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ABSTRACT

Neural Networks are beginning to control many safety critical
systems with physical presence. However, evaluating the robustness
of such physical systems is difficult, and requires significant time,
space, resources, and a legal framework to allow for such tests. In
this paper, we present a system to evaluate the robustness of a
self-driving car within a simulated physical system. This approach
shows the difficulty of adversarial control on such systems, as well
as presenting an application off which future work may be built.
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1 INTRODUCTION
1.1 Problem

We aim to demonstrate that it is possible to make perceptual modifi-
cations to the inputs of real-time control algorithms which produce
undesired behaviors, allowing for adversarial control. Deep neural
network policies [13, 14] are being researched for their viability in
increasingly complex reinforcement learning tasks [4, 5, 19, 27]. It
is known that adversarial examples can be used to cause incorrect
actions, however we pose the use of similar techniques to take
total control of the policy decisions. This work would provide a
framework in which an intruder could manually control a neural
network policy by modifying its perception of the environment.

1.2 Motivation

Neural network policies are on the verge of controlling numerous
critical applications across human society. Self-driving cars [28],
autonomous helicopters [18], and even medical treatment [8] are
all among the safety-critical domains where neural network re-
search has made great strides. However, as with any safety-critical
technology, the reliability of such learning algorithms is a major
concern. Further, it has been shown that neural network policies
are vulnerable to adversarial attacks [2]. Little work, however, has
been performed on adversarial control. Such work may be able to
pave the way towards developing a framework for protecting deep
neural network architectures from such attacks in the future.

1.3 Related Work

Recent work has attempted to generate adversarial images for neu-
ral network policies [2]. The authors utilize well-known adversarial
image generation techniques in order to identify minimal input
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perturbations that cause the neural network policy to change its de-
cision for a particular frame. This work does not however consider
creating adversarial images that are robust to image transforma-
tions such as scale, rotation, and perspective change. Another recent
work [1] identifies adversarial images that are robust to modest
transformations in scale, rotation, and perspective, but not on the
order of magnitude that would be experienced by a self-driving car.
The robust examples are most sensitive to changes in perspective,
which (along with scale) is most common in a moving vehicle. The
work presented here seeks to merge the attempts of [2] and [1] in
order to try and generate robust adversarial images that are capable
of attacking neural network policies.

Three of the most promising reinforcement learning (RL) al-
gorithms studied to date are deep Q-networks (DQN) [17], trust
region policy optimization (TRPO) [16], and advantage actor-critic
(A2C) [24]. Previous works have assessed the vulnerability of deep
neural network architectures to adversarial examples [12, 23]. Fur-
ther recent research has addressed similar vulnerabilities in the
reinforcement learning domain [2, 10]. Techniques such as the Fast
Gradient Sign Method (FGSM) [9] are capable of quickly generat-
ing input perturbations that can cause a neural network policy to
produce an undesired action. These perturbations are generated
analytically and in most cases are imperceptible, or nearly imper-
ceptible, to human observers. In FGSM, we are given raw input to
the neural network x, a distribution over possible class labels y,
network parameters ©, and a loss function J(©, x, y). Then the best
adversarial perturbation 1, can be computed as:

n = e sign(Vy J(©, x,y))

Where € is a bound on the magnitude of the perturbation. There
are available online code repositories designated to the task of
generating adversarial examples with this method among others
[20, 21]. In order to generate adversarial perturbations for any
neural networks, we require a well-defined loss function J. This loss
function can be computed directly from knowledge of the neural
network in a white-box attack, but in practice it is not realistic to
assume full knowledge of the internal state of the target. In order
to orchestrate a black-box attack, previous works have assumed a
target uses one of a set of learning algorithms and trained a local
model to be an approximation of the target [10]. After creating a
local approximation, FGSM is used as it would be in a white-box
attack. Even when different training algorithms are used by the
target and the attacker, the adversarial perturbations often work.
This may seem counterintuitive, but previous research has deemed
this the transferability property and suggested that the cause is
similar underlying feature models across different deep learning
architectures [26]. In the context of our work, it suggests that the
ability to generate effective adversarial perturbations for one neural
network policy may provide a framework for deceiving any policy
that might be in use by a target.
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By combining the ability to generate adversarial examples with
a more specific criteria of control, this work will serve as an im-
mediate extension to that done in [10] as well as [21]. This will
further refine the ability of an adversary to maintain constant, de-
liberate control over the neural network policy subject to various
constraints in the modifications made.

2 APPROACH

In order to orchestrate thorough adversarial control, we first must
make sure the policies are accessible for study. We use an open
source implementation of FGSM [20] against NVIDIA’s driving ar-
chitecture [3] as the neural network policy. Our target environment
for control will be Udacity’s Self-Driving Car Simulator that uses
multiple cameras as sensors and standard turn controls expected
in an automobile (explained in Section 1.5). Using our own trained
policy, we execute adversarial attacks against the self-driving car
in the simulator. Our adversarial attacks are white-box attacks that
make no attempt to hide the adversarial perturbations. These at-
tacks will be orchestrated via filters placed in front of the vehicle’s
cameras, as a billboard, sign, or sheet of paper may be used in real
life. We hope to obstruct as few of the automobile’s cameras as
possible while also ensuring the attacks are minimally sensitive to
scale, perspective, and rotation. In order to demonstrate control,
we modify the environment of the self-driving car in order to make
it deliberately steer off the road.

2.1 Adversarial Algorithms

One avenue of attack we investigated was the use of the L2 method
developed by Carlini and Wagner [6]. This algorithm uses gradient
descent to minimize the change in an image that changes that im-
age’s classification to the desired class based off of the L2 metric.
This attack often finds adversarial examples that other attacks do
not, and which work on defenses that are robust to other attacks.
While these attacks generally have less distortion than others, this
attack method is slower in comparison. Here, the classification
of the neural network architecture we are investigating will clas-
sify an image into a turning angle. Further, the algorithm uses
box constraints to ensure that the image it generates is valid for
its application. Unfortunately, however, this algorithm relies on
a white-box model with a softmax output layer. While we could
conceivably transfer the model we were performing our attacks
against to another with a softmax output layer (thereby avoiding
the issues arising from the softmax requirement, and the white-box
requirement), the work by Papernot, et al. suggests that this would
be beyond the scope of our goals [22]. To transfer their models, and
generate synthetic data, Papernot et al. had to query the base model
upwards of 300 times in the simplest case. Further, they required di-
rect access to the classifier’s output. Neither of these requirements
would be simple to fulfill in our context, as self driving car policies
would be well-guarded and defended.

2.2 The Unity Simulator

Udacity’s self-driving car simulator is a straightforward application
of the Unity Game Engine. A majority of the code for running
the simulator is game-engine specific and not in the scope of this
research. Importantly, there exist 2 modes that the simulator can
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run in: “Training’ and ’Autonomous’. The Training mode can only
be used after creating a self-driving model for a car (i.e. Udacity
does not provide their own models). The Autonomous mode has 2
settings: ’Autonomous’ and "Manual’. The Autonomous mode will
have the simulated car respond to driving inputs (steering angle) via
a web-port connection to Unity. In autonomous mode the car will
not move until it receives inputs via the port, or until the user goes
into ’Manual’ mode by pressing a steering key (WASD or arrow
keys). The car will prioritize manual commands to those sent over
the port, allowing users to make corrections during self-driving
when necessary.

This simulator provides two tracks for training and testing a
self-driving car. Users can create their own tracks, but doing so
requires significant effort and an extensive knowledge of the Unity
Game Engine. Our work focuses on the Lake Track (see source
code) for training and testing the self-driving neural network policy.
Extending the same performance results to other tracks is left to
future work.

There are a large number of scripts, textures, models, and pe-
ripheral files provided within Udacity’s Unity project. In particular,
three scripts are important for this research: CommandServer.cs,
UlSystem.cs, and CarController.cs. The CommandServer.cs C-Sharp
script is the primary interface via which all Machine Learning
projects must interface. Unity opens up web-sockets listening for
specific commands such as steer or manual. A steer command is
expected to provide a steering angle and throttle (a.k.a. accelera-
tion) which Unity then triggers in the self-driving car. In return,
Unity communicates the car’s current viewpoint to any listening
machine learning models. The UlISystem.cs updates the heads up dis-
play (HUD) for the user in the simulator. CarController.cs contains
all of the code related to how the car moves in the simulator. This
includes identifying the appropriate revolutions per minute (RPM)
of the engine, the gear (RPM:speed ratio), torque on the wheels,
gravity force applied while driving, and other specifics related to
accurately simulating the movement of a car.

2.3 Generation of Adversarial Images via
Blackbox Optimization

All current adversarial attack implementations utilize gradient-
based optimization schemes in order to identify adversarial images
that can trick the neural network policy. However, these techniques
are not able to generate adversarial images if the underlying policy
is structured with a noisy or undefined gradient. A more robust,
yet expensive, mechanism for generating adversarial examples is
the the use of gradient-free optimization techniques. This work
attempts to identify adversarial images that are robust to trans-
formations by applying multiple random transformations to any
given adversarial image when evaluating adversary performance.
The average performance of these randomly transformed images
generates a stochastically noisy gradient with respect to the pixel
intensity changes in the adversarial image, which cannot be opti-
mized by previous gradient-based techniques.

This paper utilizes two gradient-free (black box) optimization
techniques to attempt generation of adversarial images. Adaptive
Memory Programming for Global Optimization (AMPGO) [7] is an
optimization technique that does not require a gradient. AMPGO
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augments an arbitrary local minimization algorithm with tunnel-
ing. Tunneling avoids previously identified local-minima in order
to perform global optimization in a multi-minimum search space.
Internally, the implementation of AMPGO used here does local
minimization with L-BFGS-B [29] and a discrete approximation of
the local gradient [11]. Adaptive Normal minimization, or modified
simulated annealing [15], uses only random perturbations along
single dimensions to search for optimal solutions. This algorithm
never approximates a gradient, allowing it to perform unbiased
searches through a domain. We suspect that the performance of
AMPGO is considerably damaged by the noisiness of the gradient
with respect to changing pixels in the adversarial image.

In summary, the structure of our adversarial attack generation
is as follows for each desired attack (right and left turns):

(1) Generate an initial random image

(2) Randomly transform the adversarial image 100 times with a
neutral colored background, compute the average turning
angle produced by the self-driving car

(3) Repeat Step 2, modifying the adversarial image according to
the selected derivative-free optimization algorithm to iden-
tify the largest magnitude turn that can be produced

3 DATA

Udacity’s Self-Driving Car Simulator [5] allows us to train a self-
driving model for experimentation with adversarial attacks. It would
be preferable to use a pretrained model for Udacity’s simulator,
available on GitHub [25]. A pretrained model can eliminate the
need for training time and also have a consistent baseline to attack.
However, the available pretrained model does not successfully drive
around the track without making errors. This is solved by running
the simulator in *Training Mode’ and manually driving in order to
gather more data for the model. The model was retrained on the
newly collected training data consisting of a series of images and
steering angles produced by a human driver. For reproducibility,
we provide the source training data and the more performant final
model. This model is based on NVIDIA’s End-to-End Deep Learning
network architecture [3], consisting of 9 layers (1 normalization,
5 convolutional, and 3 dense), but with some slight modifications
(1 lambda layer, 1 dropout layer, ELU for activation function). This
model can drive the course without error, which provides a founda-
tion to test an adversary’s ability to attack and control the model
by modifying the camera’s input in the simulator.

3.1 Modifications to Udacity’s Simulator

We made a number of modifications to not only train our model, but
also in order to simplify the adversarial interface with the simulator.
The first and most important modification was to create 2 entirely
new and separate scenes which were carbon copies of the 2 tracks
that Udacity provided which would then become the ’Adversarial’
tracks. We added the ability to choose between having the Adver-
sarial or non-Adversarial track loaded via the Menu Screen with
a simple little checkbox which would switch scenes dependent on
if the user wanted the Adversarial track or not. Specifically, the
Adversarial tracks were no different than the Autonomous tracks
except for overlaying an image in front of the car’s viewpoint. We
confirmed that modifying this image in real-time (i.e. updating the
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Figure 1: A demonstration of how the difference between at-
tempt 1 (top), where images contain background informa-
tion, and attempt 2 (bottom) with the background informa-
tion removed.

image entirely) was possible in this context and would definitely
affect how the car drove. For training purposes, we modified the
CommandServer.cs script to essentially run the given machine learn-
ing model on both the perturbed image and the unperturbed image
(this was done by modifying the alpha values of the image from 0
to 1) and then pass the expected inputs (steering angle and throttle)
along with the current frame number to our adversarial trainer.

The other modifications that were made to this project were
within the UISystem.cs script. These were fairly simple modifica-
tions in order to reset the car to the original starting position and
also to pass along the car’s current map-coordinates via a text file.
The car’s position could be reset via 2 methods: adding content to
a text file or by pressing the ’Enter’ key. We wanted to be able to
reset the car’s position in the case of our adversarial training ever
going wrong in order to have an easy restart rather than having to
reload the whole simulator again. The car position was passed to
a text file for an attempted adversarial attack on a reinforcement
learning model.

3.2 Training the Neural Network

The original open-source self-driving model was not able to success-
fully drive the car uninterrupted around the selected test track. In
order to generate a better driving model, we utilized the "Training’
mode provided by the simulator. The minimum amount of training
data that produced a performant model was:

e 9 laps (forward direction)
e 1 lap (backward direction)
e 6 passes through starting turn (forward direction)

The single pass backwards around the track was necessary to make
the model understand right turns, as the track consists almost
entirely of left turns. The extra passes through the starting turn
were necessary because some latent visual features in that region
often caused the model to incorrectly steer off the right side of the
track.
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Figure 2: The images that produced the most robust left (top)
and right (bottom) turns when transformed randomly and
placed into the view of the neural network policy. Note that
the seed for each turn was a neutral image. The images look
identical, but produce noticably different distributions of
turns when randomly transformed into the view of the neu-
ral network policy.

The modified simulator, final trained model, as well as all the
training images and associated steering angles are available online
at https://github.com/tchlux/Adversarial_Control.

4 RESULTS

Gradient-free optimization algorithms require significantly more
computations in order to converge on adversarial examples. This is
expected, because in the most naive case (L-BFGS-B in AMPGO)
an approximation to the gradient is generated using 2D computa-
tions, where D is the dimension of the input vector. The adversarial
vectors (images) generated in this work are 22 X 66 X 3 and are ran-
domly transformed 100 different ways, making for 871, 200 policy
evaluations at every gradient approximation (where gradient-based
techniques would require only 100). This X9000 increase in expense
is likely the cause of poor performance by AMPGO. No results
are presented for AMPGO, because it never achieved more opti-
mal solutions that the initial solution given ten hours of compute
time on an 8-core 4.0 GHz AMD RX8 Processor at near full usage.
Adaptive Normal however was capable of generating moderately
improved adversarial examples that were robust to 100 random im-
age transformations involving [1,3] times scaling, [-20,20] degrees
of rotation, and [-70,70] degrees perspective change. The respective
reasons for these ranges are: roadside signage could potentially
scale to fill nearly all of a camera’s input (the selected adversarial
image size is 1/3 of a all camera input), the maximum degree hill
on a road in the U.S. is 20 degrees (allowing signage to be rotated
by that amount), and passing signs remain clear in camera images
nearly until the sign is not visible at 90 degrees.

The first attempt, seen as the top image in Figure 1, was not
successful in generating adversarial examples. The increased noise
provided by variation in background images made the black box
optimization algorithms unable to find any solutions that produced
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Randomly Transformed Adversarial Left Turn Image (100 bins)
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Figure 3: The 100-bin probability mass function (PMF) of
the different turning angles produced by transformed adver-
sarial left-turn (top) and right-turn (bottom) images. Notice
that the mode does not shift so much as the outliers of turns
produced.

consistent turns in either direction under numerous random trans-
formations. In order to simplify the problem, we reduce the back-
ground image to a neutral color (see bottom image in Figure 1).
Once reducing the problem as such, the Random Normal optimiza-
tion algorithm identified adversarial examples that produced turns
in the left and right directions semi-consistently. Figure 2 displays
the images generated for producing left and right turns respectively.
Note that these images look largely like random noise because the
optimization algorithms were not able to identify any modifications
to the initial (random seeded) image that improved the distribu-
tion of turns produced. As mentioned in the discussion, the noisy
resulting images are likely a side effect of insufficient compute time.

In Figure 3, the range of turns produced by different transfor-
mations of the left and right turn adversarial images from Figure
2 can be seen. The distributions demonstrate that under random
transformations of the magnitudes chosen, the mode of turning
angles produced will have a mode of 0, even for the best adversarial
images. When the noisy backgrounds are included, the random
process is so noisy that the distribution mean never shifts from 0.
The outliers of the distribution are largely where the turning effect
is noticed. These outliers occur when the selected random transfor-
mation happens to be one that takes up a majority of camera-input,
also when making the vehicle turn is easiest.

4.1 Discussion

This research presents an attempt to use targeted adversarial at-
tacks on the neural network policy of a self-driving car in order
to orchestrate adversarial control. This work demonstrates that
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Figure 4: Two images that maximize the turning angle pro-
duced to the left (top) and the right (bottom). These untrans-
formed images are so effective, they cause the neural net-
work policy to produce turning angles outside the range of
allowable values [-1,1].

without proper defenses, it may be possible for adversaries to take
total control of a self-driving car via some mixture of signage and
ulterior perceptual modifications. In that regard, this work demon-
strates the difficulties associated with generating robust adversarial
images in a noisy perceptual environment as well as using gradient-
free techniques to do such. It can be inferred from the noisiness of
the adversarial images produced that the optimization techniques
were not allowed enough compute time to converge on the best
adversarial images. An important research direction is adapting ex-
isting attack techniques to work on randomly transformed images
by identifying new mechanisms for estimating the gradient as well
as side-stepping the need for a softmax layer. Such work would
make libraries similar to CleverHans considerably more effective
for the task of generating robust adversarial images.

Convergence aside, the gradient-free optimization techniques
were able to generate images that produced marginally different
distributions of turning angles under a series of random transfor-
mations. These results are promising and suggest that it is possible
to generate even more powerful adversarial images given enough
compute time and the appropriate optimization strategy. In order to
improve convergence, it may be better to incrementally increase the
possible space of scale, rotation, and perspective changes allowed
during transformation. A gradual increase in variety of transfor-
mation may result in faster convergence and an initially smaller
search space. To demonstrate that this process may in fact produce
different, more optimal results, Figure 4 shows what the optimal
untransformed left and right turn images look like. Notably, these
images generate turns that are outside the range of normalized
turning angles that the neural network policy was trained on (and
what the simulator allows), [-1,1]. The left turn image produces a
turning angle of —2.5 and the right turn image produces a turning
angle of 3.5.

Other important factors that would likely be important for gener-
ating truly robust adversarial images are real-world reproducibility
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and subtlety. The highly noisy images generated by the optimiza-
tion algorithms in this work would likely prove difficult to print
and place into the real world accurately. Not only that, but they
would be easily identifiable by a human observer as out-of-place.
It is arguable that these could be cast as ’artwork’, but riders in
self-driving cars would quickly realize otherwise. Traffic authori-
ties could swiftly respond to such blatant advances on self-driving
car technology. Future works should consider the *uniqueness’ of
the robust adversarial images by using some techniques similar to
generative adversarial networks, where it is also necessary that an
adversarial example not be recognizable as different from standard
traffic signage.

5 CONCLUSION

In this paper, we have demonstrated the utility and limitations of
designing attacks against neural network policies in systems with
physical presence using simulations. Difficulty arises in producing
images that are adversarial across multiple scales, rotations, and
perspectives. Further, as each image - stationary in the world - is
viewed with moving scenery behind it, this makes optimization
across all possible backgrounds a very challenging task. However,
this suggests that systems with physical presence and the capability
to move in relation to an adversarial example may be more robust
to attacks. We hope that this use of simulated worlds to test the
robustness of systems with physical presence will advance, allowing
for a strong evaluation between the training stages, and roll-out to
the real world.

5.1 Future Work

Our work on simulated attacks has left us with multiple avenues
for future work. Many of these concepts were seminal to our work,
but were left aside due to their inherent difficulty or computational
complexity. One goal we have in mind is to move past a static mod-
ification to a system’s perception and towards modification of the
world itself. In the work we have presented here, this might manifest
as an adversarial street sign, or billboard. Further, we would be inter-
ested in optimizing constrained ranges of skew, rotation, and scale
for images. We believe this may result in more generally applicable
adversarial examples, while remaining computationally tractable.
In particular, road signs and billboards travel a specific path of
transformations, not randomly generated ones. Using a specific set
of transformations would likely improve convergence as well as
the strength of turns produced by final adversarial images. Another
area of future research includes other paradigms of deep learning.
One paradigm of particular interest to us is deep reinforcement
learning, as little adversarial research on such physical-presence
systems has been performed. Finally, as we use a well realized sim-
ulated world, we are interested in investigating the challenges that
additional perceptual input generates as well as the increased level
of noise in real-world environments.
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