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a b s t r a c t

Context: End-user programmers are numerous, write software that matters to an increasingly large num-
ber of users, and face software engineering challenges that are similar to their professionals counterparts.
Yet, we know little about how these end-user programmers create and share artifacts in repositories as
part of a community.
Objective: This work aims to gain a better understanding of end-user programmer communities, the
characteristics of artifacts in community repositories, and how authors evolve over time.
Method: An artifact-based analysis of 32,000 mashups from the Yahoo! Pipes repository was performed.
The popularity, configurability, complexity, and diversity of the artifacts were measured. Additionally, for
the most prolific authors, we explore their submission trends over time.
Results: Similar to other online communities, there is great deal of attrition but authors who persevere
tend to improve over time, creating pipes that are more configurable, diverse, complex, and popular.
We also discovered, however, that end-user programmers do not effectively reuse existing programs,
submit pipes that are highly similar to others already in the repository, and in most cases do not have
an awareness of the community or the richness of artifacts that exist in repositories.
Conclusion: There is a need for better end-user programmer support in several stages of the software life-
cycle, including development, maintenance, search, and program understanding. Without such support,
the community repositories will continue to be cluttered with highly-similar artifacts and authors may
not be able to take full advantage of the community resources.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

The role of end-user programmers in communities is becoming
more important as their numbers increase and they become more
active contributors to artifact repositories. The population of end-
user programmers is quickly over-whelming that of professional
programmers, and was expected to have increased to 90 million
in 2012 with 13 million describing themselves as programmers
[2]. Despite their lack of a formal computer science education,
end-user programmers are creating programs that are meaningful
and have an impact not just on them or the businesses for which
they work (e.g., a spreadsheet formula error reportedly cost a com-
pany millions of dollars [3]), but also on emerging online commu-
nities. These programmer communities are growing rapidly, exist
ll rights reserved.
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in many domains, and facilitate knowledge sharing and code reuse.
For example, the public repositories of mashups in several environ-
ments [4–7], web macros in CoScripter [8], web page modification
scripts in Userscripts [9], and animations for several educational
programming languages [10,11] have tens of thousands of program
artifacts submitted by tens of thousands of users.

Professional programmers and end-user programmers confront
many of the same challenges in interacting with their respective
programmer communities. For example, as individuals, they need
to configure sample code to run in their environments, use new
APIs, or find a fault causing a failure. As a group, they need to learn
how to build on, share, and contribute to the community. Studies
on open source communities through the lens of public archives
have been successful at unveiling some of the trends and needs
in those communities (e.g., [12–15]). Yet, despite the growing
importance of end-user communities, our understanding of the
challenges, motivations, and needs of their communities is quite
limited. Studies of online end-user communities have sought to
characterize the participants roles using social evidence [16], but
little is known about the type, quantity, and quality of artifacts
contributed, and how end users and their contributions evolve over
time.

http://dx.doi.org/10.1016/j.infsof.2012.10.004
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This work aims to provide a better understanding of end-user
programmers in a community setting. Our analysis targets the
Yahoo! Pipes mashup language and community, which has been
active since 2007. Programs have been created in this language
by over 90,000 users, many who are active in collaborating with
and helping one another through online forums [16]. Additionally,
the community has built a public repository of over 100,000 arti-
facts. The popularity and availability of many diverse artifacts
makes the repository amenable for analysis. We therefore perform
a study of over 32,000 programs submitted to the Yahoo! Pipes
public repository, characterizing the artifacts and using them to
draw inferences about author behavior, the diversity of contribu-
tions, and community awareness. Specifically, we address three
general research questions:

RQ1: What are the characteristics of the Yahoo! Pipes community
artifacts?
RQ2: What are the characteristics of the authors of Yahoo! Pipes
programs?
RQ3: What are the characteristics of the most prolific authors?

Our findings reveal several insights about end-user program-
mers in the Yahoo! Pipes community, including:

� Authors often submit pipes that are highly similar to other
pipes in the repository; 60% of pipes in the repository have
the same structure as other pipes, and 73% are within a distance
of one from other pipes (where distance is measured in terms of
additions/deletions/substitutions of modules and wires to
obtain one pipe from another) (Section 5).
� There is great deal of attrition as over 81% of the authors we

studied are active (i.e., contribute artifact(s) to the repository)
for only 1 day (Section 6).
� Authors who persevere in the community tend to improve over

time, creating pipes that are more configurable, diverse, com-
plex, and popular. For example, the pipes submitted after an
author has at least 1 month of experience in the community
are significantly larger, more diverse, more popular, and more
configurable (Section 6).
� The most prolific authors frequently create pipes that highly

similar to pipes they created in the past. For example, 43% of
the pipes created by the most prolific authors at structurally
similar to pipes they created previously, a process we refer to
as tweaking (Section 7).

A previous version of this paper explored the characteristics of
community artifacts, authors, and prolific authors with respect to
four metrics, popularity, configurability, size, and diversity for
the Yahoo! Pipes community [1]. As an extension to that work,
we refined the research questions, extended the description of
the domain and discussion of the results, provide more details on
the study set-up, and present an additional metric, distance, that
is woven into the analyses for each research question. The distance
metric captures the amount of changes needed to transform one
pipe into another by counting the number of module or wire
additions, deletions, or substitutions. This metric allows us to paint
a clearer picture of the types of diversity that exists in the
repository.

The rest of the paper is organized as follows. In Section 2,
related work on end-user programmers and studies of online com-
munities are discussed. Section 3 gives details on the Yahoo! Pipes
programming environment, the particular subject of our investiga-
tion. In Section 4, we expand on the research questions and de-
scribe the study setup, including how we collected and analyzed
the artifacts used in the study. The results to each of the three re-
search questions are in Sections 5–7. The implications of the
findings are discussed in Section 8 followed by threats to validity
in Section 9 and conclusion in Section 10.
2. Related work

Three areas of related work require discussion: end-user pro-
grammers, studies on mashups, and studies on socio-technical
communities with artifact repositories.

2.1. End-user Programmers

End-user programmers create programs and engage in
programming activities to support their hobbies and work. What
differentiates end-user programmers from professional program-
mers is that to end users, software is a means to an end, not the
end itself [17]. These end users utilize programming environments
and languages such as spreadsheets, databases, web macros, mash-
ups, and many domain-specific languages, many of which have
large public repositories (e.g., [4,8–10]).

Unlike professional programmers, end-user programmers do
not have much support for all stages of the software lifecycle and
may have a different lifecycle than that which is used by other
types of programmers. Studying end-user programmers can reveal
their needs, and researchers and practitioners have started apply-
ing software engineering techniques to provide support for end
users’ tasks. For example, version control has been introduced to
help end users during development [5,18], debugging has been
introduced to allow users to ask questions about output during
development [19] or preview program output during testing [4],
assertions have been used to increase the dependability of web
macros during runtime [20], and strides have been made toward
providing better program maintenance through refactoring sup-
port [21] and using program characteristics to predict how likely
a program is to be reused [22]. However, software engineering sup-
port is far from pervasive in end-user programming environments.

Similar to professional programmers, many communities of end
users contribute to central repositories of source code and artifacts.
Repositories provide a mechanism for end-user programmers to
share code and learn from the experiences of others, and tend to
attract many participants to the communities. For example, Yahoo!
Pipes has over 90,000 users [16], CoScripter has over 6000 users
[22], Userscripts has over 57,000 users [9], and Scratch has over
500,000 users [23]. Beyond the number of participants, the repos-
itories maintained by these communities contain thousands of
public artifacts. For example, the Yahoo! Pipes repository contains
over 100,00 artifacts [4], the CoScripter repository contains over
5430 public scripts [8], the Userscripts repository contains over
57,200 scripts [9], and the Scratch website contains over 47,800
galleries with as many as 1944 projects per gallery [10].

2.2. Mashups

Web mashup programming is among the most popular end-
user programming domains. The research in this domain has di-
verged in two directions, one focusing on the mashup communities
and the other on the mashup tools.

Many of the commercial mashup environments, such as Yahoo!
Pipes [4], IBM Mashup Center‘[5], xFruits [6], and JackBe [24], pro-
vide community resources like source code repositories and online
help forums. Community analysis research on mashups has ex-
plored the conversations in discussion forums and looked at the so-
cial structure based on conversations [16].

A survey of mashup languages and features outlines many
opportunities for additional development support [25], some of
which we corroborate a need for in our findings (Section 8.2).
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Other recent research in mashups analyzes the mashup tools
themselves, proposing extensions for auto-completion or assisted
composition [26–28], versioning support [18], refactoring [21],
more domain-specific language support [29,30], or easier data
integration from heterogeneous sources [31,32].
2.3. Studies on communities

Researchers in software engineering and computer supported
cooperative-work have sought to understand the motivations and
social organizations of developer communities. Research on com-
munities with public artifact repositories has been particularly
successful in open-source (e.g., [12,14]), and researchers are begin-
ning to leverage repositories to also study end-user programmer
communities (e.g., [16,23]). Even though the open-source and
end-user programmer communities have many differences, there
are commonalities in the activities performed by some roles in
the open-source communities, such as bug fixers and bug report-
ers, and by programmers in end-user communities [33]. Here, we
consider previous work that explores how developers join these
communities and social factors that govern their contributions,
as our study explores the characteristics of artifacts contributed
by end-user programmers (Section 4).

Becoming an active member of an open source project is mer-
itocratic, with joiners starting at low technical skill and low
responsibility roles, such as participating in the mailing list. As
they gain more experience learning both the technical parts and
the social norms in the project, they advance to more central roles
[12–15]. Contrastingly, becoming an active member in many end-
user programmer communities seems to be universally accessible.
Contributors are typically not required to demonstrate any exper-
tise to participate, but this may be due, at least in part, to the fact
that the projects tend to be smaller in scale and mostly individual
[17].

In open source communities, most communication and project
activities are archived through mailing lists, bug discussions, bug
activities, and versioning systems [12]. End-user communities, on
the other hand, have been observed to communicate through user
comments associated with artifacts [22,23] and public message
boards [16]. These differences in communication mechanisms
may be rooted in fundamental differences between the groups,
where generally the open-source programmers work toward a
common goal and end-user programmers work toward an individ-
ual goal [17].

Social factors have been shown to be important in both the so-
cial organization and retention of developers in open-source com-
munities. Studies have identified strong inherent social structures
in the open-source community based on mail messages and
found that successful members were also social hubs [34]. Power
law relationships have been shown to hold on project sizes, the
number of developers per project, and project memberships
(number of projects joined by a developer). This is largely because
of social relations, where members like to join projects that are
already popular or join projects where they know some of the
key players [35]. Another study found that the social network
and the strength of the ties in the community was a good indica-
tor for retention of members in the community in the face of
external factors such as external projects and monetary incen-
tives [36].

Yet for end-user communities, and specifically for Yahoo! Pipes
– the particular subject of our study – the social factors may be dif-
ferent. Previous work has explored the nature of participation in
the Yahoo! Pipes message boards [16], but little is known about
the organization, participation, and growth patterns for the partic-
ipants who contribute to the public artifact repository.
3. About mashups and Yahoo! Pipes

A mashup is an application that manipulates and composes
existing data sources or functionality to create a new piece of data
or service that can be plugged into a web page or integrated into an
RSS feed aggregator. The Yahoo! Pipes environment, which we tar-
get in this work, provides language and development support for
the creation of web mashups. One common type of mashup, for
example, consists of grabbing data from some data sources (e.g.,
house sales, vote records, bike trails, map data), joining those data
sets, filtering them according to a criterion, and plotting them on a
map published at a site [37]. This type of behavior is naturally ex-
pressed in Yahoo! Pipes. Fig. 1a provides an example of the Pipes
Editor, the Yahoo! Pipes development environment, and shows a
pipe taken from the community that plots home sale information
on a map or provides the output as a list (shown on the pipes infor-
mation page in Fig. 1b).

The structure of a pipe resembles a graph, where the nodes are
referred to as modules (boxes in Fig. 1a), and the edges are referred
to as wires (connections between the modules). Each module has a
name (e.g., Fetch Feed, Filter), and most modules contain fields that
can hold hard-coded values or receive values via wire (e.g., the URL
in a Fetch Feed module is a field, as are Permit and item.description
in the Filter module). The data in a pipe flows in a directional man-
ner from the top of the pipe through the output at the bottom. At
the top is a module named Fetch Feed, which accesses external data
sources and provides data to the pipe; this module contains two
fields, each specifying a different website. The Fetch Feed module
feeds data to a Filter module, which removes data from the feed
based on the specified criteria. In the example, the Filter module
permits data that matches any of the four specified criteria. Next,
a Location Extractor module geotags the data, and last, the data
flows to an Output module. The data that reaches the Output mod-
ule is what appears when a pipe is executed, as shown in Fig. 1b.

An author can create a pipe from scratch or by cloning an exist-
ing pipe. Cloning can be performed by clicking the Save a Copy but-
ton in the Pipes Editor (Fig. 1a) or by clicking the Clone button on
the pipes information page (Fig. 1b). Once a pipe has been created,
it can be shared with the community; all pipe authors are free to
contribute to the public repository. An author can commit any of
their own pipes by clicking the Publish button from a pipes infor-
mation page (Fig. 1b). Now, we describe the study that uses Yahoo!
Pipes to address our research questions.
4. Study

Our broad research goal is to better understand end-user pro-
grammer communities. Through exploration of the Yahoo! Pipes
repository, we have identified several research questions and con-
ducted an empirical study to learn how communities and artifact
repositories evolve, and uncover needs for end-user programmer
support in several stages of the software lifecycle, including devel-
opment, maintenance, search, and program understanding.

4.1. Research questions

We pose three broad research questions in this work. The first is
about the artifacts in the repository, the second is about the
authors and how pipe characteristics change as authors gain expe-
rience, and the third is about the characteristics of the most prolific
(most contributing) authors in the Yahoo! Pipes community.

RQ1: What are the characteristics of the Yahoo! Pipes commu-
nity artifacts considering structural diversity, distance to other
pipes, popularity, size, and configurability?



Fig. 1. Yahoo! Pipes environment.
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RQ2: What are the characteristics of the authors of Yahoo!
Pipes programs?
� RQ2a: How much attrition is there among the authors in the

community?
� RQ2b: How much do authors typically contribute?
� RQ2c: What are the differences between pipes contributed

when authors are new to the community versus when they
have been involved for a determined amount of time?

� RQ2d: What are the differences between pipes contributed
by authors with few contributions versus those contributed
by authors with many contributions?

We view the most prolific authors as those who have the great-
est impact on the repository in terms of quantity. This leads us to
explore characteristics of these authors’ contributions:

RQ3: What are the characteristics of the pipes created by the
most prolific authors? That is, how different are a prolific
author’s contributed pipes compared to their previous contribu-
tions and the pipes in the community?
� RQ3a: What implications does the uniqueness of an author’s

contributions over time have for an author’s evolution?
� RQ3b: What implications does the uniqueness of an author’s

contributions have for the types of activities in which the
author engages?

� RQ3c: What implications does the uniqueness of an author’s
contributions have for the author’s awareness of the
community?

For our analysis we look at five dependent variables. Three are
measured on the pipe in isolation: configurability, popularity,
and size of the pipes. The other two, distance and diversity (or
uniqueness), are measured when comparing a pipe to other pipes.
In the previous version of this work [1], the diversity metric looked
only at the structural similarity of pipes. However, it was possible
to have two pipes with a high diversity level but where the only
difference was a single module (e.g., the highest diversity level,
8, could describe two pipes that were different by just one mod-
ule). In this work we introduce a complementary metric, distance,
that captures the number of module changes (i.e., additions, dele-
tions, or substitutions) required to obtain one pipes structure from
another. Each of the dependent variables is defined in Section 4.2.2.
We manipulate several independent variables related to author
experience to uncover trends, including the days of experience
an author had when the pipe was created and number of pipes cre-
ated by an author.
4.2. Study setup

To address the research questions, we conduct an empirical
study using artifacts from the Yahoo! Pipes repository. In perform-
ing this study, we had three main challenges: obtaining the arti-
facts, analyzing the artifacts, and measuring the differences (i.e.,
diversity and distance) among artifacts. In this section, we describe
the methods for each of these steps.
1 To facilitate replication, the data used in this analysis is available online: http://
cse.unl.edu/kstolee/esem2011/artifacts.html.
4.2.1. Artifact collection
To perform this study, we had to obtain pipe representations

from the Yahoo! Pipes repository. Yahoo! however, does not pro-
vide an API to obtain a pipe’s structure outside their proprietary
Pipes Editor. We used an infrastructure from a previous study to
scrape pipes from the repository [21]. The scraping process works
as follows: by executing searches on the Yahoo! Pipes repository,
we obtained ids for those pipes returned by the search. For each
id, we sent a load pipe request to Yahoo!’s servers; the response
contained a JSON [38] representation of the Pipe. We stored the re-
sults in a database.

Between January and September 2010, we scraped 32,887 pipes
from the Yahoo! Pipes repository that were created between Feb-
ruary 2007 and September 2010. This number corresponds to the
set of distinct pipes returned from approximately 50 queries
against the repository, each of which returned a maximum of
1000 pipes. To obtain a representative pool of pipes without
restricting the selection based on configuration or structure (since
that may impact the effectiveness of this study in terms of measur-
ing diversity among artifacts), we issued queries for pipes that
utilized the 50 most popular data sources.1

4.2.2. Artifact analysis
Once the artifacts were collected, the next step was to analyze

the pipe properties. We reused parts of the JSON decoding infra-
structure from a previous study [21] to create an analyzable repre-
sentation of each pipe, and then extended the infrastructure to
measure the properties needed for this work. Each variable was se-
lected to capture a concept, we use size to capture complexity,
configurability to capture abstraction, popularity to capture artifact
sharing and impact on the community, diversity to capture the
uniqueness given various levels of abstraction, and distance to cap-
ture the amount of change needed to transform one pipe into an-
other, given some level of abstraction (we consider topological
changes). Here, we define each dependent variable measured for
this study.

4.2.2.1. Size. Pipe size is measured in number of modules. In Fig. 1,
the size of the pipe is four, since it has four modules. Every pipe is
required to have an Output module, and so the minimum size is
one for a pipe that has no behavior.

4.2.2.2. Configurability. The configurability of a pipe is measured by
the number of user–setter modules in a pipe, where a user–setter
module allows a user to specify field values at run-time [21]. For
example, some pipes that search Craigslist.com allow the user
to specify the item to search for each time the pipe is executed.
That is, a user could use a configurable pipe to search for couches
and then for televisions without changing the pipe structure or con-
tent. These run-time variables can be set using the pipe’s informa-
tion page (e.g., Fig. 1b). Configurable modules allow authors to
create more general pipes that can serve a variety of purposes.

4.2.2.3. Popularity. The popularity of a pipe is measured in the
number of clones; a clone is created when a user creates an exact
copy of a pipe in the repository for their own purposes. This copy
can then be saved and modified by the user, allowing them to reuse
their own work or the work of others. The number of clones is re-
ported for each pipe in the repository.

4.2.2.4. Diversity. Due to the size and the limited expressiveness of
the Yahoo! Pipes language, we conjectured that there was much
similarity among the artifacts in the repository. To assess this con-
jecture, we defined an ordinal diversity metric to measure the
types of differences (i.e., uniqueness) among the artifacts and
determine how much novelty exists in the repository as a whole.
The diversity metric has eight levels (1–8) to describe differences
between any two pipes in the repository, summarized in Table 1.
Given two pipes, a low diversity level indicates that they are very
similar (i.e., there are few differences between the pipes), whereas
a high diversity level indicates the pipes are rather dissimilar.

http://cse.unl.edu/kstolee/esem2011/artifacts.html
http://cse.unl.edu/kstolee/esem2011/artifacts.html


Table 1
Summary of diversity metric levels.

Level Criteria

1 The structure and content of the pipes are identical
2 The structure and number of fields per module are the same, but the

field values relax
3 Topography/structure is the same; the field counts and values relax
4 Module bag (module names and counts) is the same
5 Module set is the same
6 Type bag is the same
7 Size is the same
8 The pipes exist
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Level 1 represents pipes that have the same structure and con-
tent as another pipe in the population, possibly resulting from a
clone. Level 2 represents pipes with the same structure in terms
of modules, the number of fields per module, and connections,
but the field values can be different, whereas Level 3 represents
pipes with the same structure, relaxing all field values and counts.
Level 4 relaxes the connections between the modules but requires
that the module bags2 (module names and frequencies) are the
same, and Level 5 relaxes the frequencies and considers only the
set of modules. Level 6 considers the bag of modules based on types
(i.e., generator, setter, path-altering, and operator [21]), Level 7 consid-
ers only the number of modules, and Level 8 is a catch-all for pipes
not clustered in an earlier level (very unique pipes). The goal was
to create a diversity gradient where the lower levels apply to pipes
that are very similar, and the higher levels to pipes that are very di-
verse, with the assumption that differences in field values are less
impactful than differences in topology. In summary, levels 1–3 con-
sider changes to fields but keep the structures the same. Levels 4 and
5 consider changes to the connections between modules, but utilize
the same language features (modules). Levels 6–8 represent pipes
that are quite different.
4.2.2.5. Distance. The distance between two pipes can be measured
by the number of additions, deletions, or substitutions required to
get from one pipe to the other, using a modified Levenshtien’s dis-
tance. This metric is different from the diversity metric; given a le-
vel of abstraction, we can find the distance between two pipes,
which could indicate the number of changes needed to achieve
one structure from another. Contrary to the diversity metric which
systematically relaxes parts of the pipes to create clusters, the dis-
tance metric captures just the differences in topology.

For the sample we studied, we computed the minimum Lev-
enshtien distance for each pipe, which represents the distance of
that pipe to its closest neighbor. We considered only structural
similarity, representing each pipe as a graph where the nodes are
labeled according to the Pipes language (e.g., see the three example
pipes in Fig. 2). This is equivalent to level 3 in the diversity metric,
which retains just the pipe structure.

To compute the Levenshtien distance, each pipe structure is
flattened to a string representation. The main structure of the pipe
is treated like a parallel–serial graph, with parentheses and com-
mas denoting parallel paths (e.g., (x, y) represents two parallel
paths, x and y, separated by a comma) and spaces denoting serial
paths (e.g., xyz is a serial sequence of x – y – z). For example, the
pipe in Fig. 1a would be represented as fetch filter locatio-

nExtractor output. The string representations of each pipe in
Fig. 2 appear below each pipe (with an added line break). The
dashed lines in the bottom two pipes represent missing modules
2 A bag is an unordered collection that also contains a count on the number of
times each item appears.
and/or wires, for ease of comparison. The distance from the top
pipe to each of the lower pipes is one, which results from a missing
wire (left side) or a missing module (right side). The distance be-
tween the bottom two pipes is two (because of the missing wire
and module).

From Fig. 2, the reader may have noticed that not all pipes can
be represented with a strict parallel–serial graph, as is the case
with the top and right pipes. Modules with multiple output wires
in which the wires go to modules at different levels in the graph
will break the strict structure. For example, in the top graph, wires
from textinput0 go to fetch and to filter. If fetch and fil-

ter were parallel, this would be OK and could be represented as
textinput0 (fetch, filter). However, since they are serially
connected, we lose precision when trying to force a parallel–serial
representation. For example, textinput0 (fetch, filter) loses
the wire between fetch and filter, and the representation
textinput0 fetch filter loses the connecting wire between
textinput0 and filter. In the strict parallel–serial graph, the
representation, (textinput0, textinput0 fetch) filter

would capture all wires, but would imply that there are two text-
input0 modules, hence misrepresenting the modules in the graph.
Thus, we must alter the representation of the parallel–serial graph
to capture all wire connections.

All user–setter modules, such as textinput0, can have multiple
output wires and be connected to nearly any other module in the
pipe. To facilitate string comparisons that measure distance, the
user–setter modules are treated as symbolic. That is, for
each user–setter module, in order to capture all the connections
of that user–setter module, we assign a symbolic value (i.e., text-
input0 and textinput1 are symbolic names for these modules,
which are both of type textinput), which is serially attached to
each module to which it is connected. This allows us to represent
each outgoing wire from the textinput modules while not dupli-
cating the module.

Then, we permute the symbolic values within each type of
user–setter modules, hence treating the modules as symbolic. It
does not matter that textinput0 is attached to fetch and fil-

ter, it only matters that some module with that same type (i.e.,
textinput) is attached to the fetch and filter. For example, the
following are the two string representations for the top pipe in
Fig. 2, and these are equivalent:

ðtextinput0; textinput0 fetch; textinput1Þ filter output

ðtextinput1; textinput1 fetch; textinput0Þ filter output

When comparing two pipes, we identify the minimum distance
among any of the string representations for the pipes (for pipes
with no user–setter modules, there is only one string
representation).

5. RQ1: Analysis of community artifacts

In this section, we address RQ1 by exploring the characteristics
of the contributed pipes considering each of the dependent vari-
ables: size, configurability, popularity, diversity, and distance. Gen-
erally, we observe a lot of cloning (high popularity) among the
pipes, and that participants often submit pipes that are highly sim-
ilar to other pipes in the repository.

5.1. Size

The average size across pipes in the community is 8.2 with a
median of 6.0 modules per pipe. The distribution of sizes over
pipes is shown in Table 2. We observe that more than two-third
of the pipes have between three and ten modules, but that there
is a long tail on the distribution where the largest pipe has 287



Fig. 2. Distance metric illustration.

Table 2
Size per pipe in community.

Modules # Pipes % Pipes (%)

[0,2] 2691 8.18
[3,5] 11,171 33.97
[6,10] 11,084 33.70
[11,20] 6510 19.79
[21,287] 1431 4.35

Table 4
Popularity per pipe in community.

Clones # Pipes % Pipes (%)

0 15,013 45.65
1 7175 21.81
2 3290 10.00
[3,5] 3766 11.44
[6,10] 1632 4.96
[11,50] 1529 4.64
[51,9180] 482 1.46

Table 5
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modules. This shows a large range in the complexity and size of
pipes created by the community, indicating a range of skill levels
and investment by the authors.

5.2. Configurability

The average number of user–setter modules across the pipes in
the sample is 0.650, with a median of zero and a maximum of 73.
Across all the pipes we studied, 33.81% have at least one
configurable module, and an average of 20.76% of the modules in
configurable pipes are user–setter modules. The majority of pipes
were not made to be configurable, as shown in Table 3. There
may be many reasons for this, such as a lack of understanding of
the user–setter modules, being unaware of the benefits of general-
izability in code, or being unable to configure some modules (e.g.,
some fields are set using a drop-down box, which cannot be config-
ured at run-time).

5.3. Popularity

We associate a high number of clones with high popularity, as a
clone represents an explicit decision to copy an existing pipe.
Within the sample we studied, the average number of clones per
pipe was 5.67 with a median of one clone per pipe with a maxi-
mum of 9180 clones. We observe that 17,874 (54.35%) of the pipes
Table 3
Configurability per pipe in community.

Configurable modules # Pipes % Pipes (%)

0 21,768 66.19
1 6301 19.15
2 2286 6.95
3 1590 4.83
[4,73] 942 2.86
had been cloned at least once, and the distribution of clones over
pipes is shown in Table 4. Approximately 11% of the pipes have
more than five clones, so the overall majority have been cloned
very few times. This low frequency of cloning may be because
authors often cannot find pipes in the repository that suit their
needs or that they cannot easily understand the behavior of pipes
created by others.
5.4. Diversity

We create clusters among the pipes in the sample given the
diversity metric in Table 1. When a pipe p matches another pipe
at some levels l, we say that p is clustered at level l, where l is the
minimum of all levels in which a match occurs. If we count the
number of pipes that are clustered at level 1, we see that only
1731 (5.26%) of the pipes out of 32,887 have an exact match else-
where in the sample, as shown in Table 5. The Diversity Level col-
umn indicates the level of diversity, the # Clustered column
indicates the number of pipes that were clustered at the given
Diversity of pipes in community.

Diversity # Clustered % of Pipes (%)

1 1731 5.26
2 15,186 46.18
3 19,319 58.74
4 20,262 61.61
5 24,316 73.94
6 29,346 89.24
7 32,862 99.93
8 32,887 100.00



Table 6
Minimum Levenshtien distance per pipe in community.

Distance # Pipes % Pipes (%) Cumulative (%)

0 20,027 60.89 60.89
1 3976 12.09 72.98
2 2675 8.13 81.11
3 1728 5.25 86.36
4 1047 3.18 89.54
5 735 2.24 91.78
6 550 1.67 93.45
7 406 1.24 94.69

8+ 1743 5.30 100.00
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level, and the % of Pipes column identifies the percentage of pipes
can be clustered at a given level.

Table 5 shows that there is much diversity among the pipes in
the repository at low levels of abstraction (only 5% of the pipes
are clustered at level 1), but not as much diversity at higher levels.
At level 2 in which the field values are ignored, 46% have a match.
Nearly 60% of the pipes have a match at level 3, and 89% at level 6.
Similar to other repositories of code [39], the Yahoo! Pipes repos-
itory is full of duplication at higher levels of abstraction. This high
frequency of similarity in structural abstractions may occur be-
cause authors can easily copy a pipe for their own usage by cloning
and then change or add field values; there is little incentive to start
from scratch if a user can start with a baseline pipe from another
user. On the other hand, there is little value for the community
to have a repository littered with duplicate programs. We investi-
gate this further in Section 7.2.
Table 7
Duration of author activity (days).

Duration # Authors % Authors (%)

1 day 16,592 81.68
2 days to 1 week 957 4.71
1 week to 1 month 655 3.22
1 month to 6 months 928 4.56
5.5. Distance

We measure distance at a diversity level of three, which pre-
serves the structure of the pipes but ignores all field information.
The structure of a pipe defines the types of processing that are re-
quired to achieve the desired outcome, such as filtering, sorting, or
joining lists. We use this level to determine the effort it would take
to transform one pipe into another considering just the modules
and connections.

The average minimum distance among all pipes in the sample
we studied was 1.77, with a median of zero. Approximately 61%
of the pipes have an identical match with distance zero,3 as shown
in Table 6. Nearly 95% of the pipes are within distance seven to an-
other pipe in the population, which makes sense given the average
pipe size is 8.2. Interestingly, over 80% of the pipe structures can
be created by changing, adding, or deleting a maximum of two mod-
ules or wires from any given pipe.
6 months to 1 year 537 2.64
1–3 years 631 3.10
More than 3 years 13 0.06

All 20,313 100.00

Table 8
Author contributions (in # of pipes).

Pipes
contributed

# Authors % Authors (%) Total pipes % of Total
pipes (%)

1 15,420 75.91 15,420 46.89

2 2761 13.59 5522 16.79
6. RQ2: Analysis of community authors

In this section, we explore how much and how often authors
contribute to the repository and the differences among pipes that
have been created by authors with different levels of experience.
We measure experience along two dimensions: the number of days
of experience an author had when a pipe was created, and the total
number of contributions by an author. We explore differences
among the community artifacts by segmenting them along these
lines. Generally, we observe that the most prolific authors create
pipes that are larger, more popular, and more configurable than
3 This is slightly higher than the number of pipes that were clustered at Level 3 in
Table 5 because, for the distance analysis, we ignored structures that are not
connected to main pipe – this adds approximately 700 (�2%) pipes to the distance
level zero.
the less prolific authors, but the same cannot be said about the
diversity and distance metrics.

6.1. RQ2a: Author attrition

From the sample of 32,887 pipes, we found they were created
by 20,313 distinct authors. Most authors do not stay active in the
community for very long, where activity is measured by the differ-
ence between the earliest and latest creation dates on the pipes
they contributed. Approximately 82% of the authors were active
for only 1 day, and only 13 authors were active for more than
3 years (maximum was 1253 days), as shown in Table 7. The Dura-
tion column indicates the length of time an author was active and
the # Authors column indicates how many authors were active for
this duration of time. As shown, the Yahoo! Pipes community suf-
fers from attrition levels similar to other online communities [35].

6.2. RQ2b: Author contributions

Contributions are measured in number of pipes, and the average
author contributes 1.62 pipes. Among the authors, 15,420 (76%)
submitted only one pipe, as shown in Table 8. This accounts for
47% of the pipes in the sample. The remaining 24% of the authors
are responsible for over 53% of the pipes, following a skewed dis-
tribution with a long tail; the most prolific author created 98 pipes.

6.3. RQ2c: Contributions based on experience (time)

Approximately 10% of authors submitted a pipe at least
1 month after submitting their first pipe (Table 7, sum of % Authors
column from 1 Month to More than 3 years). With this threshold in
mind, we want to see if there are differences in the contributions
made early in an author’s experience (i.e., within the first month)
versus late in their experience (i.e., after the first month). One
month seemed reasonable time period for authors to gain suffi-
cient experience with the environment, considering they may have
developed other pipes before the first one we captured. For each
pipe, the days of experience for the author when the pipe was cre-
ated was measured; if the number of days was less than 31 (an
3–5 1572 7.74 5595 17.01
6–10 381 1.87 2755 8.38
11–15 98 0.48 1211 3.68
16 or more 81 0.39 2384 7.25

All 20,313 100.00 32,887 100



Table 9
Characteristics of pipes contributed early or late in an author’s lifespan in the
community. a = 0.01.

Characteristic Early (1) Late (2) H0: p-Value

# of Pipes 27,555 5332
Diversity 3.519 4.126 l1 > l2 2.200 � 10�16

Popularity 4.984 9.254 l1 > l2 2.200 � 10�16

Configurability 0.614 0.838 l1 > l2 2.200 � 10�16

Size 7.919 9.587 l1 > l2 2.200 � 10�16

Distance 1.640 2.439 l1 > l2 2.200 � 10�16

Table 10
Characteristics of pipes by authors with substantial contributions and authors with
occasional contributions. a = 0.01.

Characteristic Occasional (1) Substantial (2) H0: p-Value

# of Pipes 30,503 2384
Diversity 3.639 3.355 l1 > l2 1.000
Popularity 4.302 23.250 l1 > l2 2.200 � 10�16

Configurability 0.644 0.729 l1 > l2 2.114 � 10�11

Size 8.194 8.136 l1 > l2 0.001799
Distance 1.789 1.516 l1 > l2 0.9941
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approximation used to represent 1 month), then the pipe was
added to the early pool; else it was added to the late pool. The dif-
ferences among the pools for the dependent variables are shown in
Table 9. That is, within each pool of pipes, we averaged the values
of the dependent variables across all pipes in the pool and report
those averages. For example, the average diversity among all pipes
in the early pool is 3.519, whereas the average diversity among all
pipes in the late pool is 4.126.

For each dependent variable, (diversity, distance, popularity,
configurability, and size), one-tailed Mann–Whitney tests4

H0:learly > llate and a = 0.01 reveal significant differences between
the sample means. We therefore reject the null hypothesis; the sam-
ple means for all dependent variables are smaller for the pipes sub-
mitted within the first month versus after the first month of author
experience. In other words, the diversity of the pipes in the early
pool is significantly lower than the diversity of the pipes in the late
pool, and this observation holds for all dependent variables. Thus,
experience seems to play a role in increased diversity, distance,
popularity, configurability and size of contributed pipes.
6.4. RQ2d: Comparisons based on contribution levels

In Table 8, we see that less than 0.5% of the authors created
more than 15 pipes in the sampling of the repository. With this
threshold in mind, we segment the pipes into two groups, those
created by prolific authors who contributed more than 15 pipes,
and those created by less prolific authors. For each author, the
number of pipes they created was counted. If the author created
more than 15 pipes, all their pipes were added to the Substantial
pool, else their pipes were added to the Occasional pool. For each
dependent variable, we report the average among all pipes in the
Occasional and Substantial pools in Table 10, as was done with Ta-
ble 9 for the Early and Late pools.

For three of the dependent variables, popularity, configurability,
and size, one-tailed Mann–Whitney tests where H0:loccasional >
lsubstantial and a = 0.01 reveal significant differences.5 Thus, we re-
ject the null hypotheses; the pipes created by more prolific authors
4 The data are ordinal and follow a skewed (non-normal) distribution, which
motivates the use of the non-parametric Mann–Whitney test.

5 We performed a sensitivity analysis by changing the contribution threshold to ten
and five pipes per author, and found the same results at the same a value.
have more clones, are more configurable, and are larger. Note that
for size we reject the null hypothesis even though the means support
it; after further inspection we confirmed that this is correct as the
mean numbers were caused by a handful of pipes in the Occasional
group with more than 200 modules that account for its large mean
value. For the diversity and distance metrics, the null hypothesis is
not rejected (though, it is rejected for distance at a contribution level
of five with p = 4.569 � 10�06 but not at a contribution level of ten; it
is not rejected for diversity at either level). This is likely because,
within the most prolific authors, some only submit pipes that are
very similar to others they have submitted in the past, a phenome-
non we explore further in Section 7.
7. RQ3: Analysis of the most prolific authors

We view the most prolific authors as those who have the great-
est impact on the repository in terms of quantity. This leads us to
explore characteristics of these authors contributions. In this anal-
ysis, we concentrate on the individual authors and the uniqueness
of their contributions, addressing each subpart of RQ3. To identify
the most prolific authors, we selected authors who had contributed
more than 15 artifacts to the repository. This threshold balanced
our need to do individual author analysis while having enough
samples to generalize across prolific authors. In total, we studied
81 authors (<0.5% of the authors in the study), who contributed
2384 pipes (�7% of the pipes in the study).

As with any community, there are many different types of
authors who have many different characteristics. We use the
uniqueness of the author contributions to explore three categories
of interest for characterizing the participants and their contribu-
tions: author activities, author evolution, and author awareness.

7.1. RQ3a: Author evolution

As authors gain more experience with the Yahoo! Pipes lan-
guage, we expected that they would more regularly create unique
pipes and provide more value to the community. Here, we explore
the implications of the uniqueness of pipe contributions over time
to the authors evolution.

To investigate this conjecture, we perform two analyses. The
first estimates a diversity and distance level of the author based
on their ability to regularly create unique pipes compared to their
previous contributions. The second measures the value of author
contributions by correlating experience in terms of days with the
uniqueness of their pipes compared to other pipes in the commu-
nity, with the assumption that more unique contributions are more
valuable to the community.

7.1.1. Assigning diversity and distance levels to authors
To assign a diversity and distance level to each author, we first

perform a rolling analysis over time of the pipes contributed per
author. That is, we identify the diversity and distance level as it
is added to the set of pipes created by an author. The process for
the rolling analysis is illustrated in Fig. 3. For each author, their
Fig. 3. Rolling analysis process.
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pipes are sorted by date. To begin, the earliest pipe is placed in a
bin. Next, the second most-recent pipe is compared, pairwise, to
each pipe in the bin with respect to diversity and distance. The
minimum value for each metric is selected, as this represents the
closest match to the pipe. These values are plotted on a graph
and the pipe is added to the bin. This process continues for the
third most-recent pipe and so forth, until all pipes have been pro-
cessed. Note that diversity and distance build different graphs.

The end product is a graph, like that shown in Fig. 4 for the
diversity metric (solid line) and the distance metric (dashed line).
Time on the x-axis represents the number of days since the most
recent pipe was submitted, and the diversity and distance levels
are on the y-axis (note that the diversity metric has a maximum
value of eight). More concretely, when considering only the diver-
sity metric, represented by the solid line, the left-most dot
Fig. 4. Rolling analysis examples. The y-axis shows levels of diversity (solid lines) or dist
previous pipe.
represents the diversity level comparing the second pipe to the
first. The second left-most dot represents the diversity level of
the third pipe compared to the first two pipes. Thus, each subse-
quent pipe is compared to all those that came before it. For exam-
ple, in Fig. 4a, we see the first dot at diversity level 8, with an x-axis
label of 33. This means that when the second pipe was created, it
had a diversity level of 8 compared to the first pipe and was cre-
ated 33 days later. The second dot at diversity level 8 has an x-axis
label of 0; it was compared to the two pipes that came before it and
was created on the same day as the second pipe.

We calculate the average diversity and distance levels for each
author to represent the average uniqueness of each pipe an author
submitted to the repository, when compared to what they had pre-
viously submitted. A high diversity average, as in Fig. 4a–c, or a
high distance in Fig. 4a and b, indicates an author who regularly
ance (dashed lines). The x-axis represents the number days since the creation of the



Table 11
Author matrix for diversity and distance metrics by author.

Distance Sum

Low [0,1] Med. (1,3] High (3,178]

Diversity
Low [1,3] 21 1 0 22
Medium (3,5] 4 9 1 14
High (5,8] 0 9 36 45
Sum 25 19 37 81
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submitted distinct pipes. A low average, as is the case with the dis-
tance metric shown in Fig. 4d, indicates an author who regularly
submitted pipes very similar to those they submitted previously.

The diversity metric is effective at detecting small changes in a
pipe, such as changing field values (level 2) or adding/removing
fields (level 3), as was the case for most of the pipes in Fig. 4d. This
variation is not captured by the distance metric, which generally
showed a distance value of zero. On the other hand, the diversity
metric has a tendency to over-approximate the real diversity
among pipes when the changes are from a small number of mod-
ules. For Fig. 4c, while the diversity metric measured the distances
for the first six points at a high level, all of these pipes are within
two or three steps of another, evidenced by the distance metric.
In Fig. 4b, there are several cases in which a pipe that matched
at diversity level 8 was also matched at distance level 1. There,
the diversity metric over-estimates the real pipe diversity, but it
is captured by the distance metric.

Table 11 shows the number of authors that fall into each of the
diversity and distance levels, including the thresholds for classifi-
cation. The diversity levels are based on the changes that are al-
lowed within each range of levels. Diversity levels [1,3] allow for
changes to the fields but preserve the structures, whereas levels
(3,5] preserve the language features being used (i.e., the specific
modules), but relax the structure. The highest diversity levels,
(5,8] preserve very little information in the pipe. For the distance
metric, [0,1] describes pipes in which at most one change (i.e.,
addition, deletion, or substitution) is needed between two pipes.
The medium level, (1,3], describes pipes that are between one
and three changes away; the highest level describes pipes that re-
quire at least three changes before two pipes are identical.

By both the diversity and distance metrics, close to half of the
authors have high distance and high diversity, submitting pipes
that are distinct to the previous ones they submitted. At the other
end of the spectrum, approximately one quarter of authors submit
pipes with low distance and diversity levels. These authors tend to
submit pipes that are very similar to other pipes they have submit-
ted, in essence using the public repository as their own personal
repository and contributing clutter. Nine of the authors with high
diversity are classified as medium with respect to distance. An
example of this type of author is shown in Fig. 4c. In this case,
while the diversity levels might be high, relatively few changes
are needed to fill the distance between each new pipe and its clos-
est match from the same author.

7.1.2. Assigning value to author contributions
We assume that more unique pipes are more valuable to the

community and investigate if prolific authors with more experi-
ence create more valuable pipes. To do this, we measure the num-
ber of days of experience the author had when each pipe was
created, and correlate that with diversity and distance against
the community. For diversity and distance, there is a positive cor-
relation with experience (Spearmans r = 0.42136 for diversity and
r = 0.38175 for distance), so it appears that as the most prolific
authors gain experience, the pipes they create tend to be more
unique. This could indicate that over time, their contributions to
the community become more valuable.

7.2. RQ3b: Author activities

We want to identify different practices that users demonstrate
when creating and submitting pipes. We suspected that different
authors followed different patterns in their submissions, where
some would create consistently similar pipes and others would
create consistently unique pipes. Each pipe submitted by an author
represents an activity the author is performing. The uniqueness of
one pipe compared to those created previously by that same
author gives an indication of the goal the user had when creating
the pipe. Using the rolling cluster analysis from RQ3a, we explore
the implications that uniqueness (measured us- ing diversity and
distance metrics) has for the types of activities in which the author
engages.

On average, over 40% of the pipes created by a prolific author
are highly unique (diversity levels 7 or 8) compared to the authors
previous contributions. Additionally, one-third of an authors pipes
were highly similar (diversity levels 1 or 2) compared to the
authors previous contributions, and 43% had a diversity level 3 or
lower. Using the diversity metric, we observe that authors tend
to submit pipes that are either very similar with changes just with-
in the modules while maintaining the structure (diversity levels 1–
3), or very different (diversity levels 6–8) to what they submitted
in the past.

Considering the distance metric, nearly 27% of pipes have a dis-
tance of four or more. Approximately 45% of the pipes had a dis-
tance value of zero and an additional 11% had a distance value of
one. This means that 56% of the pipes are within one step of a pipe
created previously by the same author. This is a 13% increase com-
pared to the pipes clustered at diversity three or lower, showing
many of the more diverse pipes according to the diversity analysis
are within one step of a very similar pipe using the distance metric.
It might be that the diversity metric is overshooting the real pipe
diversity because it is sensitive to small structural changes that
are captured by the distance metric. The highest distance value
for a pipe added was 178, but on average the distance added was
2.96 with a median of one.

It’s also important to note that the diversity and distance values
for the within-author analysis are strongly correlated (Spearman’s
r = 0.63935), but in some cases, authors with high diversity commit
pipes with relatively low distance, which means the difference be-
tween the pipes is the addition or deletion of just a couple modules
and wires. Based on this analysis, we were able to map these re-
sults to two typical author activities. First, project initiation refers
to pipes that are drastically different from those pipes an author
had created previously. It is likely that the newly submitted pipe
has a different purpose or goal from the previous ones. Second,
pipe tweaking refers to pipes that are quite similar to those pipes
created previously. It is likely that the author created something
very similar to a pipe they submitted in the past (e.g., an author
fixes a fault by changing the filter criteria for the home search in
Fig. 1, giving a diversity level of 2 or 3, depending on the change).
We see that for the average author, 52% of the pipes created repre-
sent new initiatives, while 43% represent tweaks.

Looking a little closer at the tweaks, we find that in some cases
the tweaks may be the result of a language limitation. For example,
for the author depicted in Fig. 4d, 21 of the 23 pipes had the same
topology of three modules: a fetch that retrieved a URL, a translate
that translated the website to English, and an output module. The
differences between the pipes were the values of the URLs and
translation language. While it would be possible to parameterize
the fetch module by connecting a user–setter to it, it is not possible
to connect a user–setter module to the translate module because its



Table 12
Average submission awareness per pipe by prolific authors.

Awareness Avg. % of pipes

Diversity (%) Distance (%)

None 51.04 51.02
Local 20.35 38.77
Community 28.61 10.20
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field value is set with a drop-down box. Thus, the limitation of the
language prevents the user from creating one configurable pipe
and forces them to create many instances of highly-similar pipes.
In this case, one may ask why share it with the community. We dis-
cuss this in Section 8.

7.3. RQ3c: Author awareness

Authors demonstrate different levels of awareness about what
they submit, evidenced by how unique a submission is to their
own pipes compared to the submissions uniqueness to the public
repository (the uniqueness compared to an authors own pipes will
always be greater than or equal to the uniqueness compared to the
community). Using the diversity and distance metrics, we study
this awareness using the uniqueness of each pipe compared to
the author’s previous contributions (local) and the pipes in the com-
munity (community).

Using the high, medium, and low levels for diversity and dis-
tance shown in Table 11, we classify the uniqueness for each pipe
as high, medium, or low. For each pipe contributed, we look at how
the local uniqueness differs from the community uniqueness, and
then draw conclusions about the awareness demonstrated by the
author when submitting the pipe. This is done for each the diver-
sity and the distance metrics separately.

We observe that authors submit some pipes that are very sim-
ilar to other pipes they already submitted (i.e., low local unique-
ness, which implies low community uniqueness), so we say these
pipes demonstrate no awareness. Other pipes are very unique com-
pared to what the author had done in the past, but very similar to
other pipes in the community (i.e., local uniqueness is strictly
greater than community uniqueness); these pipes show local
awareness. Last, there are pipes that are very unique compared to
what the author had done in the past and also very unique com-
pared to the community (i.e., high local and community unique-
ness, or medium local and community uniqueness); these pipes
may demonstrate community awareness (we also recognize the
possibility that the pipes could be coincidentally unique compared
to the community).

Table 12 shows that 50% of the pipes submitted by the most
prolific authors represent no awareness, using both the diversity
and distance metrics. Using diversity, 20% of the pipes demonstrate
local awareness, but with distance, nearly 40% demonstrate local
awareness. In exploring the data further, there are many pipes
(15%) with a high local diversity but low global diversity, perhaps
resulting from a clone of another author’s pipe. For community
awareness, the diversity metric shows that nearly 30% of the pipes
represent community awareness while only 10% of the pipes do
using the distance metric. The differences between the metrics at
the local and community levels likely appear because the diversity
metric tends to over-approximate diversity at higher levels of
abstraction, where some of these changes are captured by the dis-
tance metric.

8. Discussion

From the analysis, we have made several general observations
about the Yahoo! Pipes community, and these have led to some
implications on how to better support the community. We note
that these observations are based on an analysis of a single artifact
repository, and may not generalize beyond the scope of our study.

8.1. Observations

8.1.1. Few authors are responsible for most artifacts
Like with other online communities, Yahoo! Pipes suffers from

attrition and the contributions of the participants follow a skewed
distribution with a long tail. Most of the participants (>81%) are ac-
tive for only 1 day, and only 24% of the participants are responsible
for over 53% of the artifacts in the repository.

8.1.2. Authors evolve over time
Pipes created early in authors’ careers are significantly less di-

verse, popular, configurable, large, and have shorter distances to
pipes with similar structures. This is shown by the significant dif-
ferences between the groups of pipes when controlling for experi-
ence (Table 9) and by the positive correlations between average
diversity and distance levels with the community and days active
in the community for the most prolific authors. Additionally,
author diversity (Table 11) is strongly correlated with the total
time an author is active in the community (Spearman’s r =
0.61111). These are positive observations for the community,
showing that authors are able to grow over time.

8.1.3. Most pipes are very similar at lower levels of abstraction
We find that approximately 60% of pipes are structurally similar

to others in the repository (Level 3 in Table 5 and Level 0 in Table
6), indicating much duplication in the repository and potentially
little community awareness among all authors. Additionally, 73%
of the pipes have a minimum distance of one or less (Table 6), indi-
cating that beyond the structural diversity, an additional 13% of
pipes are within one step (addition, deletion, or substitution of
one wire or module) of another pipe in the repository.

8.1.4. Authors have varying levels of awareness
The trend of community awareness among all authors is un-

clear, as few exact matches in the repository indicates high aware-
ness (or just a lot of diversity in the repository), but little diversity
at higher levels of abstraction indicates low awareness. The low
frequency of exact clones found in the repository (�5%, Table 5)
and the fact that nearly a quarter of the pipes are distance two
or more away from the closest match in the repository (Table 6)
would suggest that authors may have some understanding of com-
munity and the value of contributing pipes that are somewhat
different.

About 43% of the pipes submitted by the most prolific authors
represent tweaks of something they have created in the past and
50% of the pipes submitted by the most prolific authors have the
same structure (if not also the same fields – resulting from diver-
sity levels 1–3) as other pipes they had submitted in the past (Ta-
ble 12). This suggests that even the most prolific authors do not
have much awareness of the community.

Yet for a minority of the pipes submitted by the most prolific
authors (30% by the diversity metric, or 10% by the distance met-
ric), the pipes are very different from what the authors created in
the past and different from what exists in the repository (Table
12). While this may represent community awareness, further study
is needed to understand if the author coincidentally or intention-
ally created highly unique pipes.

8.1.5. Experienced authors make more configurable pipes
A third of all pipes across the community are configurable (Ta-

ble 3), and authors with more experience (Table 9) and who create
more pipes (Table 10) tend to make pipes that are significantly



6 A subpipe is a language feature that allows a pipe to be embedded in another pipe
and appears as a single module where the structure is not visible.
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more configurable. This indicates that authors with more experi-
ence may have a greater interest in serving themselves or the com-
munity through their more configurable contributions. It should
also be considered that a lack of configurability might be a product
of language limitations rather than a conscious decision by the
programmer.

8.1.6. Community participants seem interested in utilizing the
community knowledge

Most pipes have been cloned at least once, with a small minor-
ity of pipes having hundreds, if not thousands, of clones (Table 4).
This indicates that many participants are likely interested in build-
ing on the expertise of others.

8.2. Implications

8.2.1. Authors may need artifact maintenance support
Approximately one-quarter of the prolific authors were seen to

contribute pipes with low diversity or low distance (Table 11), and
over 43% of the author submissions represented tweaks on al-
ready-submitted pipes. Additionally, approximately 30% of the
prolific authors change, on average, at most one module per pipe
they submit (Table 11). This indicates that authors may be using
the public repository as a private repository to store incremental
changes on pipes, and they may benefit from a versioning system,
which has been identified as a desirable feature for mashup envi-
ronments [25]. It may also be that authors are unable to configure
their pipes or do not know about the configuration options, and so
they are forced to create pipes with few deviations from existing
pipes.

8.2.2. The repository may need moderators
We observed that pipes created by prolific authors are signifi-

cantly more popular and configurable (Table 10). However, with
the number of authors who are only active for a short period of
time (Table 7), the repository gets cluttered with highly similar
and less configurable pipes. An alternative approach might be to
notify authors of highly similar, existing pipes, or to have some
controls on the quality or uniqueness of pipes before they’re shared
publicly. Considering that 70% of the pipes submitted demonstrate
no awareness or local awareness (Table 12), a mechanism to alert
authors when they are re-inventing the wheel might reduce the
clutter in the repository and support end users in becoming more
efficient.

8.2.3. Authors may need better search for the repository
Only 5% of the pipes have an exact clone elsewhere in the com-

munity, but over 46% have an exact match except for the field val-
ues (Table 5). It may be that the high frequency of similarity is a
result of an author’s inability to find an appropriate pipe from
the clutter in the repository. Current search mechanisms only al-
low authors to search by URL, modules used, tags, output format,
or keyword, and there is no support for users to search by partial
structures (if they know part of a solution), quality, popularity,
configurability, or behavior; few mashup environments offer this
kind of support for discoverability [25]. Further study is needed
to measure the semantic similarity between syntactically similar
pipes to determine if they solve the same problem.

8.2.4. Authors may need notification of changes in related pipes in the
repository

Currently, if authors create pipes that are later refined and
posted as new pipes (i.e., they were cloned, modified, and re-
submitted), which may explain some of the low distance submis-
sions by some of the most prolific authors, then any clients of
the original pipe would not be aware of the change. An awareness
of the ensuing changes (if the modification improved the pipe, for
example, by fixing a fault or improving efficiency) will help the
pipe clients to benefit from the changes. Similarly, if a user created
a pipe that depended on a subpipe6 but later that subpipe was mod-
ified or deleted, a lack of awareness of these changes could cause the
client pipe to behave differently than originally intended or fail
silently. Thus, some notification system to alert cloned pipes or users
of subpipes about changes in the relevant pipe might be beneficial.

8.2.5. Authors may need help understanding pipe behavior
Since there is no correlation between popularity and uniqueness

(Spearman’s r = 0.06088 with the diversity metric, r = 0.10973 for
the distance metric), it is likely that either other authors are unable
to understand the more unique pipes, authors cannot find what
they need in the repository, or that the highly unique pipes solve
a very narrow problem. If the pipes cannot be understood, authors
may re-invent the wheel and create their own pipe with different
syntax yet the same semantics. Perhaps there needs to be better
support for helping authors understand the semantics of pipes cre-
ated by others. One way to go about this would be through the
inclusion of a comments module so authors can annotate their code,
or through automatically-generated documentation.

8.2.6. Authors may need better development support
Given that approximately 50% of the authors do not consistently

produce unique pipes (Table 11), pipes are not very configurable
(33%, Table 3), and most pipes contain unfavorable characteristics
(as found in previous studies [21]), there is an implied need for bet-
ter compositional support to allow authors to create higher quality,
more diverse and general pipes. Considering also the high fre-
quency of tweaking (43% of pipes) that is performed by the authors
and the high frequency of pipes with similar structures (59% in Ta-
ble 5, and 73% in Table 6), authors would likely benefit from sup-
port in composition and design. This support could guide users
on how to make their pipes more configurable by adding user–set-
ter modules, allow for integration of multiple pipes, or to allow
them to create test cases to verify program behavior in a controlled
setting (rather than relying on RSS feeds, which update frequently
and can make testing difficult).

Recent work in community analysis has shown that Yahoo!
Pipes contributors sometimes turn to online help forums when
the development support is insufficient for their needs [16]. It is
unknown how much of the community that contributes to the dis-
cussion forums also contributes to the artifact repository, and vice
versa. It would be interesting to explore how these two groups
overlap and the trends that might emerge, but such an analysis
is outside the scope of this work, since we analyze only the con-
tents of the artifact repository.

9. Threats to validity

Here we discuss the threats to validity for our study, which fall
into three categories: external, construct, and internal.

9.1. External

In this study, we consider only one domain, that of Yahoo!
Pipes. Our results may not generalize to other end-user reposito-
ries, but we attempted to structure our analysis in such a way that
the new diversity and distance metrics and notions of popularity,
size, and configurability could be defined for new domains and
then the results compared to ours.
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The sample of pipes we scraped are those that were returned by
the Yahoo! search results. Since we do not have control over the
search mechanism, these pipes may not be representative of the
population. To reduce this threat, we obtained a large sample for
analysis.

Along these same lines, the observations on individual authors
only considered the most prolific authors and the pipes they sub-
mitted to the public repository that happen to be within our sam-
ple. This does not account for all the pipes created by these
authors, nor all the pipes they submitted to the repository.

9.2. Construct

In our diversity analysis, we consider only structural similarity
and distance, but not semantic similarity. Pipes with the same
structure may not be similar at all. Future work is needed to eval-
uate if these are appropriate measures for capturing true diversity.
While using two orthogonal diversity metrics controls this threat
in part, it still remains. One future avenue to explore might be to
refactor the pipes to remove some structural variability and re-
cluster, or to measure the diversity of data sources or tags as an
indication of semantics.

We use configurability as a proxy for abstraction, size for com-
plexity, and clones to represent popularity or impact on the com-
munity. For clones, it was not possible to distinguish between
self-cloning (which should not contribute to a pipe’s popularity)
and cloning by others. Future work is needed to control for this
threat and evaluate if these are the most appropriate measures
for the concepts we aimed to capture.

Our use of local and community uniqueness to draw conclu-
sions about author awareness regarding pipe submissions intro-
duces another threat. For high diversity and distance, we were
unable to distinguish between coincidental and intentional
uniqueness of submitted pipes.

9.3. Internal

The most clear internal threat is that all the analysis was done
through the lens of a public repository, which offers limited
visibility.

Some threats arise based on our selection criteria for the arti-
facts. For the author analysis, we selected prolific authors who
had more than 15 pipes submitted within our sample. It is possible
that this threshold is not the optimum to identify prolific authors.
It may be these authors are not representative of the prolific
authors and a different threshold should have been chosen. The
clone counts were gathered at the time each pipe was scraped from
the repository, and so the clone values among the pipes were often
collected on different days, and the older pipes benefit from more
time to have been cloned.

We do not measure how functional the submitted pipes are, nor
can we tell the provenance of any pipe and so the complex struc-
tures may not have originated with the submitting author.

Another internal threat concerns the correctness of the tools we
have developed, including the infrastructure to obtain and analyze
the artifacts. While we have developed unit tests for all analyses
and manually verified anomalies and interesting points in the data,
the threat remains.
10. Conclusion

In this work, we present an artifact-based analysis of an end-
user community, observing how authors evolve with time and
the impact of different variables such as time and proliferation
on the diversity, popularity, size, and configurability of artifacts
in the Yahoo! Pipes public repository. Similar to other communi-
ties, there is high attrition and the contributions of the participants
follow a skewed distribution where few of the authors are respon-
sible for a majority of the artifacts. However, authors who stay
active with the community seem to evolve. We have observed that
more experienced authors tend to make pipes that are more
diverse, unique, popular, large, and configurable than authors with
less experience, and that only 10–30% of the pipes submitted by
the most prolific authors are highly unique compared to their pre-
vious contributions and to the community. From the results of our
analysis, we have identified several implications for how end users
could be better supported as they interact with the Yahoo! Pipes
language and community, with the hope that some of these find-
ings can be extended to other end-user communities.
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