study design [31], with half of the participants performing
debugging tasks with our extension to Yahoo! Pipes and the
other half doing so with the ordinary Yahoo! Pipes interface.
We used a think-aloud protocol [23], asking participants to
vocalize their thought processes and feelings as they per-
formed their tasks. We chose this protocol to obtain insights
into the users’ thought processes, and the barriers and prob-
lems they faced. We administered the study to each of the 16
participants on an individual basis in our usability lab.

At the beginning of each session, participants were asked to
complete a brief self efficacy questionnaire [3, 5] (formulated
as a Likert scale between 1 and 10); this was followed by a tu-
torial of approximately ten minutes on Yahoo! Pipes, which
included information on how to create pipes and the func-
tionalities of modules. The treatment group also received in-
structions on how to invoke the Anomaly Detector. The tu-
torial included a short video of a think-aloud study so that
users could understand the process. After participants com-
pleted the tutorial, we asked them to create a small sample
pipe to give them hands-on training and familiarity with Ya-
hoo! Pipes. We began the experiment only after users told us
that they were comfortable using the environment.

We asked participants to complete two debugging tasks. We
audio recorded each session and logged the users’ on-screen
interactions using a screen capture system (Morae [24]). The
total time required for completion of a session per participant
was approximately 80 minutes, which included an average of
50 minutes for task completion. After participants completed
the tasks, we conducted interviews to collect feedback or any
other additional thoughts from them.
Tasks
We designed two tasks for the study. One task (Task Y!E)
involved pipes containing bugs for which Yahoo! Pipes pro-
vides error messages, and the second task (Task SE) involved
pipes containing bugs for which Yahoo! Pipes provides no er-
ror messages (“silent” errors). We counterbalanced the tasks
to compensate for possible learning effects. We seeded three

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1614

Table 2. Details on Seeded Bugs in Tasks
Task Class Bugs Details

Top B1 API key Missing
Yahoo! Level B2 Website not found
Error Nested B3 Website not found

Top B4 Website contents changed
Silent Level B5 Parameter missing
Error Nested B6 Parameter missing

Table 3. Bugs Localized and Fixed per Control Group Participant
Yahoo! Errors Silent Errors

Participants B1 B2 B3 B4 B5 B6
L F L F L F L F L F L F

P1 1 1 - - - - - - 1 - - -
P2 1 1 1 - - - - - - - - -
P3 1 1 1 1 - - 1 1 1 1 - -
P4 1 1 1 - - - 1 - 1 1 - -
P5 1 1 1 - 1 - 1 - - - - -
P6 1 1 1 - - - 1 - 1 - 1 -
P7 1 1 1 - 1 1 1 - - - - -
P8 1 - 1 - - - 1 - - - - -
Total 8 7 7 1 2 1 6 1 4 2 1 0

bugs into each of the two pipes (see Table 2 for details). All
bugs were located on separate dataflow paths to avoid inter-
action effects. We also included one bug related to sub-pipes
in each pipe, to help us study the effects of nested errors

For Task Y!E we created a pipe with specification para-
phrased as: “the pipe should display (1) a list of the top 10
rated movies (based on rottentomatoes.com) and their
ratings (in descending order), (2) a poster of a selected movie
(from Flickr) and (3) a review of the movie”. For this task
we seeded a “Link” bug and “Deprecated module” bug since
these were the most prominent Yahoo! errors found in our
study of the corpus. As a third bug we embedded another link
error in a sub-pipe.

For Task SE we created a pipe for which the specification can
be paraphrased as: “the pipe should display (1) a list of the-
aters in a given area, (2) a list of movies in each theater with
their show times and (3) trailers of the top 10 movies (based
on rottentomatoes.com). For this task we seeded the
two most prominent silent errors found in our study of the cor-
pus; namely, Missing:Content and Missing:Parameter bugs.
We also included a Missing:Parameter bug in a sub-pipe.

We told participants that they had been given pipes that were
not working correctly and were required to make them work
correctly (that is, to find the bugs and correct them). To guide
them, we gave them specifications of the pipes and of the
output each pipe was intended to produce.

Limitations of our Study
We have studied only one mashup environment; however, it
is representative of a broader class of web-development envi-
ronments (e.g., Apatar [2], Deri pipes [8], App Inventor [1].)
Our study considered only two tasks that built on only two
types of pipes. Our participants were asked to use pipes that
were provided, rather than pipes which they had created for
themselves. While the reuse context is common and impor-
tant, prior familiarity with pipes could lead to different re-
sults. Additional studies are needed to examine other types
of mashup environments, tasks, and usage contexts.

Table 4. Bugs Fixed per Treatment Group Participant
Yahoo! Errors Silent Errors

Participants B1 B2 B3 B4 B5 B6
F F F F F F

P1 1 1 1 1 1 1
P2 1 1 1 - - 1
P3 1 - - 1 1 1
P4 1 1 1 1 1 1
P5 1 1 1 1 1 1
P6 1 - 1 1 1 1
P7 1 1 1 1 1 1
P8 1 - 1 - - 1
Total 8 5 7 6 6 8

Other limitations include the possibility that the complexity
of our pipes was not high enough to allow measurements of
effects. We controlled for this by performing initial pilot stud-
ies on three non-participants and using their feedback to ad-
just the pipes and the tasks. We performed Wilcoxon rank
tests on our time data to quantitatively study the effects of
time; however, because our participants were performing in
think aloud mode, timing measures may be affected.

Improving Debugging Success
Turning to the results of our study, we find that the treatment
group performed better than the control group in every perfor-
mance measure: number of bugs localized, number of bugs
fixed, time needed to fix the bugs, and perceived increase in
self-efficacy. Tables 3 and 4 provide data on the debugging
success of control (C) and treatment (T) groups, respectively.
Table 3 shows which participants correctly localized (L) bugs
and which participants fixed (F) them. Because our debug-
ging support provided a list of buggy modules to the treat-
ment group, for those participants the localization task was
automatically completed; thus Table 4 does not include bug
localization data.

Numbers of Bugs Localized
To localize a bug a control group participant needed to first
correctly understand the failure of the pipe (incorrect results
compared to those shown in the provided output) and then
locate the buggy module. Participants in the control group
spent a majority of their time attempting to do this, but were
not very successful (they localized only 28 out of 48 bugs).
A key reason for this involved understanding barriers – dif-
ficulty understanding the state of the program (in the case of
silent errors, discussed later) or the feedback provided (in the
case of Yahoo! errors, discussed next) [18].

All participants in the control group (in the Y!E task) started
with Y!E:B1 which included a message, “API key missing”,
that was directly traceable to the buggy (Flickr) module,
since it included the text “API key”. This bug was localized
by all participants and fixed by seven. However, in other
cases, the Yahoo! errors included computer science jargon
making them inaccessible to end users. An example error
message seen by participants was: “Error fetching [URL].
Response: OK (200). Error: Invalid XML document. Root
cause: org.xml.sax.SAXParseException: The markup in the
document preceding the root element must be well-formed”.
Messages such as this left users struggling to answer ques-
tions such as: (1) what is SAXParse?; (2) what is a root

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1615

element?; and (3) what is meant by well-formed? Partici-
pant C.P4, for example, commented: “What? I have no idea
what it is”, and participant C.P5 mentioned: “Instead of error
numbers, if these messages were in simple languages maybe
I would have figured out the errors”.

As noted earlier, understanding barriers are known to be
notoriously difficult and are often considered insurmount-
able [18]. Our interface reduced these barriers by providing a
list view and highlighting buggy modules, so that users could
immediately recognize that there was a problem with the pipe
and find the location of the problem, and by providing more
appropriate error messages. These error messages were found
to be helpful, as reflected in our exit interviews in which the
majority of treatment group participants stated that they found
the interface user friendly. T.P3 commented that “We can see
where the error message was located [and it] was very help-
ful. When we see the code, you can’t know where the error
is. If these red boxes [localization of bugs with colors] are in
code also it will be helpful in coding”.

Numbers of Bugs Fixed
After localizing a bug, the user needed to understand the cor-
rect usage of the buggy module and its external data sources
(e.g., RSS feeds, URLs). This was difficult for participants
in the control group (use barrier [18]), and caused them to
fix statistically significantly fewer bugs than participants in
the treatment group (Wilcoxon test: W=2 and p=.0008). For
example, while most participants (7) localized the fault in
Y!E:B2, few (only C.P3, with five years of web development
experience) found the correct URL for it.

Most participants in the control group explored alternative
strategies to fix the bug and needed to backtrack when they
were not successful. For example, C.P4 spent 51 minutes in
unsuccessful explorations, and then before continuing to the
next task commented: “I couldn’t understand the error mes-
sages, they just said error but didn’t tell me how to solve it.
Probably if there were steps to solve I could have solved it.
They expected you to know that this is an error . . . I am not
familiar with how to solve them”.

Some users were frustrated because they could not "undo"
their changes and some because examples available through
Yahoo! Pipes were not a close match or did not execute cor-
rectly. For example, C.P7 commented: “Many times the ex-
amples don’t work . . . if those examples worked I could have
done better”. At other times, the available examples were too
complex for users to follow.

Our interface was effective for reducing use barriers because
it provided hints on how to fix bugs. Most participants in the
treatment group were able to use the hints, including those re-
ferring to external documentation on RSS feeds or using ex-
ternal helper applications such as FireBug that allows inspec-
tion of web elements. Participant T.P4 commented: “. . . the
hints were helpful. I was not familiar with Yahoo! Pipes then
by following the hints [I] can solve it”.

Time Required to Fix Bugs
Another important measure of debugging success is the time
spent by participants in debugging. If debugging activities

Figure 4. Average time spent by participants from each group for each
bug. Solid bars indicate successful debugging, crosshatched bars repre-
sent unsuccessful attempts. Numbers over the bars indicate the number
of participants who attempted to address the associated bugs.

take too long, end users may become frustrated and stop.
Also, measuring time taken helps us track the presence of
understanding and use barriers.

On average, participants in the treatment group found
and fixed each bug statistically significantly more quickly
(Wilcoxon results W = 10, p-value = 0.010) than participants
in the control group. Figure 4 shows the average times spent
by participants per bug (B1 . . . B6). If a user did not attempt
to address a bug their data is not shown. Overall, our interface
helped users in the treatment group pinpoint bugs and solu-
tions more quickly from the very start, and users kept this
advantage throughout the tasks. Here, we discuss two bugs
(B4, B2) that took the longest for the treatment group.

Bug SE:B4, in which the contents of a web page had changed,
was time intensive to address and only six participants fixed
it. To fix this bug, users needed to know how to check the
code for the html page (i.e., page source) or how to operate
an external application to inspect webpages.

Bug Y!E:B2, which contained an incorrect URL, was the
next largest time sink, especially for unsuccessful partici-
pants. Participants had difficulty with this bug because there
were two URLs in the Fetch Feed module. Most partici-
pants checked both URLs, and some removed the lower URL
(which was correct) while needing correct the first URL. In
these cases, since there was no way to retrieve the old URL,
participants had to proceed with their task and were consid-
ered unsuccessful even if the original faulty URL was fixed.

Silent Failures of Pipes
We next investigate differences in bug resolution results be-
tween bugs in which Yahoo! Pipes displays an error message
(Y!E) and bugs for which Yahoo! Pipes is “silent” (SE). Par-
ticipants in the control group were considerably less success-
ful than participants in the treatment group, identifying 17
Y!Es compared to 11 SEs and resolving 9 Y!Es compared to
3 SEs. This difference occurred primarily because without
error notifications, participants were not able to tie failures
to faulty modules. For example, in SE:B2, where a heading
(“list of movies”) in the output was missing and the buggy

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1616

module had empty parameters, users could not tie the two to-
gether. C.P1 spent 40.15 minutes trying to localize this prob-
lem. In the treatment group, where faulty modules were au-
tomatically identified, we find no distinction between the two
error types (20 Y!Es and 20 SEs were fixed).

Nesting of Modules
Faults seeded in subpipes (nested as modules in the original
pipe) were much more difficult for control group participants
to localize and fix than for treatment group participants. In
the case of Y!E:B3, only one participant in the control group
was able to detect and fix the bug. In the case of SE:B6,
only one control group participant was able to identify the
nested (buggy) module, and none fixed it. In fact, many con-
trol group participants did not recognize that modules were
subpipes. Participant C.P3, on obtaining an error message on
Y!E:B3, commented: “Where is this coming from”. In Ya-
hoo! Pipes, to debug a subpipe users must open and execute
it; C.P3 did not realize this and spent 10.44 minutes investi-
gating the bug by clicking on other modules in the pipe. He
then moved onto the next task after commenting: “I don’t
know what it’s saying”.

Using our interface, a majority of the treatment group par-
ticipants were able to fix the nested bugs (Y!E:B3 was fixed
by 7 and SE:B8 was fixed by 8). In our archival analysis, we
found thousands of subpipes, with (some) subpipes nested up
to the 7th level. Without better debugging support it is highly
unlikely that end users will be able to fix erroneous subpipes,
especially those that fail silently.

Improvements in Perceived Self-efficacy:
Past work in the domain of end-user programming has shown
that individuals with higher self-efficacy, a form of self-
confidence, are more flexible in the strategies they use when
performing programming-related tasks, and are inclined to
explore newer, untaught functionalities [4]. In our study we
found that while participants in both groups were similar in
terms of self-efficacy (W = 35.5, p-value = 0.663), the treat-
ment group performed better.

We found that participants in the control group were frus-
trated in their debugging tasks, and this included even those
with high self-efficacy scores. Participant C.P1, with a self-
efficacy score of 8.5, comments: “I am not sure what I am
doing . . . I think you can stop [recording], I am just experi-
menting with different tasks and I feel I am not doing the right
task”. Another participant (C.P4 with a score of 8.4) com-
mented after being stuck in his task: “That’s why I am not a
CS major”. In contrast, participants in the treatment group
— even those with low self-efficacy scores — were excited
about the tasks and had a positive experience with the envi-
ronment. Participant T.P5, with a score of 6.6 commented: “I
really enjoyed this [task]. It enhanced my knowledge about
this [domain]. I will also make my own pipe”.

Design Guidelines for Debugging Strategies
Our study showed that it was difficult for end users to identify
and localize faults. Given that end users often program by
cloning from examples and the fact that many of the available
programs are erroneous (64% of the Yahoo! Pipes in our set

were faulty) debugging support is likely to significantly help
them. Here we provide design guidelines for incorporating
debugging support into end-user environments.

Automated fault localization. In environments that use vi-
sual programming and a black box abstraction methodology,
visually identifying a faulty module (and any downstream
impact of that module) will help users focus their debug-
ging efforts. We found that in the absence of such support
users spent substantial effort exploring unsuccessful alternate
strategies and backtracking.

To-fix list. Understanding barriers can be reduced if bugs
are automatically identified and aggregated in a list. Users
preferred to have the To-fix list overlaid on top of the can-
vas, so that they could view the pipe (or a particular module)
and error message at the same time. When this was not the
case (in the control group), users sometimes missed the error
messages since they were sequentially listed after the gener-
ated output. In cases where a large amount of text was output
users did not read all the way through and were not aware
of the bugs. For example, participant C.P3 commented that
“Messages should be on top, so that they are noticeable” in
response to why he overlooked a bug.

Having a To-fix list also gave users the flexibility to select
which bugs they wished to consider first. One design issue
that needs to be considered in creating such a list (which was
precluded by the design of our study) is interaction effects
among bugs. A bug in one module can potentially manifest
itself as a different bug in another module. In such cases, the
To-fix list should appropriately display the interaction effects
and group cascading bugs together, so that users know which
module to begin with when debugging.

Avoiding technical jargon. Error messages that use simple
language and avoided error codes are more successful with
end users, which confirms the results of prior HCI research.

Cross-linking faults with error messages. Cross-linking
faulty modules with their corresponding error messages al-
lows users to view the error message when they are ready to
debug the corresponding faulty module. Providing the error
messages in the context of the debugging activity helps pre-
vent developers from being overwhelmed by the number of
errors that need to be fixed and focus on the error at hand.

Contextualized help. Providing contextualized help (sug-
gestions for solving a problem through “hints") is more use-
ful to users than providing example pipes and documentation
at the beginning of a task.

Incremental Assistance. Presenting a high-level overview of
a possible solution, followed by “hints” that users can employ,
helps sustain users’ interest while not overwhelming them. In
our study, such incremental help enabled users with low self-
efficacy to perform as well as users with high self-efficacy.
In fact, our exit interviews indicate that using our approach
helped raise self-efficacy in our participants.

Versioning support. When debugging, users (especially
in the control group) followed various strategies and often
needed to backtrack. In such cases many users explicitly

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1617

asked for “undo” functionality. Traditionally, versioning sup-
port has been considered necessary only for professional pro-
grammers and is typically not supported by end-user pro-
gramming environments. We found, however, that end users
have become accustomed to (and have started to expect) ver-
sioning support because of their interactions with applications
such as MS Word/Excel, Google Docs, Dropbox, etc., which
provide rudimentary forms of such support.

CONCLUSIONS AND FUTURE WORK
We have presented an approach for detecting the presence of
bugs in Yahoo! Pipes mashups, and for helping pipe program-
mers localize and fix these bugs. Our study of this approach
shows that it does help end users find and fix bugs more effec-
tively and efficiently than users who do not have its support.

We have implemented and studied our anomaly detector as an
aid to debugging, and we have required users to explicitly re-
quest its help by clicking on a widget. The detector could also
be integrated into the mashup programming environment in
such a way that, on each save or execution of a pipe, anomaly
detection is performed. This could help users detect bugs in
their mashups that might otherwise go undetected, including
bugs that emerge in initially correct mashups when features
that they rely on in external environments change.

As mentioned in the introduction, our fault classification
as well as our methodology for identifying fault classes
and defining and implementing detectors for faults in those
classes can be generalized beyond mashup environments to
other web-development and visual programming environ-
ments. For example, App Inventor [1], a visual programming
environment for creating mobile apps, faces the same types of
inter and intra module bugs that we have identified, although
some sub-classes of these defects will need to be refined to
suit the particular domain. We plan to validate and refine our
approach by investigating App Inventor next.

Acknowledgments
This work was supported by AFOSR (FA9550-10-1-0406)
and NSF (1016134) grants. We thank our study participants.

REFERENCES
1. App Inventor: http://appinventorapi.com/.
2. Apatar: http://apatar.com/.
3. Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S.,

and Hastings, M. Effectiveness of end-user debugging software
features: are there gender issues? In CHI (2005), 869–878.

4. Cao, J., Rector, K., Park, T. H., Fleming, S. D., Burnett, M.,
and Wiedenbeck, S. A debugging perspective on end-user
mashup programming. In VLHCC (2010), 149–156.

5. Compeau, D. R., and Higgins, C. A. Computer self-efficacy:
development of a measure and initial test. MIS Quarterly 19, 2
(1995), 189–211.

6. Constantine, L. L., and Lockwood, L. A. D. Software for Use:
A Practical Guide to the Models and Methods of
Usage-Centered Design. ACM Press/Addison-Wesley, 1999.

7. Cypher, A., Dontcheva, M., Lau, T., and Nichols, J. No Code
Required: Giving Users Tools to Transform the Web. Morgan
Kaufmann, 2010, Ch. 22.

8. Deri Pipes: http://pipes.deri.org/.

9. Dinmore, M. D., and Boylls, C. C. Empirically-observed
end-user programming behaviors in Yahoo! Pipes. In PPIG
(2010).

10. Grammel, L., and Storey, M.-A. An end user perspective on
mashup makers. In Technical Report DCS-324-IR, Department
of Computer Science, University of Victoria (2008).

11. Grigoreanu, V. I., Burnett, M. M., and Robertson, G. G. A
strategy-centric approach to the design of end-user debugging
tools. In CHI (2010), 713–722.

12. IBM Mashup Maker:
http://www.ibm.com/software/info/mashup-center/.

13. Jackbe: http://www.jackbe.com/.
14. Jones, M., and Churchill, E. Conversations in developer

communities: A preliminary analysis of the Yahoo! Pipes
community. In CCT (2009), 51–60.

15. Jones, M. C., Churchill, E. F., and Twidale, M. B. Mashing up
visual languages and web mash-ups. In VLHCC (2008),
143–146.

16. Karam, M., and Smedley, T. A testing methodology for a
dataflow based visual programming language. In HCCLE
(2001), 280 –287.

17. Ko, A. J., and Myers, B. A. Designing the Whyline: A
debugging interface for asking questions about program
behavior. In CHI (2004), 151–158.

18. Ko, A. J., Myers, B. A., and Aung, H. H. Six learning barriers
in end-user programming systems. In VLHCC (2004),
199–206.

19. Koesnandar, A., Elbaum, S., Rothermel, G., Hochstein, L.,
Thomasset, K., and Scaffidi, C. Using assertions to help
end-user programmers create dependable web macros. In FSE
(2008), 124–134.

20. Kulesza, T. Toward end-user debugging of machine-learned
classifiers. In VLHCC (2010), 253 –254.

21. Kuttal, S. K., Sarma, A., and Rothermel, G. History repeats
itself more easily when you log it: Versioning for mashups. In
VLHCC (2011), 69 – 72.

22. Kuttal, S. K., Sarma, A., and Rothermel, G. On the benefits of
providing versioning support for end-users: An empirical
study. In Technical Report TR-UNL-CSE-2012-0008, Dept. of
Computer Science, U. Nebraska (2012).

23. Lewis, C. H. Using the “Thinking Aloud” method in cognitive
interface design. RC 9265, IBM, 1982.

24. Morae: http://www.techsmith.com/morae.asp.
25. Nielsen, J., and Molich, R. Heuristic evaluation of user

interfaces. In CHI (1990), 249–256.
26. Rothermel, G., Li, L., DuPuis, C., Burnett, M., and Sheretov,

A. A methodology for testing form-based visual programs.
TOSEM 10, 1 (Jan. 2001), 110–147.

27. Scaffidi, C., Cypher, A., Elbaum, S., Koesnandar, A., Lin, J.,
Myers, B., and Shaw, M. Using topes to validate and reformat
data in end-user programming tools. In WEUSE (2008), 11–15.

28. Sharp, H., Rogers, Y., and Preece, J. Interaction Design:
Beyond Human-Computer Interaction. Wiley, 2007, Ch. 15.

29. Shneiderman, B. Designing computer system messages. CACM
25 (1982), 610–611.

30. Stolee, K., Elbaum, S., and Sarma, A. End-user programmers
and their communities: An artifact-based analysis. In ESEM
(2011), 147–156.

31. Wohlin, C., Runeson, P., Hóst, M., Ohlsson, M., Regnell, B.,
and Wesslén, A. Experimentation in Software Engineering: An
Introduction. Springer, 2000.

32. xfruits: http://www.xfruits.com/.
33. Yahoo! Pipes: http://pipes.yahoo.com/pipes/.

Session: Novel Programming CHI 2013: Changing Perspectives, Paris, France

1618

	Introduction
	Related Work on Debugging for End Users
	Yahoo! Pipes
	A Classification of Bug Types Present in Pipes
	Intra-module Bugs
	Inter-module Bugs

	An Approach for Detecting Yahoo! Pipes Bugs
	An Analysis of Bug Prevalence in Pipes
	Connecting Users to Debugging Support
	Empirical Study
	Study Setup
	Participants
	Procedure and Tutorial
	Tasks
	Limitations of our Study

	Improving Debugging Success
	Numbers of Bugs Localized
	Numbers of Bugs Fixed
	Time Required to Fix Bugs
	Silent Failures of Pipes
	Nesting of Modules
	Improvements in Perceived Self-efficacy:

	Design Guidelines for Debugging Strategies

	Conclusions and Future work
	REFERENCES

