Understanding Git History: A Multi-Sense View

Kevin J. North
Department of Computer
Science & Engineering
University of Nebraska-Lincoln
Lincoln, NE, 68588-0115 USA
knorth@cse.unl.edu

ABSTRACT

Version control systems archive data about the development
history of a project, which can be used to analyze and un-
derstand different facets of a software project. The project
history can be used to evaluate the development process of
a team, as an aid in bug fixing, or to help new members
get on track with development. However, state of the art
techniques for analyzing version control data provide only
partial views into this information, and lack an easy way
to present all the dimensions of the data. In this paper we
present GitVS, a hybrid view that incorporates visualiza-
tion and sonification to represent the multiple dimensions
of version control data - development time line, conflicts,
etc. In a formative user study comparing the GitHub Net-
work Graph, GitVS, and a version of GitVS without sound,
we show GitVS improves over the GitHub Network Graph
and that while sound makes it easier to correctly understand
version history for some tasks, it is more difficult for others.

CCS Concepts

eSoftware and its engineering — Software configura-
tion management and version control systems;

Keywords

Version Control History, Conflicts, Sonification

1. INTRODUCTION

Software teams use version control to manage their projects.
As a result, version control systems record a rich project his-
tory containing information about who made commits, how
many files the commits modify, when branches are forked or
merged, and in some cases when conflicts occur. Developers
and managers may study patterns of information contained
in this history to understand why a piece of code evolved, to
keep up with changes to pieces of code which interest them,
or to find and debug faults [4].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions @acm.org.

SSE’16, November 14, 2016, Seattle, WA, USA
(© 2016 ACM. 978-1-4503-4397-8/16/11...$15.00
http://dx.doi.org/10.1145/2993283.2993285

Anita Sarma
Electrical Engineering &
Computer Science
Oregon State University
Corvallis, OR, 97331 USA
anita.sarma

Myra B. Cohen
Department of Computer
Science & Engineering
University of Nebraska-Lincoln
Lincoln, NE, 68588-0115 USA

oregonstate.edu myra@cse.unl.edu

Several techniques exist for displaying version control his-
tory. One common technique is to use a directed graph
with commits adjacent to their predecessors. The GitHub
network graph is an example of such a visualization [15].
Another technique, code_swarm [14], shows relationships be-
tween developers and their edits to files as a video. In re-
cent work, we developed GitSonifier, a technique that uses
audio sounds to represent conflicts and developers while dif-
ferentiating days along a timeline [13]. Each technique has
strengths, yet each has limited dimensions of information.
For instance, the GitHub network graph and code_swarm
do not provide conflict information, while GitSonifier does
not contain file information, making it hard to target a single
point in time.

In this paper, we take a step back and ask how can we
present more information at once while continuing to allow
users to easily understand the version history information.
We focus on a multi-sense approach that utilizes sonification,
the use of sound to portray data. We have created GitVS,
a hybrid visualization for version control history that incor-
porates multiple dimensions of version control data visually,
combined with a sonification cursor Ul element that allows
one to listen to who made each commit and where historical
conflicts occurred. We perform a formative user study to
evaluate GitVS with the GitHub Network Graph, a popular
Git history visualization. To evaluate the effect of sonifica-
tion on usability we created a variation of GitVS with no
sound (GitVS-NS) and use it as another treatment in the
user study. In a between-groups study with three partici-
pants per treatment, we find that GitVS outperforms the
GitHub network graph in helping users correctly and effi-
ciently understand version history. Moreover, its portrayal
of developers using sound is more helpful than finding the
same information without sound, but its other uses of sound
can be improved.

The contributions of this work are: (1) a novel technique,
GitVS, for visualizing and understanding version control his-
tory from multiple dimensions, (2) a user study that shows
GitVS improves over the GitHub Network Graph, and (3)
identification of which tasks are helped by sound when in-
vestigating the version control history and which are not.

2. BACKGROUND AND RELATED WORK
2.1 GitSonifier

Sonification is the portrayal of data using sound. Sonifica-
tion is effective at portraying multidimensional data because
sound has multiple characteristics, including frequency, loud-

ness, and rhythm, that can be mapped to different pieces of
data. In addition, sonification is well-suited to portray data
that is temporal in nature. [9]

In GitSonifier (and GitVS) we use two specific types of
sonification: Earcon sonification and parameter mapping
sonification (PMSon). In earcon sonification, each piece
of data is represented by a different short phrase of mu-
sic called an earcon. Earcons are typically differentiated by
using different notes, rhythms, and instruments. In PMSon,
the properties of a sound wave are mapped to different as-
pects of the data being portrayed. For example, to sonify
the temperature of a pot of boiling water, the temperature
could be mapped to a soundwave’s pitch. As water is heated,
the sonification rises in pitch. [9]

GitSonifier represents three pieces of data from version
control history: (1) who makes each commit, (2) when each
commit is made, and (3) when conflicts are introduced and
resolved in the project history. Music is produced along the
version history timeline. Each measure represents one com-
mit. A measure is a basic unit of rhythm in music theory,
and untrained listeners can identify measures intuitively [19].
When a commit’s measure is played, an earcon correspond-
ing to the developer who made that commit is played. The
earcons use different rhythms, notes, and instruments in or-
der to make them easily distinguishable.

To show time passing, we use an earcon called a day sepa-
rator. Whenever one calendar day ends, we insert a measure
with the day separator. If multiple days pass without com-
mits, we play multiple consecutive day separators to count
the number of days with no activity. To distinguish the day
separator from developer earcons, we use a different musical
key and a distinctive synthesizer instrument.

We play drums in the background to indicate when con-
flicts are introduced and resolved. When a commit adds a
conflict, drums begin playing during that commit’s measure.
When a conflict is resolved, the drums stop. If a second
conflict appears before an existing conflict is resolved, the
drums become louder (using PMSon). When either conflict
is resolved, the drums return to the previous volume.

In a formative user study we found that participants could
easily answer questions about version history using GitSoni-
fier. However, our study also revealed some weaknesses.
Because it uses only sound, one cannot jump to a different
point in time in history with GitSonifier, making exploring
the data on a specific date challenging. In addition, while
participants understood specific pieces of data, it was more
difficult for them to understand the history holistically. [13]

2.2 Related Work

There has been some work on visualizing project history.
For example, Syde [8] presents which developers have changed
which files and how code ownership changes on a file as the
project evolves. Workspace Activity Viewer [17] replays ver-
sion history regarding which files have changed and by how
much over time as a 3D animation. Scamp [11] portrays
how much a file has changed using heat maps and how of-
ten classes have been edited using a word cloud. None of
these visualizations allow drill-down investigation of specific
events or provide conflict information.

Workspace awareness tools attempt to proactively iden-
tify conflicts as they emerge via workspace monitoring (e.g.,
Palantir [18], FastDash [10]) or by merging changes in a
shadow repository (e.g., Crystal [3], SafeCommit [22]). While

these tools present conflict information, they only show con-
flicts that are happening at the present time. None of these
tools provide a historical perspective of conflicts.

MeclIntosh et. al. introduced a method to systematically
generate music based on version control histories. Unlike
GitVS, this technique is solely intended to be enjoyable to
listen to, not to aid understanding version history [12].

CocoViz [2] is the closest approach to GitVS. It com-
bines visualization and sonification to represent code met-
rics for source code files. Each file is represented by a shape,
and properties of a shape (e.g., size and color) are mapped
to code metrics. Sound represents additional code metrics
when the user hovers over a shape. CocoViz does not use or
present information about version control history, however.

3. GITVS

3.1 Visualization and Sonification Design

GitVS combines the GitSonifier sonification with a two-
dimensional visualization. It shows each commit’s times-
tamp, ID, committer, and list of modified files, as well as
the project’s branching and merging patterns. It also shows
when conflicts were introduced and resolved in the project’s
history.

(b) Sonification Cursor

Time

(a) GitVS Main View

(c) Table of Selected Commits

Figure 1: GitVS Views: (a) main window, (b) sonifi-
cation Cursor, (c) “details view” of selected commits

Our implementation works with Git repositories, but the
technique can be applied to other version control systems.
Figure 1 shows three views of GitVS. Figure 1(a) shows the
main screen. The vertical axis represents time moving from
top to bottom. The user can scroll and zoom to see more
of the timeline providing scalability. Commits are shown
as circles, and each commit timestamp is shown in the left
margin. The more files a commit modifies, the larger is the
commit circle. Horizontal bars indicate when each calendar
day begins and ends; days without any commits are skipped.
Each branch is drawn in a different color.

Figure 1(b) shows the sonification cursor, the horizon-
tal blue bar. The user can click the large arrows on the
screen to move the cursor up and down, or right-click on
a commit which moves the sonification cursor to that loca-
tion. When the cursor touches a commit’s circle, a developer
earcon plays for that commit. Day separators play between
calendar days, and are played multiple times consecutively
for skipped days. Drums sounds play for conflicts using the
same sonification design as GitSonifier. In our implementa-
tion, the 13 most prolific developers in the entire repository
each get their own individual developer earcon sound, and
the remaining developers share a 14th sound. (This number

represented developers who made 75% of the commits in the
repository for our first user study [13].)

Finally, GitVS lets users click and drag over one or more
commits to get additional details about these commits via
the “details view” (Figure 1(c)). This view shows the se-
lected commits’ IDs, timestamps, contributors, and number
and the names of files modified.

We also created GitVS-No Sound (GitVS-NS), a tool that
modifies GitVS by removing all sounds associated with the
development history (and the sonification bar). In the main
view, a red border on the commit circle represents commits
with at least one conflict. When commits are selected by a
user, an additional column that shows the exact number of
conflicts present during a commit is shown in the “details
view”. While GitVS-NS uses different techniques to show
data, it provides access to exactly the same pieces of infor-
mation as GitVS.

3.2 Implementation Details

GitVS takes the following information as input: (1) the
version control repository to analyze and display, (2) the
first and last commits to display in the view, and (3) a list
of historical conflicts in the repository (this is obtained via
a separate tool that processes Git data). Item #2 allows
users to specify a date range. For item #3, we use a Python
script to extract the conflict information that is then sent to
GitVS. We provide a virtual machine with GitVS that has
instructions on how to automate the collection of conflict
information for repositories.*

GitVS goes through the repository and, for all of the com-
mits, collects each commit’s committer, timestamp, SHA1
hash, list of parent commits, list of files modified, and posi-
tion within the project’s branching and merging structure.
Next, it assigns each developer an earcon based on the num-
ber of their commits, filters out commits that don’t fit in the
date range specified, and determines where day separators
should be inserted. Finally, GitVS produces the visualiza-
tion and sonification. GitVS was implemented in Java 1.7.
It uses jGit [20] to interact with Git repositories and Pro-
cessing [16] to implement the interactive user interface.

4. USER STUDY

We conducted a formative user study to investigate how
developers can use GitVS to understand version history; how
it compares to a popular existing tool, the GitHub network
graph [15]; and how sound helps in understanding version
history.

In our study, we asked the following research questions:

e RQI1: How does GitVS compare to the GitHub Net-
work Graph and GitVS-NS in terms of: (a) effective-
ness, (b) efficiency, and (c) users’ opinion of the tool?

e RQ2: Which factors do participants consider when an-
alyzing version history, and how does the usage of a
particular tool affect their focus?

To answer these questions, we used a between-groups study
with three treatments. One group used the GitHub network
graph (Figure 2(a)), a tool from GitHub and frequently used
by developers. The second group used a version of GitVS
with No Sound (Figure 2(b)), and the third group used

"http://cse.unl.edu/ myra/artifacts/GitVS/vm

GitVS (Figure 2(c)), which allows us understand the role
of sonification in users’ experiences.

There were three parts of the user study. First, partici-
pants were trained on the tool that they were going to use,
after which they performed the study. We performed an exit
survey and interview at the end.

e B (i

(b) GitVS no sound (c) Gitvs

(a) GitHub Network Graph

Figure 2: Treatments used in study: (a) GitHub
Network Graph (b) GitVS-NS (c) GitVS

4.1 Participant Demographics

We recruited nine computer science students: six under-
graduate and three graduate students. All participants had
at least one year of experience with Git. The most experi-
enced participant had over five years of experience. Many
had used other other version control systems (e.g., SVN,
CVS, Mercurial, Bazaar). All participants had used version
control on at least one professional or major class project.
Three participants had eight months to 1.5 years of expe-
rience with continuous integration. Two participants had
musical experience. One participant was female, and the
rest were male. The demographics of the participants were
collected before they were assigned to a group in a random
fashion. By chance the two participants with music experi-
ence were split evenly between GitVS and GitVS-NS.

4.2 Study Scenario

Participants were asked to take on the role of a manager
of a development team and play out the following scenario:

The team currently uses the following development pro-
cesses: (1) Whenever a new feature is being implemented, a
developer can create a new branch but is not required to, and
(2) Branches are code-reviewed before being merged. The
team, however, is facing disruption to its workflow because
of conflicts and the manger is considering making the use of
a feature branch a requirement and to have the team use a
continuous integration server. Before finalizing this require-
ment the manger wants to compare the two processes. So
he/she investigates his/her own project and another similar
project that uses the new processes.

We used two open source projects for this scenario. Volde-
mort [6] is a distributed storage system, represents the man-
ager’s current process. Storm [5] is a distributed computa-
tion system and represents a project with the new processes.
Both projects are fairly large. Voldemort has over 4,100
commits and started in April 2011. Storm has over 6,500
commits and started in September 2011. Both have a simi-
lar amount of developer activity.

4.3 Study Design

The experiment was run in three steps. First, participants
were trained on dummy data. Second, they performed the
experiment tasks, after which they completed an exit survey.
Last, we interviewed them about specific aspects of their
task or decision. They were then paid $20.

http://cse.unl.edu/~myra/artifacts/GitVS/vm

Training Task: Participants were shown a video demon-
strating the use of the assigned tool. This video uses version
history from a fake project with 28 commits, 6 branches, 4
developers, and 3 files lasting 8 days.

Once participants had seen the video and played with the
tool, they were asked six questions about the data portrayed
by the tool. A participant could move to the experiment
tasks only after he or she correctly answered all the train-
ing questions. When answering questions, participants were
able to review the training video and use the tool. No data
was collected during this phase.?

Study Tasks: There were three phases in the experiment.
In Phases I and II, participants investigated projects that
either followed the current or mew processes. The order in
which a participant viewed a repository was assigned at ran-
dom to a phase and was then counter balanced. For each
phase, participants were asked a set of objective questions:

1. How many commits were made in-between [three of
the days portrayed by the tool]?

2. On average, what is the number of files modified per
commit in-between [three of the days portrayed by the
tool]?

3. How many conflicts were present in-between [the first
and last date portrayed by the tool]?

4. Look at the branches which were merged directly into
the master branch. In days, what is the average num-
ber of days these branches existed?

5. What is the average number of days each branch with
at least one commit from an outsider developer existed
before being merged?

In Phase III, participants had to compare the two projects
to answer the following questions. When answering each
question, participants had to select one of the projects and
provide a justification. During this phase participants could
review their answers to Phases I & II.

1. Based on the previous questions, which process would
you recommend if your priority is to have a large num-
ber of small commits?

2. Based on the previous questions, which process would
you recommend if your priority is to minimize con-
flicts?

3. Based on the previous questions, which process would
you recommend if your priority is to accept pull re-
quests quickly?

4. Based on the previous questions, which process would
you recommend if your priority is to quickly merge
commits from outside developers?

These questions were selected because they reflect method-
ologies that affect team efficiency and therefore are of inter-
est to managers. Q #1 is based on industry best practices
that small frequent commits make sharing changes easy [1].
Q #2 reflects findings about conflicts adversely affecting
teams [7]. Q #3 and #4 reflect research that shows that
teams using continuous integration merge more pull requests
from core developers and reject fewer pull requests from non-
core developers [21].

During the experiment we only answered questions from
participants when they pertained to correctly interpreting

2Study questions and results are on our website: http://cse.unl.
edu/ myra/artifacts/GitVS/

the questions. We did not answer questions about how to
use the assigned tool or explain the data. If a participant
took longer than five minutes to answer a question, we told
them that they could skip the question if they wished.

Data used in Study: We used a two week-long portion
of history from each project. The data selected from Storm
had more commits (77 vs. 40), branches (11 vs. 6), and
developers (107 vs. 34 in the entire repositories, 7 vs. 4 in
the two weeks shown) than the data from Voldemort.

In addition, participants were given lists of core developers
and non-core developers for each repository.® Participants
who used GitVS could also listen to developer earcons in the
lists. Since the training, original, and comparison reposito-
ries had different developers, and GitVS uses the same set of
(developer) earcons for each repository, the developers asso-
ciated with a particular earcon was specific to a repository.
Post Study Tasks: At the end of the study, participants
filled out a survey asking opinions about using the tool.
These 10 questions (listed in Table 3) used a Likert scale
from 1 (least likely) to 5 (most likely).

Three of the questions also include a “(Why or why not?)”
option, for which participants had to provide a short ex-
planation for their Likert rating. There were 2 additional
open-ended questions:

e Would you recommend this tool to others?
e In your opinion, how can we improve the tool further?

Finally, we conducted an exit interview, which were audio
recorded. These were unstructured interviews, allowing us
to ask participants about any specific activity we thought
was interesting or unusual.

S. RESULTS

5.1 RQ1l: Comparing GitVS to the GitHub
Network Graph and GitVS-NS

5.1.1 Effectiveness

Table 1 shows how many questions participants answered
correctly in Phases I & II (Table 2 provides a summary).
Three participants used each tool, so each question can have
up to three correct answers. GitVS and GitVS-NS partic-
ipants gave 16 correct responses per tool out of 30 ques-
tions. In contrast, only one correct response was recorded
from GitHub participants. There are several possible rea-
sons for why participants using GitHub answered questions
incorrectly. For Q1 and Q2, the dots representing commits
are small and there is no zoom feature, so we think it was
difficult to keep track of which commits had already been
counted. For Q3, GitHub does not record conflict data. As
a result, participants needed to manually look through each
commit’s list of changes to see if it modified the same file
in the same place as another commit on another branch, a
very time-consuming process.

For Q4 and Q5, GitHub participants frequently miscounted
the number of branches. We think this is because the spac-
ing between branches is inconsistent and there is no way to
annotate branches to keep track of which have been counted.
The GitHub network graph also has a bug that incorrectly
labeled some commits with a timestamp a day too early
in the main visualization. The correct date is shown when

3Core developers are the developers who have contributed to
about 75% of the project’s commits; the rest are non-core.

http://cse.unl.edu/~myra/artifacts/GitVS/
http://cse.unl.edu/~myra/artifacts/GitVS/

Table 1: Data from the objective questions.

Ques- Correct Avg. time

Repository tion Tool Answers to answer
(out of 3) | (minutes)

Voldemort | Q1 GitHub 0 0.65
GitVS-NS 2 0.91

GitVS 3 1.34

Voldemort | Q2 GitHub 0 3.00
GitVS-NS 3 1.86

GitVS 3 2.72

Voldemort | Q3 GitHub 1 2.08
GitVS-NS 2 1.07

GitVS 2 2.30

Voldemort | Q4 GitHub 0 2.16
GitVS-NS 1 2.01

GitVS 2 1.66

Voldemort | Q5 GitHub 0 2.07
GitVS-NS 2 3.25

GitVS 1 3.92

Storm Q1 GitHub 0 1.07
GitVS-NS 2 1.46

GitVS 2 1.28

Storm Q2 GitHub 0 2.04
GitVS-NS 2 2.13

GitVS 2 1.48

Storm Q3 GitHub 0 2.72
GitVS-NS 1 2.64

GitVS 1 5.95

Storm Q4 GitHub 0 3.20
GitVS-NS 1 4.74

GitVS 0 4.83

Storm Q5 GitHub 0 3.50
GitVS-NS 0 5.66

GitVS 0 4.82

Table 2: Overall results for objective questions.

Correct Average time | Std. dev.
Tool Responses | to answer time to answer
(out of 30) | (minutes) (minutes)
GitHub 1 2.69 2.03
GitVS-NS 16 2.25 1.04
GitVS 16 3.03 2.13

clicking on a commit for more details. This bug did not af-
fect the answers to any of the questions in Storm repository,
but it did affect Q1, Q2, Q3, and Q5 in Voldemort. We con-
sidered answers to be correct if participants used the faulty
dates from the visualization or the correct dates from the
actual commits. Only one participant gave an answer that
could be marked correct either way.

For Q2 and Q3 for Voldemort and Q1, Q2, and Q3 for
Storm, we received the same number of correct responses
from GitVS and GitVS-NS participants. For Q1 and Q4
in Voldemort, we received one more correct response from
GitVS participants than GitVS-NS participants. The GitVS-
NS participant who got Q1 incorrect, P8, said that he thought
the question “was a big question and there were a lot of
intricacies to how that question had to be answered,” For
Q4, most participants for both GitVS and GitVS-NS who
answered incorrectly did not notice that the visualization
skipped days when there was no activity, leading them to
miscalculate the length of branches. While day separators
in the GitVS sonification were meant to help participants
avoid this mistake, participants usually opted to cut the day
separators sound off early and focus on other sounds.

In Q5 for Voldemort and Q4 for Storm, we received one
more incorrect response from GitVS participants (as com-
pared to GitVS-NS). For Q5 for Voldemort, the GitVS par-
ticipants who answered incorrectly did not realize that days
(without activity) were omitted. The GitVS-NS participant
who answered the question incorrectly, P8, only found the
duration of one branch before submitting their answer to
avoid taking a long time. No participants for either tool
answered Q5 for Storm correctly.

Our results suggest that GitVS is more effective in help-
ing users understand Git data than the GitHub Network
Graph. Further, sound neither hurt nor helped participants
to understand the data correctly. Overall, participants per-
formed slightly better in the Voldemort project as it was less
complex than Storm.

5.1.2 Efficiency

Table 1 shows the average time (in minutes) that par-
ticipants took to answer each question in Phases I & II.
Most participants using GitVS took approximately as long
or longer than GitHub participants to answer individual
questions. Averaging across all questions and both projects
show participants using GitHub took 2.69 minute as com-
pared to 3.03 for GitVS, as shown in Table 2. However,
since GitHub participants answered nearly all questions in-
correctly, it is not clear whether GitHub is faster because it
is more efficient or it is so obtuse that participants gave up
trying to find correct answers. Another possibility is that
GitHub encouraged incorrect investigation patterns that are
faster but produce incorrect results.

For several questions, such as Q1, Q2, Q3, and Q5 for
Voldemort and Q3 for Storm, GitVS participants took longer
to answer questions than GitVS-NS participants. However,
GitVS participants answered Q4 of Voldemort and Q1, Q2,
and Q5 of Storm more quickly. We think this may be due to
learning effects. Two of the GitVS participants completed
the Voldemort repository first, but two of the GitVS-NS
participants completed Storm first. Hence, the GitVS par-
ticipants were likely to complete Voldemort, the first repos-
itory they saw, more slowly than Storm, and visa-versa for
GitVS-NS.

As shown in Table 2, overall, GitVS-NS participants an-
swered questions more quickly (2.25 min) than GitVS partic-
ipants (3.03 min). One participant for GitVS did not realize
that he could scroll through the GitVS visualization, leading
him to take much longer than other participants. Given our
small sample size, this highly skewed the results.

5.1.3 Participants’ Opinions

Table 3 shows the average scores of the post-study survey.
These use a Likert scale from 1 to 5, 5 being the most posi-
tive. For most of the questions, GitVS has an average score
0.67 to 1 point higher than GitHub. However, for the last
three questions, GitHub has scores that were much higher.

Q1 through Q6 ask about how easy it is to understand
specific data points. The wording of Q7—Q10, including the
questions where GitHub scored higher, focus on whether the
tool makes it easier to understand the data holistically and
whether the participant would share the tool with others.
Our results indicate that participants preferred GitVS for
finding specific details, but found GitHub to be better for
understanding the big picture.

Table 3: Average scores from post-study survey.

8;1§S;§5 Question Tool gg;gre
Q1 It was easy to tell when GitHub 4
each commit was made. GitVS-NS 5

GitVS 5

Q2 It was easy to identify who GitHub 5
made each commit. GitVS-NS 3.33

GitVS 4.33

Q3 It was easy to tell where GitHub 2.33
conflicts were located. GitVS-NS 3.67

GitVS 3

Q4 It was easy to tell when GitHub 4.33
each commit was made. GitVS-NS 5

GitVS 5

Q5 It was easy to see which GitHub 2.33
files were changed by GitVS-NS 4

each commit. GitVS 3

Q6 It was easy to tell where GitHub 4
branches were located. GitVS-NS 4

GitVS 3.33

Q7 It was easy to understand GitHub 2.67
the details of the GitVS-NS 3.67
development data. GitVS 3.33

Q8 It was easy to understand GitHub 3.67
overall patterns in the GitVS-NS 3.33
development data. GitVS 2.33

Q9 It easy to see relationships GitHub 3.33
between different pieces of GitVS-NS 3.33
development data. GitVS 2.67

Q10 I would be interested in GitHub 4
using this tool for my own GitVS-NS 4

team. GitVS 2.67

In the opened-ended questions, we received mixed responses.
Participants disagreed on whether GitHub visualizations were
helpful. For example, P2 wrote, “...because of the branch
view, it is easy to see the structures,” but P6 said, “There’s
no clear path seen in the network view, especially when there’s
many branches.”

GitVS participants also had mixed feelings about the use-
fulness of sound. For example, P3 wrote that he appreciated
GitVS’ “use of colors, text, music rather than just text,” but
P5 wrote, “I was so bogged down with trying to compare
sounds in my head that I completely lost sight of what I was
actually seeing & trying to find out.”

In general, participants who used GitVS-NS had higher
opinions of their tool than GitVS participants. For Q1 and
Q4, both tools received the same average score, and for Q2,
GitVS actually scored higher.

For the other seven questions, GitVS-NS received higher
scores. The question on which GitVS outperformed GitVS-
NS asks, “it was easy to identify who made each commit.”
We believe that the sonification made it easier to discover
commits’ developers. In GitVS-NS, a user has to select the
commit to open the details view to find the information.
In the comments some participants of GitVS-NS said that
they would like to have the names of the developers avail-
able on the main visualization. P8 wrote, “It was grueling
to figure out which branches were committed to by at least 1
[non core] developer. Names weren’t on the graph.” In con-
trast, in GitVS, one can listen to a commit’s sound directly.
Nonetheless, GitVS with sound scored more poorly on other
questions, including questions that do not have anything to
do with sonification. This suggests that sonification may

distract from understanding individual pieces of data that
aren’t part of the sonification. We need to perform further
study to tease out the effects of sonification.

GitVS scored lower than GitVS-NS for Q3, even though
conflicts are sonified in GitVS. We believe that GitVS scored
lower because in order to find when a conflict occurs the user
has to listen to many commits and compare drum sounds
between them. This is a multi-step process, as compared to
the developer earcons, which allow a user to simply click on
a commit and immediately hear who made the change.

For Q10, GitVS scored only 2.67 on average while GitHub
and GitVS-NS scored 4, more than one full point higher. In
their comments, all of the GitHub and GitVS-NS partici-
pants enthusiastically said they would recommend the tool,
writing comments such as, “Yes, it would be better to have
a tool to track all the changes and it would be easier to code
review” (P2). In contrast, GitVS participants specifically
said they were concerned that the use of sound would make
it difficult to share the tool with others. For example, P1
wrote, “If I know someone more musically inclined then my-
self maybe. I think this would be helpful for someone who is
a very auditory person.” P35, who had musical experience,
said that she would not recommend the tool to others, but
did not explain her decision.

The questionnaire results show that participants prefer
sonification when it allows them to obtain more information
with fewer steps, but when finding the same information
requires multiple steps, the sonification can be outperformed
by a visualization. This suggests that we need to redesign
the sonification to be simpler.

5.2 RQ2: Which factors do participants con-
sider when analyzing version history?

In Phase-IIT participants had to select one of the two
projects (Voldemort or Storm) when answering the four sub-
jective questions. Voldemort was selected 4 to 5 times, and
Storm, 7 to 8 times, irrespective of the treatment (tool). We
did not find any correlation to suggest that the tool affected
the selection when answering Phase-II1 questions.

Participants also explained the reasoning for their (project)
selection in Phase-III. We analyzed their responses to dis-
cover which types of data was used by participants in each
treatment group. Figure 3 shows how often participants ref-
erenced several factors in version history data. Since there
were three participants and four question explanations, each
factor could have appeared up to 12 times per tool.

GitVS-NS participants mentioned the number and length
of branches more frequently than GitVS participants, but
mentioned the organization of branches and workflow less
frequently. This is likely because GitVS participants used
the main branch visualization while simultaneously listen-
ing to sounds, putting emphasis on how the branches, com-
mits, conflicts and developers give rise to meaningful pat-
terns in branch organization. In contrast, GitVS-NS partic-
ipants looked at either the main visualization or the “details
view” about specific commits. This led them to emphasize
the details of individual branches, but not on the overall
organization and workflow among the branches.

Three GitVS participants mentioned conflicts, as did five
GitHub and five GitVS-NS participants. GitHub did not in-
clude conflict information, so it is striking that the GitHub
participants mentioned conflicts nonetheless. We believe
this is because (Q #3) in Phases I & II, refers to con-

flicts, therefore, GitHub participants had already attempted
to identify the conflicts and it was on their minds.

In summary, GitHub participants mentioned fewer factors
and factors less frequently than participants of GitVS and
GITVS-NS. We believe this is because GitVS and GitVS-NS
include more information than GitHub. As a result, GitVS
and GitVS-NS participants had easier access to more factors
and mentioned these when answering Phase-III questions.

Mentions of Types of Data in Participant's Explanations

Number of Mentions

& © © & & ©
&8 &S & & & R &
s & & & & & of & & &
@ < g & & s S &
& & & & § A 5
5 N o & & 3
Nl B 5 & & O
& & 4 &
& &

OGitHub MGitVS without sound BGitVS

Figure 3: Factors that participants discussed.

6. CONCLUSIONS

We have presented GitVS, a multi-sense view of version
control data. In a user study we found that GitVS al-
lows participants to understand version history better than
GitHub’s network graph, since it presented more informa-
tion in an easy to access manner. There was no difference
in efficiency between GitVS and GitVS-NS.

Sonification was useful when multiple pieces of informa-
tion was encoded into the view, for example, when under-
standing the overall workflow and structure across branches.
However, when the same information was encoded as a soni-
fication (conflict drums) vs. a visualization (red commit bor-
ders), the visualization was more accessible and preferred.
This indicates that our central premise holds - sonification
is useful when there are multiple dimensions of data to be
presented. However, we do need to iterate on how our views
and sonification are structured to make it simpler to use.

Since we report on a very small study, and in one case (for
GitVS) an outlier has skewed our results we need to perform
a larger investigation. We plan to run another, larger study
to identify the specific factors where sonification helped and
in cases where it failed, to investigate how to encode multi-
dimensional data into a single, unified view.

7. ACKNOWLEDGMENTS

We thank Shane Bolan for his help with initial visual-
izations. This work was supported in part by NSF grants
CCF-1253786, HCC-1559657 and CCF-1161767.

8. REFERENCES

[1] J. Atwood. Check in early, check in often. https://
blog.codinghorror.com/check-in-early-check-in-often/.
Accessed: 2016-03-27.

[2] S. Boccuzzo and H. Gall. Software visualization with
audio supported cognitive glyphs. In ICSM, pages
366-375, 2008.

[3] Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin.
Proactive detection of collaboration conflicts. In
ESEC/FSE, pages 168-178. ACM, 2011.

[4] M. Codoban, S. S. Ragavan, D. Dig, and B. Bailey.
Software history under the lens: a study on why and
how developers examine it. In JOCSME, pages 1-10,
2015.

[5] apache/storm. https://github.com/apache/storm.
Accessed: 2016-03-20.

[6] voldemort/voldemort.
https://github.com/voldemort/voldemort. Accessed:
2016-03-20.

[7] M. L. Guimarées and A. R. Silva. Improving early
detection of software merge conflicts. In ICSE, pages
342-352, 2012.

[8] L. Hattori, M. Lanza, and R. Robbes. Refining code
ownership with synchronous changes. Empirical Softw.
Engg., 17(4-5):467-499, 2012.

[9] T. Hermann, A. Hunt, and J. G. Neuhoff. The
sonification handbook. Logos Verlag Berlin, 2011.

[10] O. Kononenko, O. Baysal, R. Holmes, and M. W.
Godfrey. Dashboards: Enhancing developer situational
awareness. In ICSE(2), pages 552-555, 2014.

[11] M. Lanza, L. Hattori, and A. Guzzi. Supporting
collaboration awareness with real-time visualization of
development activity. In 2010 14th European CSMR,
pages 202-211, 2010.

[12] S. MclIntosh, K. Legere, and A. Hassan. Orchestrating
change: An artistic representation of software
evolution. In CSMR-WCRE, pages 348-352, 2014.

[13] K. J. North, S. Bolan, A. Sarma, and M. B. Cohen.
Gitsonifier: Using sound to portray developer conflict
history. In ESEC/FSE, pages 886-889. ACM, 2015.

[14] M. Ogawa and K.-L. Ma. code_swarm: A design study
in organic software visualization. TVCG,
15(6):1097-1104, 2009.

[15] T. Preston-Werner. Say hello to the network graph
visualizer. github.com/blog/
39-say-hello-to-the-network-graph-visualizer.
Accessed: 2016-03-16.

[16] Processing.org. https://processing.org/. Accessed:
2015-07-17.

[17] R. M. Ripley, A. Sarma, and A. van der Hoek. A
visualization for software project awareness and
evolution. In Intl. Works. on Visualizing Soft. for
Understanding and Analysis, pages 137-144, 2007.

[18] A. Sarma, D. F. Redmiles, and A. Van Der Hoek.
Palantir: Early detection of development conflicts
arising from parallel code changes. TSF,
38(4):889-908, 2012.

[19] M. Schonbrun. Reading Music: A Step-By-Step
Introduction To Understanding Music Notation And
Theory. Fall River Press, 2012.

[20] JGit. https://eclipse.org/jgit. Accessed: 2014-12-14.

[21] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and
V. Filkov. Quality and productivity outcomes relating
to continuous integration in github. In ESEC/FSE,
pages 805-816. ACM, 2015.

[22] J. Wloka, B. Ryder, F. Tip, and X. Ren. Safe-commit
analysis to facilitate team software development. In
ICSE, pages 507-517, 2009.

https://blog.codinghorror.com/check-in-early-check-in-often/
https://blog.codinghorror.com/check-in-early-check-in-often/
https://github.com/apache/storm
https://github.com/voldemort/voldemort
github.com/blog/39-say-hello-to-the-network-graph-visualizer
github.com/blog/39-say-hello-to-the-network-graph-visualizer
https://processing.org/
https://eclipse.org/jgit

	Introduction
	Background and Related Work
	GitSonifier
	Related Work

	GitVS
	Visualization and Sonification Design
	Implementation Details

	User Study
	Participant Demographics
	Study Scenario
	Study Design

	Results
	RQ1: Comparing GitVS to the GitHub Network Graph and GitVS-NS
	Effectiveness
	Efficiency
	Participants' Opinions

	RQ2: Which factors do participants consider when analyzing version history?

	Conclusions
	Acknowledgments
	References

