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A B S T R A C T

Web-active end-user programmers squander much of their time foraging for bugs and related information in
mashup programming environments as well as on the web. To analyze this foraging behavior while debugging,
we utilize an Information Foraging Theory perspective. Information Foraging Theory models the human (pre-
dator) behavior to forage for specific information (prey) in the webpages or programming IDEs (patches) by
following the information features (cues) in the environment. We qualitatively studied the debugging behavior
of 16 web-active end users. Our results show that end-user programmers spend substantial amounts (73%) of
their time just foraging. Further, our study reveals new cue types and foraging strategies framed in terms of
Information Foraging Theory, and it uncovers which of these helped end-user programmers succeed in their
debugging efforts.

1. Introduction

As the Internet grows increasingly ubiquitous, many web-active
“end users” (non-professional programmers) utilize the Internet as a
vital part of their day-to-day lives. These users lack programming ex-
pertise [67], yet many create applications to sift through the content-
rich web in order to access its information efficiently and effectively.

This can be challenging due to the Internet’s ever-increasing size.
Creating applications that optimize information access and utilize a
Visually Distributed Language for the Web (VDLW) involves ag-
gregating heterogeneous web APIs distributed across different plat-
forms. Challenges in building such programs include software and
hardware dependencies not represented in traditional programming
environments. Examples of such applications are the Internet of Things
(Zenodys,1 Losant2), mobile development environments (Dojo,3 IBM

Mobile Portal Accelerator4), cloud-mobile-web (LondonTube [58]), and
web mashups.

Web mashups provide one approach for “cobbling together” various
sources of data, functionality, and forms of presentation to create new
services [67]. Professional and end-user programmers create these ap-
plications by combining web services and processing their outputs in
various ways. Unfortunately, mashup programming is prone to bugs,
especially those resulting from changes in a source’s data [37].
Mashups’ dependence on the complex ecosystem of the web, composed
of evolving heterogeneous formats, services, protocols, standards, and
languages [16], leaves them vulnerable to unexpected behaviors. A
further complication arises from the black box nature of VDLWs, which
obscures the code and thus the sources of bugs from the user [9]. In
addition, end users prefer to learn from examples and code reuse, but
this programming practice often propagates bugs to new mashups
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[37,64]. The prevalence of bugs in mashups, the tendency for users to
reuse mashups, and black box code abstraction create problems for
mashup dependability.

Thus, end users spend a significant portion of their time debugging
mashups [10] and “foraging” for information [24]. The problems en-
countered in mashup programming are also found in other VDLW
programming environments. End users who encounter these unreliable
mashups may struggle to debug them, as they must forage through a
mashup program to find bugs and then forage through the web in order
to identify and correct faults.

Foraging behavior can be understood more easily by utilizing
Information Foraging Theory (IFT). In IFT, a predator (e.g., end-user
programmer) forages for prey (e.g., bugs, while finding or fixing) by
following cues (e.g., label on links) in patches (e.g., web pages, IDEs).
IFT has been studied and applied in connection to the process of fora-
ging by users on the web [13,21,51], to professional programmers na-
vigating through programs [47], and to debugging [41–43,48–50].

This paper is an extension and presents new analysis and results
from our previous studies [37,38]. In [37], we analyzed the Yahoo!
Pipes repository, found the types of bugs that existed, and created an
extension to Yahoo! Pipes to find those bugs. Based on each bug we
designed a To-Fix list and hints for each error to support end-user
programmers. We evaluated Yahoo! Pipes and our developed extension
through a controlled lab study. The study quantitatively compared the
performance of end-user programmers. In [38], we conducted a quali-
tative analysis of the study results using Information Foraging Theory.
We created a debugging model based on end user’s debugging behavior
and found three cues and strategies related to navigation, enrichment,
and hunting. In this paper, we present an extension of our previous
studies by performing a different analysis. We reanalyzed the tran-
scripts in depth using Information Foraging Theory, and, by using
grounded theory, we identified a new set of cues and their effects on the
performance of end-user programmers’ debugging behavior.

We make the following contributions:

• We investigate, from an IFT perspective, the behaviors of end-user
programmers using mashups in a visual programming environ-
ment.

• We identify and elaborate on a hierarchy of cues followed by end-
user programmers in mashup programming environments, that can
be generalized to visual programming IDEs, distributed program-
ming environments, and the web.

• We compare the amount of time end-user programmers spend
foraging while debugging with the time professional programmers’
spend foraging while debugging.

• We identify the types of foraging cues that help end users the most
while debugging.

This article is structured as follows. Section 2 describes the back-
ground on visually distributed languages, IFT, and Yahoo! Pipes.
Section 3 describes the debugging extension to Yahoo! Pipes. Section 4
describes our empirical study design, followed by Section 5 on Results
and Section 6 on Threats to Validity. Section 8 discusses related work,
and Section 9 concludes.

2. Background

2.1. Visually Distributed Languages for the Web

Visually Distributed Languages for the Web (VDLW) are languages
that allow web applications to be created using visual languages in
distributed system environments.

Distributed programming: Distributed programming environments are
similar to web mashup environments in that they are both complex
ecosystems of heterogeneous formats, services, protocols, standards and
languages. One example of a distributed programming environment is

Dojo mobile,5 which allows users to create mobile applications to fa-
cilitate reuse of application code across devices with a simple style
sheet change. These applications allow users to create new native smart
phone builders to support build-once-deploy-anywhere systems, e.g., on
portals, web app servers, mobile devices, kiosks, and webTVs. Another
example is the IBM Mobile Portal Accelerator,6 which allows mobile
web site developers to support rendering on over 8000 types of basic to
smart devices utilizing over 600 attributes. Similarly, API aggregation
tools create applications either by automation or creative production
using If This Then That (IFTTT),7 Zapier,8 and RunMyProcess.9 Hence,
these environments are very similar to web mashup environments,
except that these environments build (stand-alone) apps, not web
pages.

Visual programming: Visual programming environment languages
like Yahoo! Pipes aim to allow easy creation of programs by abstracting
the underlying code as black boxes. Most visual programming lan-
guages like App Inventor,10 LabVIEW,11 LondonTube [58], IFTTT [3],
and IBM Mobile Portal Accelerator [6] could integrate the debugging
features discussed in this paper for fault localization and correction into
their programming environments.

2.2. Information Foraging Theory

Pirolli and Card developed Information Foraging Theory (IFT) in
order to understand the various ways humans search for information
[52]. IFT, based on optimal foraging theory, finds its inspiration in the
similarities between how animals forage for food and how humans
search for information. In IFT, humans are “predators” searching for
“prey,” or information. Like animal predators, IFT predators have a
specific “diet,” i.e., the ability to use certain information is dependent on
the predator’s knowledge. Predators follow “cues” within the environ-
ment which lead them to indicators of prey, or “scents.” Prey and scents
can be found in “patches” which may contain “information features” that
may serve as cues for other prey. Occasionally, predators modify patches
via “enrichment” to increase the chances of prey acquisition. Some ex-
amples of these terms in the context of our study can be found in Table 1.

IFT has improved the understanding of user interaction with the
web, especially by revealing design principles for web sites and user
interfaces. Navigational models identified by IFT have enhanced web-
site usability by predicting users’ navigational patterns [13,21,51].
Engineering tools for professional developers have also been analyzed
using IFT to model navigational and debugging behavior. Using IFT,
Niu et al. have modeled professional programmers’ navigational beha-
vior [47], and Lawrance et al. and Piorkowski et al. have modeled the
evolving goals of a programmer while debugging [41–43,48–50].

2.3. The Yahoo! Pipes mashup environment

Yahoo! Pipes was a VDLW programming environment popular with
professional and end-user programmers alike [28]; it was one of the
most popular mashup programming environments at the time we con-
ducted our study, but was discontinued in September 2015.

As seen in Fig. 1, the Yahoo! Pipes programming environment
consisted of three major components: the Canvas, Library, and De-
bugger Window. (The area in Fig. 1 surrounded by dashed lines con-
tains our debugging tool, which is described in Section 3.) The central
area composed the Canvas in which users placed Modules from the

5 https://dojotoolkit.org/reference-guide/1.10/dojox/mobile.html.
6 http://www-03.ibm.com/software/products/en/ibmmobiportacce.
7 https://ifttt.com/.
8 https://zapier.com/.
9 https://www.runmyprocess.com/.
10 http://ai2.appinventor.mit.edu.
11 http://www.ni.com/labview/.
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Library. The Library, located to the left of the Canvas, contained
modules categorized by functionality. Users organized the data flow of
the Modules by connecting them with Wires. The Debugger Window
beneath the Canvas displayed output from specific modules as well as
the final output of the program, which was known as a Pipe.

Inputs to pipes were HTML, XML, JSON, KML, RSS feeds and other
formats, and outputs were RSS, JSON, KML and other formats. Inputs
and outputs between modules were primarily RSS feeds. RSS feeds
consisted of item “Parameters” and descriptions. Yahoo! Pipes modules
provided manipulation actions that could be executed on these RSS feed
parameters. Yahoo! Pipes also allowed users to define various data
types such as url, text, number, and date-time

3. Debugging support for Yahoo! Pipes: an IFT perspective

Drawing on IFT, we developed a tool to integrate into the
Yahoo! Pipes environment. The tool contained an Anomaly Detector
that detected bugs identified by Yahoo! Pipes and bugs occurring si-
lently whenever a user saved or executed the pipe. A To-fix list of bugs
and a set of straightforward Error Messages constituted the Tool’s user

interface. The To-fix list enriched the development environment by
providing additional cues for the user to follow. By simplifying the
semantics of the error messages, we adapted them to fit into the diet of
end users and improved the quality of the cues in the error message
patch. We largely followed Nielsen’s Heuristics [46] in designing the
interface with the main goal of reducing cognitive load on users [59],
and Schneiderman’s guidelines [60] for designing error messages. Fig. 1
shows our user interface extensions.

3.1. To-fix list of bugs

To facilitate bug localization, we wanted to present information
contextualized to our users’ current task. According to prior studies
[25], end users consistently utilize to-fix lists to reduce cognitive load,
and this strategy was employed by users regardless of their personal
differences or debugging habits. Professional environments, such as
Eclipse IDE,12 provide to-fix lists (stack traces of failures) within their

Table 1
IFT Terminologies from the Yahoo! Pipes perspective [37].

IFT Terminologies Definitions Fault finding (examples) Fault fixing (examples)

Prey Potential fault during fault finding; potential fix
during fault correction

Finding Fetch Feed module that contains a bug
B2 (web site does not exist)

Finding the correct url and putting it in the
Fetch Feed module that contains B2.

Information Patch Localities in the code, documents, examples, web-
pages and displays that may contain the prey [18]

Yahoo! Pipes Editor, Help documents, help
examples

Web pages

Information Feature Words, links, error messages, or highlighted objects
that suggest scent relative to prey

API Key Missing error message for bug B1 “Error fetching [url]. Response: Not Found
(404)”

Cues Proximal links to patches “about this module” link to the example code
related to specific module

“Key” link to the Flickr page to collect the API
key

Navigate Navigation by users through patches To find bug B2 the user navigated through
Yahoo! Pipes editor to external web site

To correct bug B2 participant navigated to
various web sites to find the required url

Fig. 1. Yahoo! Pipes with debugging support with the Debugger Window showing a specific error. The (dotted) marked areas are our extension to Yahoo! Pipes
interface.

12 An open-source Integrated Development Environment (IDE) for Java that is
available for download at: http://www.eclipse.org/downloads.
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UI. However, this functionality is not commonly available in many end-
user environments, such as Yahoo! Pipes or Microsoft Excel. Thus, our
UI included a To-fix list populated with information on bugs and their
properties. The To-fix list can be seen in Fig. 2.

The To-fix list, which is overlaid on the top, right-hand side of the
Canvas, displays erroneous modules from top to bottom and from left to
right. In this way, users can view the pipe and the list of bugs si-
multaneously. We believe users may prefer this approach since spatially
following the data flow of a program is a common debugging strategy
[25]. An alternative that could reduce the likelihood that the user is
overwhelmed with too many alternatives would be to group bugs by
type, which would enable them to focus on bugs of the same type [15].

The To-fix list represents a patch with cues organized on it.
Whenever a user saves the pipe, executes the pipe, or clicks on the “Find
Error” button on the left-hand side of the canvas, the To-fix list is po-
pulated by an Anomaly Detector with information on bugs that need to
be resolved and their properties. In IFT terms, “Find Error” is a cue to
activate anomaly detection. The erroneous module associated with a
bug in the list is highlighted in orange whenever a user clicks on a bug
in the list, and the selected module’s potentially incorrect parameters
are marked in red. In IFT terms, highlighted modules and colored
parameters are cues. The same follows in reverse: when a user clicks on
a faulty module then the bug or bugs in the To-fix list related to that
module are expanded. After a bug is resolved, it is removed from the
list. Hence, only relevant cues are kept while irrelevant cues are re-
moved from the To-fix list patch. In this way, we reduce the cognitive
load on the user by directly associating the bug in the To-fix list with
the faulty module.

3.2. Error messages

We followed Nielsen’s Heuristics [46] and Schneiderman’s guide-
lines [60] to design error messages. Error messages were designed to be
clear and concise, to use plain language, and to help users recognize,
diagnose, and recover from bugs. The error messages were formulated
for list of errors for Yahoo! Pipes (a comprehensive list types of errors
for Yahoo! Pipes can be found in [37]). Yahoo! Pipes only detected
errors related to web pages that no longer existed, had any page access

restrictions or server error. For example, a Yahoo! Pipes error message
of the form: “Error [url] Response code. Error: [Invalid XML docu-
ment.] Root cause: org.xml.sax.SAXParseException: [root element must
be well-formed]”, was translated to “Website does not contain RSS
feed.” Another example was “Error Fetching [url]. Response: Not Found
(404)” translated to “Website not found.”. Yet another example is
shown in Fig. 1 (bottom panel). Fig. 2 shows how these error messages
were modified to show to end users.

3.3. Feedback

We also provided incremental assistance through a “Hint” button in
order to help users resolve bugs. Users can adjust the amount of in-
formation visible in the hint by expanding the hint to provide addi-
tional details (refer to Fig. 2). The template for Hints were formulated
for every error message of Yahoo! Pipes and rendered for the current
error. Hints for the example in Section 3.2 provided hints to find web
sites for missing RSS feeds and external documentation describing the
required structure of RSS feeds. Hints for other bugs provided refer-
ences to third party web applications, such as FireBug,13 to enable the
user to inspect elements of the web page. In IFT terms, the Hint button
is another cue that provides contextualized help and adjusts the cue to
be included in the user’s diet. The hints not only catered to users with
different skill levels but also provided users with constructive steps to
create solutions for bugs.

4. Empirical study

To investigate our tool design and to understand the debugging
behavior of end users using VDLWs from an IFT perspective, we con-
ducted a new analysis of our previous studies of end users debugging
Yahoo! Pipes [37,38]. The goal of this new analysis was to provide
additional insights into IFT regarding Visually Distributed Languages
for the Web and end-user foraging behavior while debugging.

Fig. 2. To-fix list. The list shows the number and name of modules containing errors. Error message, detailed error message and Hints (expanded on a need basis).

13 FireBug was discontinued in 2017, but many of its features have been in-
corporated into the built-in developer tools in Firefox. See https://getfirebug.
com/ for additional details.
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4.1. Participants

We invited students at the University of Nebraska–Lincoln with
experience with at least one web language, but no background in
computer science beyond their major’s requirements, to participate in
our study for a gratuity of $20. We selected 16 participants from a
variety of fields including mathematics, finance, engineering, and the
natural and social sciences. We categorized participants using stratified
sampling according to their gender as well as their experience with the
web, programming languages, and Yahoo! Pipes. Based on these cate-
gories, we divided the participants into two groups, control and ex-
perimental, with five male and three female participants per group. The
two participants with prior experience with Yahoo! Pipes were assigned
to different groups, one as control participant 3 (C.P3) and the other as
experimental participant 2 (E.P2). Paired t-tests on questionnaire data
revealed no statistically significant differences ( =p 0.731) between the
groups based on grade point average, experience with Yahoo! Pipes,
experience with web languages, or experience in other forms of pro-
gramming.

4.2. Environment

Our study focused on mashup programming using Yahoo! Pipes, and
on our extension to that environment, providing debugging help to end
users, as described in Sections 2.3 and 3.

4.3. Procedure

We employed a between-subjects study design [65] to avoid
learning effects. One half of the participants, the experimental group,
completed two debugging tasks with our extension to Yahoo! Pipes, and
the other half, the control group, completed the tasks with the ordinary
Yahoo! Pipes interface. Since the same participant was never exposed to
the same independent variable (the same system) precludes a partici-
pant from learning on one system and then carrying that learning to the
other system. Because we needed to obtain insights into the partici-
pants’ barriers, problems, and thought processes as they performed
their tasks, we employed a think-aloud protocol [44] by asking them to
vocalize their thought processes and feelings as they completed each
task. We administered our study to each participant on an individual
basis in a usability lab at the University of Nebraska-Lincoln.

Participants were asked to complete a brief self-efficacy ques-
tionnaire (formulated as a Likert scale between 1 and 10) at the start of
each task [14]. A ten-minute tutorial before each task on Yahoo! Pipes,
which described how to create pipes and the functionality of various
modules, included a short video describing think-aloud studies in order
for users to understand the process. The experimental group also re-
ceived instructions on how to invoke our debugging support tool (see
Section 3). Having completed the tutorial, we asked participants to
create a sample pipe to familiarize themselves with Yahoo! Pipes via
hands-on training. We began the experiment only after users told us
that they were comfortable using the environment.

Participants completed two tasks (see Section 4.4) designed to un-
derstand our participants’ behavior when the Yahoo! Pipes environ-
ment provided feedback or when feedback was absent. The tasks were
counterbalanced to mitigate possible learning effects. Each session was
audio recorded, and the participants’ on-screen interactions were
logged using a screen capture system Morae.14 The participants were
allowed as much time as they wanted to complete each task, which took
participants 50 minutes on average and a maximum of 80 minutes. We
conducted interviews of the participants once they had completed the
tasks to collect feedback or any additional thoughts from them.

4.4. Tasks

For the first task, Task Y!E, we required participants to debug a pipe
seeded with bugs for which Yahoo! Pipes provides error messages. In
the second task, the pipe contained bugs with no Yahoo! Pipes error
messages (“silent” errors). We counterbalanced the tasks to compensate
for possible learning effects. Three bugs were seeded into each pipe (see
Table 2 for details). All bugs were located on separate data flow paths to
avoid interaction effects. We also included one bug related to subpipes
in each pipe to help us study the effects of nested errors.

We told participants that they had been given pipes that were not
working correctly and were required to make them work correctly (that
is, to find the bugs and correct them). To guide them, we gave them
specifications of the pipes and of the output each pipe was intended to
produce.

For Task Y!E, we required participants to fix a pipe which was
supposed to display the following: (1) a list of the top 10 rated moves
according to rottentomatoes.com and their ratings in descending order,
(2) a poster of the selected movie from Flickr.com, and (3) a review of
the movie. A previous study of a large corpus of pipes [37] found that
two of the most common bugs in pipes were “Link” bugs and “Depre-
cated module” bugs, which were found in 31.6% and 22.9% of pipes,
respectively. Link bugs occur when a web page no longer exists, web
page access is restricted, or a server error is encountered. Deprecated
Module bugs indicate a module is no longer supported within the
Yahoo! Pipes environment. Thus, the first bug seeded into the pipe was
a Link bug, t he second was a Deprecated module bug, and the third was
a Link bug embedded in a subpipe.

For Task SE, we required participants to fix a pipe which was sup-
posed to display the following: (1) a list of theaters in a given area, (2) a
list of movies in each theater with their show times, and (3) trailers of
the top 10 movies (again, based on rottentomatoes.com). Based on the
study of the corpus of the pipes [37], the two most prominent silent
bugs were Missing: Content and Missing: Parameter bugs, which were
found in 11.3% of pipes and 60.5% of pipes, respectively. Missing:
Content bugs occur when web page contents are missing, and Missing:
Parameter bugs occur when a parameter value in one of the
Yahoo! Pipes modules is missing. We seeded one of each of these two
bugs into the pipe, and we also included a Missing: Parameter bug in a
subpipe.

4.5. Analysis methodology

We transcribed all actions and verbalizations performed by our
participants for analysis. We used a baseline code set inspired by pre-
vious research [43,48,51]. However, our analysis revealed that we
needed new codes in addition to the existing ones to fully describe our
participants’ behavior. Thus, we created new codes by content analysis
after analyzing the participants’ transcripts over several iterations. We
also noted cases where differences between control and experimental
group participants’ activities shed light on debugging behavior.

We coded the transcripts of participants’ think-aloud videos with
two code sets. One code set (Table 3) is based on the cue types the
participants used and the type of operations they performed. The
second code set is in the form of a hierarchy based on how easily a
participant could predict where the cue would lead (Fig. 3 and Table 4).
We then segmented the transcripts into segments whose lengths de-
pended on a participant’s actions or words, allowing multiple codes per
segment. Two researchers independently coded 20% of the transcripts.
We then calculated inter-rater reliability using the Jaccard measure
[27], resulting in a rate of agreement of 85% on 20% of the data. Given
this high rate of inter-rater reliability, the two researchers split up the
coding of the remaining code set.

14 http://www.techsmith.com/morae.asp.
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5. Results

5.1. Behavior of end-user programmers while debugging

We observed that our participants’ behavior depended on whether
they were foraging for faults, were foraging for solutions to the faults,
or were fixing the faults. The control group had to find and fix the bugs
(refer to Table 5), whereas the experimental group had access to our
tool and only needed to fix the bug (refer to Table 6).

5.1.1. Foraging while finding faults
The control participants spent, on average, 73% of their time

foraging in order to locate the errors over the 1.5 h of the user study
(Table 7). Past studies of professional programmers’ foraging behavior
found that they tend to spend up to 50% of their time foraging [50] to
debug or to navigate between code fragments [33]. Our results coincide
with the findings from Grigoreanu et al. [24], in which end-user par-
ticipants spent two-thirds of their time in the foraging loop of sense-
making while debugging. Hence, our participants spent higher amounts
of time foraging compared to professional programmers in past studies.

To understand the behavior of end-user programmers while loca-

lizing bugs, we investigated their forging behavior using IFT. Since the
control group did not have the debugging support and had to forage to
localize bugs, we discuss the foraging of only control participants while
analyzing the transcripts for localizing the bugs. For an in-depth ana-
lysis, we randomly selected two participants each from the sets of the
most successful and most unsuccessful participants in Task Y!E and
Task SE (Fig. 4). For Task Y!E we selected C.P5 and C.P7, and for Task
SE we selected C.P2 and C.P3. In their respective tasks, participants
C.P7 and C.P3 were successful, and participants C.P5 and C.P2 were
unsuccessful.

The most unsuccessful participants mentioned above foraged more
than the most successful participants. Spool’s position is that the

Table 2
Details on seeded bugs [37].

Task Class Bugs Details

Yahoo! Pipes error Top level B1 API key missing
B2 Website not found

Nested B3 Website not found
Silent error Top level B4 Website contents changed

B5 Parameter missing
Nested B6 Parameter missing

Table 3
Cue-typesused in our study, taken from the literature [48]. * are the new codes we observed in our study.

Codes Cues

Output-Inspired Cues based on how output looks in the Debugger Window or running a pipe
Reusability Cues that allow the participant to reuse elements from either an example or other places in their code (pipe)
Understandability Cues based on a participant seeking to understand something about the pipe
Source-Code Content-Inspired Cues based on looking at source code
Source-Code Appearance-Inspired Cues based on the appearance of the code or development environment
Domain Text Cues based on words or phrases related to the task
Documentation-Inspired (External)* Cues based on content in documentation outside the Yahoo! Pipes editor, usually on the Web
Documentation-Inspired (Internal)* Cues based on content in documentation within the Yahoo! Pipes editor

Operations
Comparison* Performing a comparison based on two or more patches
Backtrack (Code)* Returning the code to a previous state
Backtrack (Web)* Returning to a web site after visiting a different patch

Fig. 3. Cue hierarchy.
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scarcity of scent leads to foraging [61]. Spool et al. found that when
users run out of scents they often backtrack in hopes of picking up a
better scent. However, this rarely works because they chose the best
scent to start with. Consistent with Spool’s position, the most un-
successful participants in our study foraged more than the most

successful participants in the control group while locating the errors. As
can be seen in Fig. 4, unsuccessful participants C.P5 and C.P2 tended to
spend a greater amount of time foraging. They foraged more in the
debugging window to inspect the modules and visited more unique
patches. C.P2 visited 10 unique patches whereas successful participant

Table 4
Descriptions andexamples of cues in our cue hierarchy. Top level cues and their definitions are colored in gray.

Cue Description Example Remarks

Easy to Understand Cue A cue such that a forager can easily
determine the direction in which it will
lead. A forager may find these cues the
least costly to utilize.

Non-Misleading Cue An Easy to Understand Cue that leads to a
patch the forager expected

Tried and Worked in the
Past Cue

Non-Misleading Cue a forager follows/
looks for again

C.P5 [Goes back to Rotten Tomatoes home page
to open the Box Office list again] “It should show
in descending order.”

The participant had been to this patch before, and
he anticipated it would provide the same
information as when he foraged there in the past.

Misleading Cue Easy to Understand Cue that leads to a
patch other than what the forager expected

Misleading Cue to
Valuable Patch

Misleading Cue that still leads to a
Valuable Patch

E.P1 [Googles ‘Dave White RSS Feeds’ and then
tries ‘RSS Feeds Dave White Rotten Tomatoes’.
Opens the first link] “I think it’s not RSS.” [Looks
at the modules and goes back to the web site of
Dave White. Sees the RSS feed symbol where it’s
written ‘RSS Feeds’ and clicks and sees the
contents as RSS feed] “Yeee!”

The participant erroneously presumed that this
patch did not contain an RSS feed, but this was
exactly what the participant needed in order to fix
the bug. Once the participant realized this was
indeed what she needed by looking at the RSS feed
symbol, she returned to the patch to forage for the
correct information.

Misleading Cue to Useless
Patch

Misleading Cue that leads to a Useless
Patch

E.P1 “I am trying to find the top 10 movies”
[Clicks on menu option from URL of movies. It is
blank, so she returns to the previous page].

The participant was uncertain as to where the patch
would lead, but she decided to forage there since it
contained a potentially helpful scent.
Unfortunately, the patch yielded no information
useful to the participant.

Difficult to Understand
Cue

A cue such that a forager may find it
difficult to determine where it may lead. A
forager may find these cues more costly to
follow and less beneficial

Difficult to Understand
Cue to Valuable
Patch

Difficult to Understand Cue that leads to a
Valuable Patch

C.P7 [Clicks on the Link to the API Key
Application Page. [Logs into Flickr web site]
“What is Flickr?” [Goes back to the original pipe
and looks at the Flickr Module. Goes back to the
Flickr API Key Application and reads about the
different applications. Clicks to apply for a non-
commercial key, then goes back to check the
original pipe and returns to fill out the
application].

The participant is uncertain as to whether or not
this patch contains information about the missing
API key needed to fix bug B1. Once she gains an
understanding of what she needs by foraging in the
modules and the application patch, she is able to
use the information garnered by the non-
commercial API key application patch.

Difficult to Understand
Cue to Useless Patch

Difficult to Understand Cue that leads to a
Useless Patch

E.P3 [Clicks on the link to the Example RSS Feed
in the hint, then returns to the pipe].

Unable to reuse anything from the example to fix
his own pipe, the participant returns to his pipe.
The participant ventured to this patch to gain an
understanding of RSS feeds, but the example, in the
participant’s view, did not provide any information
applicable to solving the bugs in his pipe.

Not Followed Cue A cue that is not followed by a forager
because it is difficult to identify or locate
where it may lead. A forager may find
these cues to be highly expensive.

Table 5
Bugs finding and fixed per control group participant [37]. * represents a par-
ticipant with prior knowledge of Yahoo! Pipes.

Participant Yahoo! errors Silent errors

B1 B2 B3 B4 B5 B6

L F L F L F L F L F L F

P1 1 1 – – – – – – 1 – – –
P2 1 1 1 – – – – – – – – –
P3* 1 1 1 1 – – 1 1 1 1 – –
P4 1 1 1 – – – 1 – 1 1 – –
P5 1 1 1 – 1 – 1 – – – – –
P6 1 1 1 – 1 1 1 – 1 – 1 –
P7 1 1 1 – 1 1 1 – – – – –
P8 1 – 1 – – – 1 – – – – –
Total 8 7 7 1 2 1 6 1 4 2 1 0

Table 6
Bugs fixed per experimental group participant [37]. * represents a participant
with prior knowledge of Yahoo! Pipes.

Participant Yahoo! errors Silent errors

B1 B2 B3 B4 B5 B6
F F F F F F

P1 1 1 1 1 1 1
P2* 1 1 1 – – 1
P3 1 – – 1 1 1
P4 1 1 1 1 1 1
P5 1 1 1 1 1 1
P6 1 – 1 1 1 1
P7 1 1 1 1 1 1
P8 1 – 1 – – 1
Total 8 5 7 6 6 8
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C.P3 visited 2 unique patches. The unsuccessful control participants
could not find better scents and frequently went to Useless Patches.
As can be seen in the following excerpt, unsuccessful participant C.P5
(Task Y!E) ran out of scents, so he continued to switch back and forth
between Google searches and the Yahoo! Pipes editor (22 times over the
course of 30 min), backtracking to previous locations while attempting
to find promising leads.

Excerpt from C.P5 Yahoo! Error Transcript:
15:51 [Searches ’Fetch Feed’ on the pipes web site]
...16:13 [Changes search to ’help’]
16:22 [Opens the first search result, but soon returns to

search]

16:32 [Starts a new Google search, ’How to Fetch IMDB in
Yahoo! Pipes’]

16:53 [Opens the last search result on the page. Looks briefly
at the page and then closes the window]

17:05 [Returns to the pipe]
17:07 [Saves and runs the pipe. There is still an error and

warning message]
17:24 ”Nothing’s happening”
17:34 [Goes back to the pipe]
...19:03 [Opens Google search ’How to Fetch IMDB in

Yahoo! Pipes’ and clicks on one of the top links]

We postulate that the entire control group, not just the most suc-
cessful and most unsuccessful, struggled with Task SE because they

Table 7
Control participants spent a large fraction of their time, ranging from 65% to 87%, Foraging for information. * represents a participant with prior knowledge of
Yahoo! Pipes.

Participant C.P1 (%) C.P2 (%) C.P3* (%) C.P4 (%) C.P5 (%) C.P6 (%) C.P7 (%) C.P8 (%) Mean (%)

Time foraging 80 70 65 74 71 70 87 68 73
Y!E foraging 91 68 73 82 67 70 84 67 75
SE foraging 71 71 60 70 82 70 90 71 73

Fig. 4. Foraging of four participants while performing Yahoo! Errors task (Y!E) and Silent Errors task (SE). Regions labeled “Inside” refer to users foraging inside the
Yahoo! Pipes environment, and regions labeled “Outside” refer to foraging outside the environment. Regions labeled “Debugging” refer to when the user was fixing
the bug. For the labels Bug X/Bug Y, Bug X refers to bugs in Task Y!E, and Bug Y refers to bugs in Task SE. Bug 1/Bug 4 (shown in green) and Bug 2/Bug 5 (shown in
yellow) designate when the participant’s focus was on the respective bug, and Bug 3/Bug 6 (shown in red) designate when the participant’s focus was on a bug in a
nested subpipe. The X’s, triangles, and circles above the bar show the cue a participant followed at a specific time. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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were attempting to understand the entire pipe without any knowledge
of where to begin looking for errors. Our tool, however, which high-
lighted faulty modules, reduced the cognitive load on the experimental
participants, who could then focus on trying to comprehend individual
modules rather than the program in its entirety. From an IFT perspec-
tive, Spool et al. [61] suggests that users resort to search only when
they cannot find their trigger words or enough cues on the web page.
For example, participant E.P2 spent 7 min fixing a bug in Task Y!E,
whereas C.P4 required 27min just to locate a bug in Task SE. This ex-
ample helps to explain why participants in the experimental group
spent less time fixing the bugs than the control group spent locating
bugs.

During Task SE, the relatively few cues provided by the control
environment for silent errors led to increased foraging both within the
canvas and to unique patches. Both the most successful and most un-
successful control participants struggled with Task SE, and silent errors
were a huge foraging time sink. The control participants in Task Y!E
visited 38 unique patches when localizing the bugs, whereas in Task SE
they went to 55 unique patches. Additionally, our participants, both the
most successful and the most unsuccessful, followed very few Non-
Misleading Cues (see Fig. 4). We conjecture that the lack of these
Non-Misleading Cues led them to spend most of their time foraging
for any potential bugs within the Yahoo! Pipes environment, other web
pages (patches), and the debugging window. For example, unsuccessful
C.P2 in Task SE spent all of his time tinkering in the Yahoo! Pipes
Canvas as the error messages did not contain Non-Misleading Cues.
Thus, foraging was a major time sink for control participants working
on Task SE. Both the most successful and the most unsuccessful parti-
cipants in the control group were unable to localize nested errors, as
they were difficult to determine. Successful participant C.P3, on ob-
taining an error message in the subpipe during Task Y!E (bug B3),
commented: “Where is this coming from?” In Yahoo! Pipes, to debug a
subpipe a user must open and execute it; C.P3 did not realize this and
spent 10.44 min investigating the bug by clicking on other modules in
the pipe. He then moved onto the next task after commenting: “I don’t
know what it’s saying.”

One reason for the lack of Non-Misleading Cues for the nested
errors (bugs B3 and B6) may be that the cue for the subpipe was on just
the top banner portion of the pipe’s output along with the sub-program
name. We suspect this behavior was because of “banner blindness,”
which is often found in web sites. Banner blindness occurs if links ap-
pear in the top few rows of pixels of a web page as users ignore the links
at the top of the page [61]. Another reason for this can be lack of un-
derstanding of concepts related to modularity or nested programs.

The entire control group used Tried and Worked in the Past
Cues more when localizing bugs than when fixing bugs. The transcripts
revealed that while localizing bugs, 65.7% of the cues followed by the
control participants were Tried and Worked in the Past Cues,
whereas these uses accounted for only 43.4% of the cues followed while
fixing bugs (Section 5.1.2). For example, Participant C.P4, while fora-
ging in Task SE, followed 26 Tried and Worked in the Past Cues

while localizing faults and 9 while fixing bugs. Participants were likely
motivated to rely on familiar cues in order to reduce cognitive load. It is
widely acknowledged among psychologists that the more a person at-
tempts to learn in a shorter amount of time, the more difficult it is to
process that information in short-term memory [5].

The above observations are summarized as follows:

• Control participants spent more time foraging compared to their
professional counterparts in past studies.

• Successful control participants (C.P3 and C.P7) and unsuccessful
control participants (C.P2 and C.P5) foraged differently. Unlike
successful participants, unsuccessful participants spent more time
foraging, and they frequently followed cues and scents that led them
to Useless Patches.

• All Eight control participants struggled with Task SE (Silent Error)
because there were few Non-Misleading Cues, which inhibited
their ability to know where to begin looking for errors. The ex-
perimental group, however, knew where to begin foraging by using
our tool.

• Due to the lack of Non-Misleading Cues, the control group re-
duced their cognitive load by relying on Tried and Worked in the
Past Cues, which were familiar to them.

5.1.2. Foraging while finding solutions to faults
To understand the foraging behavior of participants while fixing

bugs, we measured whether the navigations made by them while at-
tempting to fix a bug were successful or not.

Compared to the entire control group, experimental group partici-
pants navigated more often between patches by following cues and
were more successful in fixing the bugs. As seen from the data in
Table 8, the experimental group followed a significantly greater
number of cues per bug (25.45 navigations) than the control group
(6.36 navigations), showing that they were more apt to forage. For
example, E.P1, while doing Task Y!E, used the information features
supplied by the To-fix list, so he quickly found relevant, useful cues that
led to prey, fixing 2 bugs in less than 5 min. Therefore, our tool helped
participants navigate more often as they followed more cues per bug
than participants in the control group.

As can be seen in Table 8, the control group followed fewer cues per
bug (3.58 navigations per bug fixed and 2.78 navigations per bug not
fixed) than their experimental group counterparts (9.20 navigations per
bug fixed and 16.25 navigations per bug not fixed). The experimental
group, however, was willing to spend more time foraging for prey, so
they continued to navigate for them. Conversely, control group parti-
cipants gave up sooner even if they were on the right track. For ex-
ample, participant C.P6, while fixing bugs in Task SE (see Fig. 5), spent
less than 2 minutes foraging to find/fix a bug before moving on to find/
fix a different bug. Fig. 5 reveals this behavior. The participant oscil-
lated between brief periods of foraging (cyan and magenta regions) and
debugging (black regions). In addition, from the beginning of Task SE
until around minute 30, C.P6 briefly worked on a specific bug before

Table 8
Details on time spent by control participants foraging for information.

Non-Misleading
Cues

Tried and Worked in
the past cues

Misleading cues to
valuable patch

Misleading cues to
useless patch

Difficult to understand cues
to valuable patch

Difficult to understand cues
to useless patch

Total

Navigations per Bug Fixed
Experimental 3.80 4.03 0.10 1.03 0.20 0.20 9.20
Control 1.58 1.42 0.00 0.17 0.08 0.33 3.58
Navigations per Bug Not Fixed
Experimental 5.75 6.75 0.00 2.13 0.00 1.63 16.25
Control 1.08 1.25 0.03 0.36 0.06 0.00 2.78
Navigations per Bug Fix Attempt (Total)
Experimental 9.55 10.78 0.10 3.16 0.20 1.83 25.45
Control 2.66 2.67 0.03 0.53 0.14 0.33 6.36
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moving on to another (note the green and yellow regions in Fig. 5). In
most cases, had participants persevered a short while longer, they
would have fixed the bug.

The foregoing results suggest that our tool impacted our partici-
pants’ level of persistence. While the experimental group was given the
precise location of, and additional information related to, the bug, the
control group was not provided such assistance. It is possible that the
control group participants questioned whether the prey they were fol-
lowing was really the correct prey because of a relative lack of scent.
Due to uncertainty, the control group may have abandoned certain
available scents because the cost of pursuing potential prey was greater
than the perceived benefit. For example, Participant C.P6, despite
missing the link to the Flickr API Application right within the
Yahoo! Pipes environment, managed to navigate there by Google
search. Unfortunately, his lack of understanding caused him to abandon
his efforts and leave the application for the API key. In contrast, every
experimental group participant fixed the bug with the API key, even
those uncertain of an API key’s purpose.

On the other hand, the experimental group followed more cues to
Useless Patches (4.98 navigations) than the control group (0.86
navigations). As the experimental group foraged more and had greater
success despite visiting more Useless Patches, we posit that our tool
assisted the experimental group in foraging and recovering from navi-
gations to Useless Patches by reducing navigation cost and pro-
viding more scent to the experimental group. It did this by supplying
useful information features related to the prey, which assisted partici-
pants in producing more accurate estimates of the value of cues. This is
similar to the behavior of professional programmers discussed in si-
milar studies as they persistently pursue specific information in spite of
low returns coupled with high cost [50]. As can be seen in the transcript
excerpt below, participant E.P4, while working on Task Y!E, followed
cues from our tool, which led the participant to a Useless Patch, the
erroneous URL.

Excerpt from E.P4 Yahoo! Error Transcript:
5:21 [Reads about the FF Error. Clicks on the Hint]
5:52 [Clicks on Link to View Typically RSS Feeds]
6:07 [Copies the erroneous URL from the {FF}, and pastes it in

the browser. Web site says that the page doesn’t exist].

In this case, although the patch was useless to the participant, our
tool provided additional scents and aided the participant in foraging for

information.
Both groups followed a significant number of Tried and Worked

in the Past Cues (an average of 43%) and Non-Misleading Cues
(an average of 40%) while fixing pipes (see Table 8). This demonstrates
end users’ heavy reliance on Easy to Understand Cues, especially
those that they have followed in the past, when determining which cues
to follow in the future. We postulate that Tried and Worked in the
Past Cues were popular for end users because they made it easier to
determine the cost/benefit of similar cues based on past success. Par-
ticipant E.P2, as can be seen in the transcript excerpt below, spent
7 min during Task SE making progress since we can observe him de-
veloping ideas about how to fix the problem. If these hints were useful
in the past, he was able to create more accurate cost/benefit analyses
regarding whether or not he wanted to follow those cues in the future.
Since he followed many of these cues in a row, we can conclude that he
found them to be helpful. The participants varied the types of cues they
followed only if Tried and Worked in the Past Cues were not
available or useful-looking for the case at hand.

Excerpt from E.P2 Silent Error Transcript:
11:23 [Returns to the pipe and looks at the second error and

reads the Help about the {IB} error]
12:35 [Starts reading the {IB Help}. Then opens the IB ex-

ample pipe and looks at the {IB Attributes}]
13:20 [Returns to the main pipe and examines the {IB

Module}]
14:06 [Goes back to the example pipe and examines the {IB

Module}]
14:30 [Runs the {IB Example Pipe} to see how IB works]
14:58 [Opens the {Link} in the example IB link attribute]
15:27 [Goes to the {Learn More About Item Builder} and

reads the information and compares it to the pipe]
17:16 [Clicks on {View Source Link} and opens the example

pipe] “Yeah, that’s the same one.”
17:23 [Returns to the main pipe and examines the pipe to see

how it works]
18:28 “I’m just wondering what this thing is doing right here.”

[Refers to the {IB and SB} then looks through the task again]

Few participants from both groups followed Difficult to
Understand Cues, nor did they tend to have problems with
Difficult to Understand Cues. Experimental group participants
followed only 2.03 Difficult to Understand Cues per bug fix at-
tempt (Successful and Unsuccessful), and control group participants

Fig. 5. Foraging and debugging behavior of participant C.P6. Note the periods in which the participant oscillates between debugging (black regions) and foraging
(cyan and magenta regions). The participant spent brief periods working on Bugs 4 and 5 (green and yellow regions, respectfully) but spent an extended period
working on Bug 6 (red regions). The participant primarily foraged Inside the Yahoo! Pipes environment while working on Bug 6. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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followed only 0.47 per bug fix attempt (Successful and Unsuccessful).
We postulate that they did not follow these cues as they were difficult to
understand or determine their benefit. This can be seen in the behavior
of Participant C.P4 while doing Task Y!E: [Clicks in the API Key box.
Clicks on the Key Link. Page Opens. Returns to pipe]. Participant C.P4 was
unable to determine the exact value of the patch, so he left the patch
even though it was necessary to fix bug B1.

The above observations are summarized as follows:

• Experimental participants followed cues between patches more
often than control participants. Thus, our tool helped our partici-
pants to navigate between patches more easily.

• Our tool enabled the experimental participants to persevere and find
solutions to bugs even if they were uncertain of where to find so-
lutions.

• Our tool reduced navigation costs between patches, which can be
seen by the increased number of experimental participants’ navi-
gations to Useless Patches.

• Participants in both groups preferred Tried and Worked in the
Past Cues because their cost-benefit analyses were more easily
determined.

• Neither group tended to follow Difficult to Understand Cues
because their cost-benefit analyses were difficult to determine.

5.1.3. Backtracking while finding and fixing faults
The most unsuccessful participants in Task Y!E tended to backtrack

more often than the most successful participants. In past studies related
to professional programmers, it was observed that the programmers
backtracked at least 10.3 times per hour [66]. Some users were fru-
strated because they could not “undo” their changes and some examples
available through Yahoo! Pipes were not a close match or did not
execute correctly. Fig. 4 shows the prominence of similar behavior for
end-user programmers. During Task Y!E, successful participant C.P7
backtracked 7 times. C.P7 commented: “Many times the examples don’t
work... if those examples worked I could have done better.” At other times,
the available examples were too complex for users to follow. Con-
versely, unsuccessful participant C.P5 backtracked 40 times in Task Y!E
between the main pipe and various help/example pipes, resulting in
little progress and an inability to fix most of the bugs. This resonates

with our previous results on end-user programmers where they back-
tracked numerous times to their previous strategies [11,39].

In general, all control participants backtracked their code edits more
(228 instances) than the experimental group (35 instances). Usually,
control participants were uncertain as to how to fix the errors, so they
were forced to reverse their edits if their changes did not fix the bugs in
ways they expected. This may also be reflected on the relatively higher
number of Output-Inspired Cues they followed in order to verify
their edits with output. However, both groups backtracked through web
contents nearly the same number of times (control 51 and experimental
56).

Most participants in the control group explored alternative strate-
gies to fix the bugs and needed to backtrack when they were not suc-
cessful. For example, C.P4 spent 51 min in unsuccessful explorations,
and then before continuing to the next task commented: “I couldn’t
understand the error messages... if there were steps to solve I could have
solved it. They expected you to know that this is an error... I am not familiar
with how to solve them”. When participants picked up an incorrect scent
and navigated to a patch in which they could not find a solution, they
backtracked to the Yahoo! Pipes editor (the location of the bug) and
began looking for cues in the output or error messages.

Participants in the experimental group backtracked fewer times
than those in the control group, because the hints provided by the de-
bugging support enabled them to create stronger scents. We also found
that while some participants remembered the patches they had visited,
many participants reapplied the same solution multiple times. For ex-
ample, participant E.P3 visited the same web site nine times when
looking for the RSS feed. He repeated steps because he did not know the
correct solution and hoped that he could reach the correct solution by
trial and error.

5.2. Cues while debugging in a VDLW environment

Using cues from the literature [48], we can discern that experi-
mental participants followed cues to help them fix bugs, and control
participants followed cues to localize them. To understand what addi-
tional cues participants tended to follow, we aggregated the occur-
rences of the cues found in Table 3. As can be seen in Fig. 6, the ex-
perimental and control groups followed Output-Inspired Cues

Fig. 6. Number of cues followed per treatment group.
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more often than other cue types, and of the other cue types, they fol-
lowed cues that led them to patches specific to their goal.

Each group preferred different cues because they had different
goals. The control group had to localize the bugs as well as fix them,
and they did not have the tool that was available to the experimental
group. Thus, since they are end users with limited experience with
Yahoo! Pipes, more expensive foraging was required. The control group
used cues that enabled them to more easily understand the pipe and
glean information from more example programs than the development
environment could provide. These cues included Domain Text,
Understandability, Documentation-Inspired (External),
and Reusability Cues. The experimental group, however, was
provided with hints from the debugging tool. Although they were also
unfamiliar with Yahoo! Pipes, they did not need to learn about
Yahoo! Pipes outside of the information readily provided to them by the
tool. As such, the experimental group preferred Documentation-
Inspired (Internal) Cues and made more Comparisons between
their buggy pipes and working examples. Hence, the control group
followed cues to more easily understand the pipe, and experimental
participants followed cues available from our tool to fix bugs.

Users in both groups tended to follow Output-Inspired Cues
more than any other cues consistent with past literature [48], as seen in
Fig. 6. Participants seemed to prefer to see what the pipe actually did in
order to determine what errors may be present. Although experimental
participants had a tool that localized the bugs for them, they still fol-
lowed significantly more Output-Inspired Cues than any other
type. Output-Inspired Cues, then, must also be Easy to Under-
stand Cues (Table 4) to end-user programmers during both fault lo-
calization and fault correction. If the output is incorrect, then it is fairly
obvious there is some sort of error that must be fixed. For example,
C.P2, within the first two minutes of Task SE: [Runs the pipe] “I want to
see what’s wrong with the pipe.” [Looks at the output of the pipe and reads
the instructions of the task]. In the case of experimental participants who
knew what errors they needed to fix and where, participants likely
wanted to see exactly how errors presented themselves in order to de-
termine how to fix them. Experimental participants primarily followed
Output-Inspired Cues provided by the debugging tool. For ex-
ample, the first action E.P1 took in Task Y!E was: [Clicks to find the
errors] “Let me first click to get the errors.” So we posit that Output-
Inspired Cues are Easy to Understand Cues.

The control participants followed Documentation-Inspired
(External) Cues and experimental participants followed
Documentation-Inspired (Internal) Cues (Table 4). Control
participants likely wanted more guidance to fix the program than the
VDLW environment could provide, so they looked elsewhere for assis-
tance, namely the Internet. Unlike control participants, experimental
participants preferred Documentation- Inspired (Internal)
Cues, especially those found in the hints provided by our tool’s To-fix
list. These hints allowed participants to remain in the patch
(Yahoo! Pipes environment) while foraging for solutions. The cost to
use these hints was relatively low as the participants did not have to
forage outside of the environment for patches. They could gather
whatever information they needed within the development environ-
ment, and these patches were often valuable and pertinent to the bug
the participants were trying to fix. For example, E.P4 consistently re-
turned to the tool hints when she needed clarification or was stuck.
Hence the experimental participants stayed in the Yahoo! Pipes en-
vironment because the cost to follow hints provided by our debugging
tool was low.

As Fig. 6 shows, experimental participants performed more Com-
parisons between example pipes and their own pipes. As mentioned
above, the experimental group utilized more internal documentation in
the form of hints, which often led to sample pipes. Due to the relatively
low cost of finding and accessing these examples, we posit that our tool
helped the experimental participants more accurately determine what
information they needed from the sample pipe patches by comparing

the information found in the hints, the information in the sample pipes
and other documentation, and the bugs reported in the To-fix list. This
phenomenon, in turn, lowered the overall cost of foraging in the ex-
ample pipes by allowing the experimental participants to hone their
focus while foraging. The following excerpt illustrates this relative to
participant E.P2:

Excerpt from E.P2 Silent Error Transcript:
11:23 [Returns to the pipe and looks at the second error and

reads the {Help} about the {IB} error]
12:35 [Starts reading the {IB Help}. Then opens the IB ex-

ample pipe and looks at the {IB Attributes}]
13:20 [Returns to the main pipe and examines the {IB Module
14:06 [Goes back to the example pipe and examines the IB

Module].

Control participants would often follow Reusability Cues,
which they believed would allow them to reuse elements from other
internal modules or external sample sources even if they did not fully
understand how an example pipe worked. Uncertain of what informa-
tion they truly needed from sample pipes, control participants likely
followed Reusability Cues in an attempt to reduce the cost of
finding which parameters (URLs, API keys, etc.) they needed to change
in their own pipe. They attempted to incorporate a preexistent solution
as it reduced the amount of time necessary to understand and create a
solution themselves. For example, C.P4: [Finds the IB and starts reading
the help. Loads the IB Example pipe] [Types ‘title’ into the IB Attributes.
Looks at the example pipe again]. The experimental group, by compar-
ison, ventured to patches marked by Reusability Cues less often
because they had better scents to follow and found information through
other actions or cues, such as Comparisons or Documentation-
Inspired (Internal) Cues.

Control participants followed more Domain Text Cues and
Understandability Cues [48] than the experimental participants
in an attempt to understand the pipe in its entirety. Thus, they searched
through the domain text of the pipe in order to gain an understanding of
the function of each module, a process that was often time-consuming.
For example, Participant C.P8 wanted to understand how to edit the
pipe, so she searched for answers to her questions: “Can I add boxes?”
[Begins to look through the list of modules]. The experimental group, on
the other hand, had access to the hints provided by our tool, so they did
not need to localize the bugs. The only cues they followed to understand
the pipe were those that helped them understand the error itself. Hence,
the To-fix list provided by our tool facilitated Minimalist Theory [12],
i.e., helping participants learn in the context of their specific task and
goal.

6. Discussion

6.1. Implications for theory

We categorized the different types of cues that are present in a vi-
sual programming environment into a hierarchy of cues, namely Easy
to Understand, Difficult to Understand, and Not Followed.
We discussed participant behavior when they faced issues related to
these cues and classified the patches as these cues led them to a
Valuable Patch or Useless Patch. This refinement of cue types
allows designers to understand how to strengthen cues (discussed later)
and allows researchers to focus on behaviors relative to these cue dif-
ferences.

In addition, we articulated the different strategies that users can
employ when debugging. We began by noting the overall hunting
strategies participants used. We noted that these strategies are highly
dependent on user preference and, to an extent, prompted by the en-
vironment (e.g., a To-fix list promotes a “sleep on the problem”
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strategy). We noted slightly different strategies when participants for-
aged for cues and navigated through patches when localizing a fault
versus when looking for a solution. We believe these differences arose
because in the former case, participants were more focused on staying
within the Yahoo! Pipes editor, whereas in the latter case they needed
to peruse more web content to find a way to correct the fault. Overall,
participants preferred to stay within the editor (the patch) to the extent
possible. Finally, diet constraints (where information had to be for-
matted in a specific manner) affected debugging capacities. Participants
could easily forage to the right web content (reviews by Rotten
Tomatoes) but had significant difficulty finding the RSS feed for the
reviews. Hence, there is a large difference between foraging for in-
formation on the web and foraging for information when debugging a
program. Oftentimes these diet restrictions (only RSS feeds are allowed
in the module) and the diet formats available in web content (where the
RSS feed is located in the web site) are not clear, especially to end users.

Furthermore, the IFT model was traditionally designed to support
dissimilar but joint topology. Unfortunately, most distributed pro-
gramming environments such as mashups, mobile programming, and
the internet of things tend to be topologies of disjoint patches. This
disjoint topology problem is prominent during fault correction in dis-
tributed programming environments. For example, the APIs in the
mobile environment are also disjoint and create challenges similar to
those associated with the mashups used in our study. Hence, the cues
and strategies observed in our study can be generalized to other similar
programming environments, especially Visually Distributed Languages
for the web programming environments.

6.2. Implications for design

We now discuss ways in which our findings can help improve in-
terface design for distributed, visual, and VDLW programming en-
vironments.

Bookmarking cues: The ability to manually or automatically book-
mark cues has been determined to be useful in the past [3,29] and
makes cues easily accessible in the future. Such an ability could be
implemented by marking cues similarly to bookmarking URLs in a web
browser. This would allow the users to add, delete, and manage cues in
the form of a list with references to Valuable Patches so that they
can easily keep track of successful cues. In the context of IFTTT, a
platform that allows end users to create customizable apps, enabling
bookmarking of favorite services (as cues) can help end users who are
looking to resuse these services in future apps (or help others find
popular services).

Structural relatedness: Debugging tools need to provide structurally
related solutions when providing the exact solution is not feasible. For
example, providing information about the structure of RSS feeds, that a
user is looking for, helps them find the relevant RSS feeds. In the
context of IFTTT apps, “Connect RSS Feed” can utilize the hints with
structured relatedness to atom web feeds15 template.

Output-inspired tool designs: Debugging tools, especially those related
to end-user programmers and mashups, need to be based on the output
of the programs. High instances of Output-Inspired Cues for both
control and experimental participants affirm that end-user pro-
grammers, especially when using VDLW programming environments,
follow the outputs as cues for their future foraging ventures. In IFTTT,
allowing searching based on displaying the output of the Applet would
be useful.

Information feature/patch recommenders: VDLW programming en-
vironment developers should consider creating a recommender system
that highlights useful information features or patches, which would
lead to diminished cost. If participants have visited a patch, the inter-
face should provide cues, specifically Tried and Worked in the Past

Cues, along with feedback regarding their previous visits. Google
search, for example, displays the date when a page was last visited and
changes the color of previously visited links.

Patch layout is important: Tools need to have better information
feature layouts that may help end users forage for errors without un-
necessary cost. The foraging cycles within the tool environment led to
frustrations and unsuccessful results. In the context of IFTTT applets,
the services should have contents that are easily accessible.

7. Threats to validity

Every study has threats to validity and here we explain threats re-
lated to our study and how we guarded against these threats.

External validity: The primary threat to external validity is the gen-
eralizabity of our study participants. Our study participants were un-
dergraduate and graduate students from different majors but had either
little or no experience with web mashups. The students were selected
through convenience sampling and past studies have shown that stu-
dents are an appropriate sample [31] when representing end users.
While, we cannot generalize our results to mashup programmers who
may be more experienced in web programming, one can argue that
students are representative of end-user programmers with some ex-
perience in programming. Further, our participants had created pro-
grams in a wide-variety of programming languages, including many
that are popular with end users.

A second threat relates to the generalizability of the programming
environment. We have studied only one mashup environment; how-
ever, it is representative of a broader class of web-development en-
vironments (e.g., Apatar,16 App Inventor).

A third threat relates to the generalizability of tasks. Our study
considered only two tasks that built on only two types of pipes. Our
participants were asked to use pipes that were provided, rather than
pipes that they had created for themselves. End-user programmers
frequently reuse as they learn by looking at or using code examples
[6,45]. A case study of Android Market found an average of 61% of two
or more mobile app containing same code [56]. Similarly, another case
study of Yahoo! Pipes found more than 56% of clones [63] and 27.4%
of the programs containing subpipes [37]. While the reuse context is
common and important, prior familiarity with pipes could lead to dif-
ferent results. Our tasks for control and experimental groups were
counterbalanced to help reduce bias in the performance of the tasks.

Internal Validity: The primary threat to this particular study relates
to our choice of a between-subjects design. This study design helped
minimize the effects of learning as the participants moved from initial
to later tasks, but it may have led to individual differences in our use of
a small pool of participants. We performed Wilcoxon rank tests on our
time data to quantitatively study the effects of time; however, because
our participants were performing in think aloud mode, timing measures
may be affected. Further, it is also well-established that use of the think-
aloud method can impact participant behavior although the think-aloud
protocol is a widely accepted method of approximating a participant’s
thought process.

Construct Validity: To help assure the validity of our constructs, we
examined both groups with respect to a broad range of IFT constructs
(patch/cue/strategies). Our inter-rater reliability was 85% on all code
sets, helping to assure construct validity. To help assure the extent to
which a measure actually captures what it intends to measure, we
supplemented qualitative analysis with quantitative analysis and care-
fully controlled for any confounding per-participant effects. The results
of our study can be influenced by the depth of the tutorial provided to
our participants. However, all participants were provided with the same
tutorial and the knowledge in the tutorial was similar to that in the
online Yahoo! Pipes environment. Further, threats may occur with the

15 https://validator.w3.org/feed/docs/atom.html. 16 http://apatar.com/.
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possibility that the complexity of our pipes was not high enough to
allow measurements of effects, and that the pipes used were not re-
presentative of the complexity of real-time applications. We controlled
for this by performing initial pilot studies on non-participants and using
their feedback to adjust the pipes and the tasks. Additional studies are
needed to examine other types of mashup environments, tasks, and
usage contexts.

8. Related work

Here, we discuss related work on mashups and Yahoo! Pipes, end-
user debugging, and IFT in software engineering tools.

8.1. End-user debugging

Debugging is an integral part of programming. Studies have shown
that professional developers as well as students [19] spend significant
portions of their time debugging. In fact, Rosson and Carroll [54]
suggest that even professional programmers often “debug into ex-
istence” their programs; that is, they create their programs through a
process of successive refinements.

There has been some work directed at end-user programmers en-
gaged in debugging. Grigoreanu et al. [23] have developed a classifi-
cation framework for characterizing end-user programmers’ debugging
strategies. They identify several debugging strategies including code
inspection, following data flow, following control flow, testing, feed-
back following, seeking help, following spatial layout and specification
checking. In a subsequent study, Grigoreanu et al. [24] examined the
sense making process; that is, the process by which end users under-
stand bugs and their causes (based on prior work by Priolli and Card
[53]). Sense making consists of an information foraging loop followed
by attempts to understand the foraged information. They found that the
foraging loop dominated the sense making process. As noted in
Section 6.2, Cao et al. [10] observed that end users creating mashups
spend a significant portion of time debugging. There have been no
studies, however, of the use of foraging by end users debugging
mashups.

Most end-user programming environments support debugging only
through consoles that print debugging output [22]. A few improve-
ments, however, have been proposed. “What You See Is What You Test”
(WYSIWYT) [55] supplements the conventions by which spreadsheets
provide visual feedback about values by adding feedback about “test-
edness.” The WYSIWYT methodology can also be useful for other visual
programming languages (and VDLWs) [30] and for debugging of ma-
chine-learned classifiers by end users [35]. Our approach shares some
aspects of WYSIWYT; we also use definition-use coverage to find some
classes of faults. We differ from WYSIWYT as we provide a “To-fix” list
of errors and guidance for fixing them.

Another approach for identifying faults is to check the internal
consistency of the code instead of relying on the external specifications.
Ucheck is an example of such an approach. Ucheck [1] allows users to
statically analyze a spreadsheet and narrow the class of faults it may
contain. Similar to this approach, our Anomaly Detector also identifies
some types of faults by statically analyzing the code of mashups. Unlike
Ucheck, we provide guidance to users for fixing the identified faults.

Lawrance et al. [40] developed ways to combine reasoning from
Ucheck and WYSIWYT. The combined technique was helpful in locating
faults and mapping the fault information visually to the user. They
found that their combined technique was more effective than either
technique alone. Our support is similar to their approach in that we also
automatically locate faults and provide information regarding faults
visually. We differ as we provide a “To-fix” list for viewing the list of
faults and also provide guidance for fixing those faults.

GoalDebug [2] is a semi-automatic debugger for spreadsheets.
When a user selects an erroneous value and provides an expected value,
the debugger recommends a list of changes in the formula that would

provide the expected value. The user can explore, apply, refine or reject
changes suggested by the debugger. Our approach differs as users are
not anticipated to know the expected value of the faulty code; rather,
we provide guidance based on types of faults in the code.

Topes [57] is a data model that helps end users validate and ma-
nipulate data in spreadsheets. A similar strategy can be used to identify
mismatches in data formats. Desolda et al. [17] presented the Task
Process Model and the Landmark-Mapping model for describing the
code search strategies of non-programmers. Our work also includes
search strategies by non-programmers, but we use the lens of In-
formation Foraging Theory.

Whyline [32] is a hypothesis-driven tool that allows programmers
to ask “why did” and “why didn’t” questions about program output in
visual programming languages such as Alice. It employs both static and
dynamic analyses of programs to provide answers when a programmer
selects a question. In our case, we employ static analysis for detecting
different classes of faults. Our approach is different from Whyline [32]
as we do not apply dynamic analysis of programs to provide answers to
the programmer. Mashup architectures are collections of physically
distinct components; this makes it difficult to dynamically analyze their
results and hence mandates a different approach. Therefore, we have
provided guidance based on types of faults in the code.

Assertions have been used to find faults in web macros [34], whose
creation involves copying and pasting techniques. Once data is entered
by the user it is saved in the clipboard, and before the data is reused, it
is tested for existence and data types. Assertion-based approaches have
also been effective in testing and debugging spreadsheets [8]. In our
case, for one class of faults (Mismatch Range) we use assertions where
we check the ranges of numbers used during program execution. We use
other kinds of static analysis for identifying other types of faults.

Stolee and Elbaum [62] found that end-user mashups tend to suffer
from several types of errors and deficiencies. They defined program-
ming deficiencies in Yahoo! Pipes as “smells.” They developed me-
chanisms for identifying and classifying smells and refactoring techni-
ques for removing smells from pipes. Their proposed techniques reduce
the complexity of the pipes and also help apply software development
patterns to standardize the design of pipes. Their studies showed that
refactoring techniques can significantly minimize smells. Some of the
smells they identified are similar to our fault classifications, e.g., Link,
Missing: Parameter, Deprecated Modules, and Connectors. Our ap-
proach differs from their work as we automatically identify faults but
do not attempt to fix them. Rather, we provide guidance to users for
fixing faults.

Most mashup programming environments support debugging by
providing a debugger console for the program. Yahoo! Pipes is the only
such environment that provided a debugger console for every module.
The only other debugging support for mashup environments that we are
aware of is from our prior work [36], which allows mashup pro-
grammers to “tag” faulty and tested mashups. Faults can then be lo-
calized by “differencing” faulty and correct versions of a pipe.

8.2. Mashups and Yahoo! Pipes in EUP research

Jones and Churchill [28] described various issues faced by end users
while developing web mashups using the Yahoo! Pipes environment.
They observed discussion forum conversations in order to understand
the practices followed, problem solving tactics employed, and colla-
borative debugging engaged in online communities of end users.

Zang and Rosson [67] investigated the types of information that
users encounter and the interactions between information sources that
they find useful in relation to mashups. In another study they found
that, when asked about the mashup creation process, end users could
not even describe it in terms of the three basic steps of collecting,
transforming, and displaying data [68].

There has been research aimed at understanding the programming
practices and hurdles that mashup programmers face in mashup
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building. Cao et al. [11] discussed problem solving attempts and bar-
riers that end users face while working with mashup environments and
described a “design-lens methodology” with which to view program-
ming. Cao et al. later [10] also studied debugging strategies used by
end-user mashup programmers. Gross et al. created a mashup model
consisting of the integration layer, presentation layer, and UI compo-
nents [26]. Aghaee et al. created a mashup a high level of expressive
mashup environment, NaturalMash, that allows end-user programmers
to create mashups [4].

Dinmore and Boylls [18] empirically studied end-user programming
behaviors in the Yahoo! Pipes environment. They observed that most
users sample only a small fraction of the available design space, and
simple models describe their composition behaviors. They also found
that end users attempt to minimize the degrees of freedom associated
with a composition as it is built and used.

Stolee et al. [64] analyzed a large set of pipes to understand the
trends and behaviors of end users and their communities. They ob-
served that end users employ repositories in different ways than pro-
fessionals, do not effectively reuse existing programs, and are unaware
of the community.

Grammel and Storey [22] analyzed six mashup environments and
compared their features across six different factors (Levels of Abstrac-
tion, Learning Support, Community Support, Searchability, UI Design
and Software Engineering Techniques). They observed that support for
various software engineering techniques like version control, testing,
and debugging is limited in various mashup environments.

Research related to mashups motivated us to investigate our ap-
proaches in mashup environments. Hence, to implement and evaluate
our approaches we have used the Yahoo! Pipes environment. Our work
differs from the foregoing in several ways: (1) We have analyzed the
code and execution traces of code to analyze and find faulty programs
that exist in the Yahoo! Pipes repository. (2) We have provided de-
bugging support for Yahoo! Pipes and our studies showed that this
helped users debug their programs efficiently and effectively. (3) We
have analyzed the behavior of users while debugging mashups from an
IFT perspective.

8.3. IFT in software engineering research

Researchers have applied IFT to software engineering to understand
programmers’ behavior. IFT has been applied to understand the navi-
gational behavior of programmers by interpreting results from an em-
pirically based model of program comprehension [33]. Another for-
mative study observed that opportunistic programmers use
documentation in a manner consistent with IFT [7], but these studies
did not mention how any specific IFT constructs, such as cues, strate-
gies, matched up with empirical observations.

Fleming et al. [20] investigated the applicability and utility of IFT
for debugging, re-factoring, and reuse. They found that, in these suc-
cessful tools, IFT mathematical models can be applied to help pro-
grammers and to identify recurring design patterns.

Lawrance et al. [42] studied the foraging behavior of programmers
using programming environments while debugging large collections of
source code. Based on these results the researchers found that IFT can
be used to predict programmers’ behavior with scents and topology
without relying on their mental states such as hypotheses. The re-
searchers developed an executable IFT model that accurately predicted
programmers’ navigations when compared with the non-IFT compar-
able models.

Piorkowski et al. [48] studied the foraging behavior of professional
programmers while they forage for learning vs. fixing bugs. The re-
searchers found different foraging behavior for both groups, and they
also found differences in the type of information, patches, and tactics
they used. Piorkowski et al. [50] also studied the diet of the pro-
grammers and found they need diverse and distinct dietary patterns.
They found that programmers foraged using different strategies to

fulfill each of their dietary needs and goals. Later, they studied how
well a programmer can predict the value and/or cost of a navigation
path and found that 51% of their programmers’ foraging decisions led
to disappointing values of information obtained, and about 37% of their
programmers’ foraging decisions resulted in higher costs than antici-
pated [49].

Our study allows us to understand the foraging behavior of end-user
programmers especially in mashup programming environments. End-
user programmers not only forage within the programming environ-
ment like professionals but also on the web to find the fixes for the bugs.

9. Conclusions

Our analysis of the behavior of 16 end-user programmers using IFT
demonstrated how debugging support in a VDLW programming en-
vironment, a web mashup development environment in this case, can
ease the difficulty of foraging for information while debugging. We
identified new patches, Valuable and Useless, and a new hierarchy
of cues that end users followed, including Easy to Understand,
Difficult to Understand, and Not Followed Cues. End users
preferred familiarity over novelty. They followed cues that have
worked for them before (Tried and Worked in the Past Cues, a
type of Easy to Understand Cue) and did not follow cues with higher
navigation costs (Difficult to Understand and Not Followed
Cues). This was due in part to the need of the end users in our study to
learn the environment as they debugged the pipes. Thus, foraging for
any information was costly to them since they were often uncertain as
to what they should look for, but they were willing to forage through
costly patches if they had exhausted their Easy to Understand
scents.

During the debugging process, end users spend significantly more
time foraging for information than professional programmers. While
debugging, end users look for some of the same cues as professional
programmers, namely those that enable them to observe the output of
their program. Current debugging mechanisms (like runtime observa-
tions in Yahoo! Pipes) do not reveal bugs due to the black box nature of
visual programming environments. Therefore, without the aid of de-
bugging support, end users struggle with localizing bugs and verifying
solutions. As a result, they tend to backtrack to previous states in the
debugging process if they determine (sometimes erroneously) that they
are not arriving at Valuable Patches.

As most VDLW environments such as mashups, mobile program-
ming, and the internet of things tend to be topologies of dissimilar and
disjoint patches, IFT was not intended to model such environments but
those with dissimilar yet joint topology. The cues and strategies ob-
served in this study reflect the disjoint nature of APIs that create
challenges similar to mashup programming environments. Thus, the
cues and strategies observed in our study may be generalized to other
disjoint programming environments.

Supplementary material

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.cola.2019.04.003.
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