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ABSTRACT
This work gives a logical characterization of the (ethical and social)

obligations of an agent trained with Reinforcement Learning (RL).

An RL agent takes actions by following a utility-maximizing policy.

We maintain that the choice of utility function embeds ethical and

social values implicitly, and that it is necessary to make these values

explicit. This work provides a basis for doing so. First, we propose

a probabilistic deontic logic that is suited for formally specifying

the obligations of a stochastic system, including its ethical obliga-

tions. We prove some useful validities about this logic, and how its

semantics are compatible with those of Markov Decision Processes

(MDPs). Second, we show that model checking allows us to prove

that an agent has a given obligation to bring about some state of

affairs - meaning that by acting optimally, it is seeking to reach that

state of affairs. We develop a model checker for our logic against

MDPs. Third, we observe that it is useful for a system designer to

obtain a logical characterization of her system’s obligations, which

is potentially more interpretable and helpful in debugging than the

expression of a utility function. Enumerating all the obligations of

an agent is impractical, so we propose a Bayesian optimization rou-

tine that learns to generate a system’s obligations that the system

designer deems interesting. We implement the model checking and

Bayesian optimization routines, and demonstrate their effectiveness

with an initial pilot study. This work provides a rigorous method

to characterize utility-maximizing agents in terms of the (ethical

and social) obligations that they implicitly seek to satisfy.
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1 INTRODUCTION
As automation increases in homes, hospitals, and on the streets,

so too does the need to understand which norms an autonomous

system has learned to follow. For a society to guarantee safe au-

tomation, we must know which ethical guidelines an autonomous

robot — perhaps implicitly — follows; particularly when that robot

autonomously interacts with us, and shares our daily environment.

To prove this guarantee, we must obtain such knowledge rigorously

and traceably from the numerical utility function that the robot

maximizes. The extracted ethical guidelines must be expressed in a

formal, unambiguous language to permit further automated analy-

sis and reflection by the designer, and for communication with the

community where the robot is deployed.

To illustrate, consider an autonomous vehicle (AV) that is per-

mitted to put others at risk to reduce risk for its passengers. If we

do not know that the AV has such a permission, then, as drivers,

we can not know if we are at risk for driving near the vehicle, and

thus we can not know how to safely interact with the vehicle. As

designers, we can not know if this permission satisfies our desired

specifications or is a negative side effect [2], and thus can not know

how to safely design the vehicle. If we do have knowledge of this
permission, but that knowledge was not obtained traceably or rig-

orously, or is expressed ambiguously, then we may have cause to

doubt that knowledge, and again face difficulty safely designing,

or interacting with the AV. And if our knowledge is not expressed

formally, then any conclusions we draw about the AV’s ethics may

also be ambiguous.

First we must consider how these ethical guidelines are formal-

ized. The preferences and permissions of a single agent [10], or

those of a population [19], are often implicitly encoded numerically.

We might expect to discover the norms a robot follows based on the

numerical values in its decision model. However, these values are

usually opaque and difficult to interpret. We believe that explicit,

interpretable expressions of a robot’s norms provide additional

value to its designers and to the society in which the robot operates

beyond knowledge of individual rewards. So, to describe norms,

we turn to formal logic — deontic logic specifically [9]. Deontic log-

ics were developed specifically to formalize reasoning with ethical
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norms, and they lend themselves well to interpretation. Typically,

three kinds of statements are formalized in a deontic logic: state-

ments of obligation, or permission, and of prohibition. We will only

speak of ‘obligations’ in this paper because we use a logic that

derives permissions and prohibitions from obligations.

Many deontic logics have been developed [11], starting with

von Wright’s “Standard Deontic Logic” [22]. However, many lack

corresponding agent models on whose executions the logical for-

mulas are interpreted, or fail to model stochastic systems, both of

which are necessary to describe agents in Reinforcement Learning

(RL). A logic for describing the obligations of RL agents must be

probabilistic. Then, to determine if an agent has a given obligation

(i.e., whether it is trying to meet that obligation), we must be able

to check if the obligation is consistent with the model of the agent’s

decision process and the environment. So a suitable logic must also

permit a model checking algorithm.

The norms followed by an RL agent are determined by its policy—

amapping from states to actions that maximize the agent’s expected

rewards. For an agent with a simple model, it may be feasible to

characterize the agent’s norms by viewing the model’s rewards

and probabilities. For an agent with a larger model, however, it will

be difficult to intuit the agent’s obligations from these numerical

values.

Further, a system may technically have thousands of obligations;

many of which are ethically irrelevant, or trivial (e.g. an obligation

to start from the starting state). To generate useful obligations,

we need a criterion to filter the space of valid obligations. In this

work, we propose a criterion based on what a stakeholder finds

“interesting” in an obligation. For example, shemaywish to see those

obligations that are ethically relevant and safety critical, or that

she didn’t expect the system to have. Whatever the stakeholder’s

objectives, we need a procedure that learns what features of an

obligation a stakeholder finds interesting so that we can generate

obligations that are useful to the stakeholder.

We solve these problems with the following contributions:

(1) we design the novel Expected Act Utilitarianism (EAU) deon-

tic logic, purpose-built to describe the obligations of Markov

Decision Processes (MDPs) — a popular class of model for

agents in reinforcement learning.

(2) we develop a model checking algorithm that verifies if an

MDP has a given obligation.

(3) we demonstrate and test a Bayesian optimization routine that

uses human feedback and model checking to find interesting

obligations in a given agent MDP.

With these tools to express, verify, and explore the obligations

of an agent, we can evaluate what ethical guidelines an agent has

learned — aiding in system safety, trust, and explainability.

2 BAKGROUND
This work seeks to enable the formal verification of the ethical

obligations learned by reinforcement learning systems, and explore

those obligations by efficiently modeling a system designer’s inter-

ests. To do so, we specify obligations in deontic logic, verify deontic

obligations with model checking, and model systems as Markov
decision processes.

Deontic Logic. Deontic logic can be considered as the formal

study of norms and their interaction with each other [6]. Previous

work has aimed to build deontic logic-based agents “ground-up”

by specifying a base of norms, and deriving what action to take

via deduction [3, 6]. In [1], deontic logic is proposed as a method

for formal verification and monitoring of normative properties in

automata, and we advanced this proposal by developing model-

checking algorithms for deontic logic formulas in [18]. These ap-

proaches are strongly principled, but currently lack interoperability

with the highly effective domain of reinforcement learning. The au-

thors of [16] use deontic logic “top-down” to supervise a RL agent.

That work enforces deontic logic constraints on the operation of an

agent after it has been trained, but does not account for stochastic

dynamics common in RL, nor does it aid in explainability of the

agent.

Markov Decision Processes. Markov decision processes (MDPs)

are commonly used in reinforcement learning to model a proba-

bilistic agent in an environment. An MDP is a discrete time control

process in which an agent chooses an action, the result of that ac-

tion is stochastic, and the result provides some reward [5]. An MDP

is defined by the states an agent can be in, the actions available

to the agent in each state, the probability that it transitions from

one state to another after taking a given action, and the reward the

agent receives when it enters different states.

Model Checking. Given a model of a system, a system designer

may want to formally ensure that system meets some given specifi-

cations. This is the general model checking problem. Model check-

ing is especially important in complex, embodied systems as: a)

their complexity makes it difficult to informally determine that the

system behaves as intended; and b) their physical nature makes

the safety of their operation a paramount concern. Many tech-

niques have been developed to check system models for various

formalisms, but few exist for deontic logic [4].

3 EXPECTED ACT UTILITARIANISM
Most previous deontic logics prove unfit for describing agents

trained by modern reinforcement learning techniques as they lack

notions of agency or stochastic dynamics. We introduce expected
act utilitarianism (EAU) as a deontic logic for describing the obli-

gations of stochastic control systems. EAU is based on dominance
act utilitarianism (DAU) [12]. DAU is a logic designed for nondeter-

ministic decision problems, and is so named because it defines an

agent’s best action as the action whose possible utilities dominate

the utilities of other actions. In contrast, EAU can reason about

probabilities, and so includes a tense logic with modalities that han-

dle probability and undetermined actions, and uses expected utility

as the criterion for determining an agent’s best action. (Note that

neither logic makes a commitment to a particular ethical framework

and are named “utilitarian” just for their evaluation of utility on

agents’ histories). With these considerations, EAU permits formal

specifications of the obligations learned by a probabilistic decision

process, such as an MDP.



3.1 EAU Syntax
The syntax of EAU is as follows.

𝐴 := 𝜙 | ¬𝐴 | 𝐴∧𝐴 | [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] | ⊗ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]

where 𝛼 is an agent in a finite set of agents 𝐴𝑔𝑒𝑛𝑡𝑠 , ∧ and ¬ are

boolean conjunction and negation, and 𝜙 is a formula in the logic

PCTL [4]. PCTL is a widely used branching-time logic that bounds

the probability of some event occurring in an MDP. PCTL uses

probabilistic and temporal modalities to describe a state of affairs,

or an agent’s mission. Intuitively, the PCTL temporal modality

means Always (now and in every future moment along a trace),

means Eventually (now or at some future moment along a trace),

andU means Until: 𝜙U𝜓 means that 𝜙 holds in all moments until

there is a moment in which𝜓 holds. We skip other operators and

refer the reader to [4] for details. The probabilistic modality takes

the form 𝑃⊲⊳𝜌 , where ⊲⊳∈ {<, ≤, >, ≥} and 𝜌 ∈ [0, 1]. In an MDP

with an unknown policy, an upper-bound (𝑃<𝜌𝜙 or 𝑃≤𝜌𝜙) means

that 𝜙 has a chance less than (or equal to) 𝜌 of occurring for any

possible policy. In other words, the policy that maximizes the prob-

ability of 𝜙 occurring can not satisfy 𝜙 more than 𝜌 of the time. A

lower-bound (𝑃>𝜌𝜙 or 𝑃≥𝜌𝜙) means that 𝜙 has a chance greater

than (or equal to) 𝜌 of occurring for any possible policy.

3.2 EAU Semantics
The EAU-specific operators informally mean the following. Opera-

tor [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] is the agency operator and says that 𝛼 sees to it, or

ensures, that 𝐴 is true; and ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] is the expected obligation

modality and says that 𝛼 ought to ensure that 𝐴 is true.

For example, to specify that a nurse robot will decide to help a pa-

tient we can write [𝛼 𝑐𝑠𝑡𝑖𝑡 : ℎ𝑒𝑙𝑝]. To say that a nurse robot should

not choose to move speedily we can write ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝑠𝑝𝑒𝑒𝑑].
We can include the temporal modality Eventually to say the robot

should never speed as ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬ 𝑠𝑝𝑒𝑒𝑑]; and with the proba-

bility modality we can say that the robot’s choices should ensure

a minimal probability of 0.1 that it will never speed: ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 :
𝑃≥0.1 [ ¬𝑠𝑝𝑒𝑒𝑑]].

This section develops the formal semantics of these deontic

operators, and may be skipped on a first reading, if the reader

grasps the intuitive meaning we just gave of these operators.

Branching time. Time in EAU is framed as a 𝑇𝑟𝑒𝑒 of moments
with a unique root moment ‘0’ from which all other moments span.

Moments are ordered by an irreflexive, transitive relation <, that

may be interpreted as saying𝑚1 happens earlier than𝑚2 if and

only if 𝑚1 < 𝑚2. A history is a maximal, linearly ordered set of

moments in𝑇𝑟𝑒𝑒 ; i.e. a branch of the tree that extends infinitely into

the future. In the context of a timed-MDP, a moment is a time-state

pair, and a history is an execution of that automaton. The set of

histories that go through a moment𝑚 ∈ 𝑇𝑟𝑒𝑒 is 𝐻𝑚 := {ℎ | 𝑚 ∈ ℎ}.
We will frequently refer to moment/history pairs𝑚/ℎ, where𝑚 ∈
Tree and ℎ ∈ 𝐻𝑚 .

Definition 3.1. With𝐴𝑃 a set of atomic propositions, a branching
timemodel is a tupleM = (𝑇𝑟𝑒𝑒, <, 𝑣) where𝑇𝑟𝑒𝑒 is a tree of moments
with ordering < and 𝑣 is a function that maps moments𝑚 inM to
sets of atomic propositions from 2

𝐴𝑃 , the set of subsets of 𝐴𝑃 .

K1 K2

B+10
H

B+5
T

K3 K4

h1 h2 h3

h4 h5

A

0.5 0.5

0.30.7

+7

1.0

m

m'

B+8
H

B+4
T

1.0

Figure 1: An EAU model for agent 𝛼 , showing moments
𝑚 < 𝑚′with histories𝐻𝑚 = {ℎ1, . . . , ℎ5}, and𝐻𝑚′ = {ℎ1, . . . , ℎ3}.
The actions available in moment 𝑚 are 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 = {𝐾1, 𝐾2},
and in𝑚′ are𝐶ℎ𝑜𝑖𝑐𝑒𝑚

′
𝛼 = {𝐾3, 𝐾4}. Action𝐾1 = {ℎ1, ℎ2, ℎ3},𝐾2 =

{ℎ4, ℎ5}, 𝐾4 = {ℎ1}, and 𝐾5 = {ℎ2, ℎ3}. Each history is labeled
with the formula(s) it satisfies, and its values𝑉𝑎𝑙𝑢𝑒 (ℎ); e.g., ℎ1
satisfies 𝐴 and has a value of 7. The probability of an action
being able to effect a history is also given; e.g. 𝑃𝑟𝛼 (ℎ2 |𝑚) = 1.0,
and 𝑃𝑟𝛼 (ℎ2 |𝑚′) = 0.7. The index 𝑚/ℎ4 |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵] since
𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ4) = 𝐾2 = {ℎ4, ℎ5}, and both ℎ4 and ℎ5 satisfy 𝐵.
However, 𝑚/ℎ4 ̸ |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐻 ] because ℎ5 does not satisfy
𝐻 . Still, 𝑚/ℎ4 |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑃>=0.5 [𝐻 ]] since 𝑃𝑟𝛼 (ℎ4 |𝑚) >= 0.5.
And 𝑚/ℎ2 |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑃<=0.7 [𝐻 ]] because 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ2) =

{ℎ1, ℎ2, ℎ3}, ℎ2 is the only history among those that satis-
fies 𝐻 and

∏
𝑚𝑛>𝑚∈ℎ2 𝑃𝑟𝛼 (ℎ2 |𝑚𝑛) <= 0.7. The 𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑚𝛼 (ℎ2) =

𝑉𝑎𝑙𝑢𝑒 (ℎ2) ∗
∏
𝑚𝑛>𝑚∈ℎ2 𝑃𝑟𝛼 (ℎ2 |𝑚𝑛) = 5.6. The 𝑄 (𝐾2) = 7.5,

while 𝑄 (𝐾1) = 1.0 ∗ max{𝑄 (𝐾3), 𝑄 (𝐾4)} = max{7.0, 6.8} = 7.0,
so 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 = {𝐾2}. Hence 𝑚/ℎ4 |= ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]. Finally,
𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚

′
𝛼 = {𝐾3}, so𝑚′/ℎ2 ̸ |= ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵].

A formula in EAU holds (or not) at an 𝑚/ℎ pair. We denote

model satisfaction asM,𝑚/ℎ |= 𝜙 , where it is always the case that
ℎ ∈ 𝐻𝑚 . An EAU statement𝐴 is a generic PCTLformula of the form

𝑃⊲⊳𝜌 [𝜓 ], where we restrict 𝜓 to LTL formulas for simplicity. The

proposition expressed at moment𝑚 by the EAU statement A is the

set of histories, starting at𝑚, in which the statement holds

|𝐴|M𝑚 := {ℎ ∈ 𝐻𝑚 | M,𝑚/ℎ |= 𝐴} (1)

When it is clear what the model of evaluation is, we dropM from

the notation, writing, e.g., |𝐴|𝑚 ,𝑚/ℎ |= 𝐴.



Choice. At any moment 𝑚, an agent 𝛼 ∈ 𝐴𝑔𝑒𝑛𝑡𝑠 may take an

action 𝐾 . The action 𝐾 is identified with the histories in 𝐻𝑚 that

are still realizable after taking this action. The choice of actions at

moment𝑚 with which 𝛼 is faced is denoted by 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 . In this

work, we assume that 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 is finite for every 𝛼 and𝑚.

Probability. When an agent takes an action there is a probability

associated with which moment the agent next finds itself in. We

call these next moments “𝑀 ′
𝐾
”, and are reachable from moment𝑚

by taking an action 𝐾 , where 𝑀 ′
𝐾

= {𝑚′ > 𝑚 |�𝑚′′ : 𝑚′ > 𝑚′′ >
𝑚 and ∀ℎ ∈𝑚′ : ℎ ∈ 𝐾}. The probability of moving from𝑚 to𝑚′ ∈
𝑀 ′
𝐾
by taking action 𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 is given by 𝑃𝑟𝛼 (𝑚′ |𝑚) ∈ [0, 1].

The probability with which an agent can execute a particular

history ℎ from moment 𝑚 is 𝑃𝑟𝛼 (ℎ |𝑚). Because a history is an

infinite sequence of moments, by Bayes’ theorem we can compose

this probability as a product of the probabilities of executing that

sequence of moments (e.g. 𝑃𝑟𝛼 (𝑚1 |𝑚0) ∗ 𝑃𝑟𝛼 (𝑚2 |𝑚1) ∗ . . . ). This
can be written as a product of sequential pairs of moments in a

history:

𝑃𝑟𝛼 (ℎ |𝑚) =
∏

(𝑚𝑖 ,𝑚𝑖+1) ∈ ℎ
s.t.𝑚𝑖 ≥ 𝑚

𝑃𝑟𝛼 (𝑚𝑖+1 |𝑚𝑖 )

Agency. In EAU, agency is defined by the ‘Chellas sees to it’

operator 𝑐𝑠𝑡𝑖𝑡 , named after Brian Chellas [7]. We say an agent sees
to it, or ensures, that𝐴 holds at𝑚/ℎ if it takes an action 𝐾 such that

𝐴 holds in𝑚/ℎ′ for all ℎ′ ∈ 𝐾 . I.e., probability does not prevent 𝛼

from guaranteeing 𝐴. In practice, the use of PCTL as a tense logic

allows us to say that an agent ensures some fact about a bound on

the probability of a possible state of affairs.

Definition 3.2 (Chellas stit). [12, Def. 2.7] With agent 𝛼 and
DAU statement 𝐴, let 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) be the unique action that contains
ℎ. Then

M,𝑚/ℎ |= [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] iff 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) ⊆ |𝐴|M𝑚
If 𝐾 ⊆ |𝐴|𝑚 we say 𝐾 guarantees 𝐴.

Optimal actions. To speak of an agent’s obligations, we will need

to speak of ‘optimal actions’, those actions that bring about an

ideal state of affairs. Let 𝑉𝑎𝑙𝑢𝑒 : 𝐻0 → R be a value function
(such as a discounted sum of rewards) that maps histories ofM to

utility values from the real line R. This value represents the utility
associated by all the agents to this common history. Let𝑈𝑡𝑖𝑙𝑖𝑡𝑦𝑚𝛼 (ℎ)
be equal to 𝑉𝑎𝑙𝑢𝑒 (ℎ) ∗ 𝑃𝑟𝛼 (ℎ |𝑚). This represents the utility of 𝛼

trying to realize history ℎ from moment𝑚. Then, in a moment𝑚

such that either
• 𝑚 has no succeeding moment𝑚′ where |𝐶ℎ𝑜𝑖𝑐𝑒𝑚′𝛼 | > 1, or
• 𝑚 has no succeeding moment𝑚′ where ∃𝐾,𝐾 ′ ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚′𝛼
such that 𝐾 ≠ 𝐾 ′ and

∑
ℎ∈𝐾 𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝑚′
𝛼 (ℎ) >∑

ℎ′∈𝐾 ′ 𝑈𝑡𝑖𝑙𝑖𝑡𝑦
𝑚′
𝛼 (ℎ′)

we take the quality of an action 𝑄 (𝐾) as ∑
ℎ∈𝐾 𝑈𝑡𝑖𝑙𝑖𝑡𝑦

𝑚
𝛼 (ℎ) — the

sum of the utilities of its composing histories. The first case handles

models with end states (like finite games), or absorbing states. The

second case handles models with states where future choices don’t

change the available utility. The latter is useful when 𝑉𝑎𝑙𝑢𝑒 is

discounted sum, and in practice an 𝜖 difference may be assumed

between available utilities.

In a moment𝑚 that doesn’t meet the above criteria, we define

𝑄 (𝐾) recursively with respect to the “next” moments 𝑀 ′
𝐾

that

follow from an action.

𝑄 (𝐾) =
∑︁

𝑚′∈𝑀′
𝐾

𝑃𝑟𝛼 (𝑚′ |𝑚) max

𝐾 ′∈𝐶ℎ𝑜𝑖𝑐𝑒𝑚′𝛼
𝑄 (𝐾 ′) (2)

This means an action 𝐾 ’s quality is determined by the quality of the

best action 𝐾 ′ in each of the moments𝑚′ that 𝐾 leads to, modified

by the probability of ending up in each moment𝑚′ after taking the
action.

An optimal action at moment𝑚 is thus an action whose quality

is not less than the quality of any other action at𝑚:

𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 := {𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 | �𝐾 ′ ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼
s.t. 𝑄 (𝐾) < 𝑄 (𝐾 ′)}

(3)

Expected Ought. We are now ready to define Ought statements,

i.e., obligations. Intuitively we will want to say that at moment𝑚,

agent 𝛼 ought to see to it that 𝐴 iff 𝐴 is a necessary condition of

all the actions considered optimal at moment𝑚. This is formalized

in the following expected Ought operator, which is pronounced “𝛼

ought to see to it that 𝐴 holds”.

Definition 3.3 (Expected Ought). With 𝛼 an agent and 𝐴 an
obligation in a modelM,

M,𝑚/ℎ |= ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] iff 𝐾 ⊆ |𝐴|M𝑚
for all 𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼

(4)

3.3 Logical Validities
When designing a new logic it is important to verify whether it

supports validities (or inference principles) that are intuitively ac-

ceptable, or desirable. We discuss some of these now, and give their

proofs in appendix A.

The Expected Ought operator validates the formula:

𝐷𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] =⇒ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]

In deontic logic, this expresses “ought implies can” — if the agent

ought to ensure that the probability of reaching the goal is high,

then it follows that the agent can ensure this. This is central to most

deontic logics, as it seems unfair for an agent to have an obligation

to ensure something that it cannot ensure.

The following inference rule is also valid:

𝑅𝐸𝛼⊗ :

𝐴 ≡ 𝐵
⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ≡ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]

I.e., if two formulas are equivalent, then an agent’s obligation to

ensure one is equivalent to that agent’s obligation to ensure the

other. This inference rule ensures that two identical states of affairs

imply identical obligations.

Necessitation — the principle that something universally true is

obligatory — is also valid in this logic:

𝑁𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ⊤]

In EAU the obligation for an agent to ensure formula𝐴∧𝐵means

also that there are separate obligations for the agent to ensure 𝐴,

and to ensure 𝐵.

𝑀𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧𝐵] =⇒ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]



The reverse is also true:

𝐶𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵] =⇒ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧𝐵]

These are especially useful in determining if an obligation arises

from a set of other obligations.

These previous four validities (𝑅𝐸𝛼⊗, 𝑁𝛼⊗,𝑀𝛼⊗, and𝐶𝛼⊗) con-
firm that the Expected Ought operator is normal.

In EAU it can not be the case that an agent has conflicting obli-

gations. That is:

𝐷∗𝛼⊗ : ¬(⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴])

thus avoiding direct normative conflict. And two distinct agents 𝛼

and 𝛽 can’t have conflicting obligations either. I.e.:

𝐷∗
𝛼,𝛽
⊗ : ¬(⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛽 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴])

4 MODEL CHECKING EAU
We use Expected Act Utilitarian deontic logic as a specification

language for the obligations of Markov decision processes. This

requires developing a correspondence between anMDP and an EAU

branching time model, showing that the EAU notion of optimal

actions can be identified as Bellman optimality in the MDP, and

introducing an algorithm for model checking EAU obligations in

an MDP.

4.1 Expressing MDPs in EAU
Formally, an MDP is a tuple (𝑆,𝐴,𝑇 , 𝑅). 𝑆 is the set of states that

can be reached by the process, 𝐴 is the set of actions that can be

chosen,𝑇 is the set of transitions between states, and 𝑅 is the set of

rewards.𝐴(𝑠) is the set of actions available in the process at a given

state 𝑠 ∈ 𝑆 . The transition function 𝑇 (𝑠, 𝑎, 𝑠 ′) is the probability of

reaching state 𝑠 ′ by taking action 𝑎 ∈ 𝐴(𝑠) and is often denoted by

𝑃𝑟 (𝑠 ′ |𝑠, 𝑎) The reward function 𝑅(𝑠) is the reward 𝑟 ∈ R that the

process receives for entering state 𝑠 .

Given an MDP and a function that maps states in 𝑆 to sets of

atomic propositions, we elicit an EAU branching time modelM
identifying properties of the model with the properties of the MDP.

The modelM contains a Tree of histories composed ofmoments. We

identify a moment𝑚 in a modelM with a tuple ⟨𝑠, 𝑡⟩ where 𝑠 ∈ 𝑆 ,
and 𝑡 ∈ R is a time that denotes the order in which states are visited.

This tuple respects the ordering relation ‘>’ such that𝑚1,𝑚2 ∈ M
and𝑚1 < 𝑚2 just in the case 𝑠1, 𝑠2 ∈ 𝑆 and 𝑡1 < 𝑡2. The starting state

of the MDP maps to the root moment𝑚0. A history ℎ is identified

with an execution of the MDP — a sequence of transitions ⟨𝑠, 𝑎, 𝑠 ′⟩.
The Tree is set of possible executions in the MDP. The probability

𝑃𝑟𝛼 (𝑚′ |𝑚) is taken as𝑇 (𝑠, 𝑎, 𝑠 ′) for a transition ⟨𝑠, 𝑎, 𝑠 ′⟩ in ℎ where

the state associated with𝑚 is 𝑠 , and 𝑠 ′ with𝑚′. Finally, the function
𝑉𝑎𝑙𝑢𝑒 (ℎ) is taken as the discounted sum of rewards on the sequence

of states corresponding to the history:

∑
⟨𝑠,𝑡 ⟩∈ℎ 𝛾

𝑡 ∗ 𝑅(𝑠)

4.2 Optimal Actions and Bellman Optimality
We align EAUwith practice in reinforcement learning by respecting

the Bellman optimality condition in the design of EAU’s evaluation

rule for optimal actions (eq. 3). To see this, recall that in an MDP the

optimal action at a state is that which maximizes the expected value

of the next state given that the agent continues to act optimally,

that is:

𝜋∗ (𝑠) = max

𝑎∈𝐴(𝑠)

∑︁
𝑠′
𝑃𝑟 (𝑠 ′ |𝑠, 𝑎)𝑉 𝜋

∗
(𝑠 ′)

where 𝐴 is the set of actions, 𝑠 is a state, 𝐴(𝑠) is the set of actions
available at state 𝑠 , 𝑃𝑟 (𝑠 ′ |𝑠, 𝑎) is the probability of reaching state 𝑠 ′

by taking action 𝑎 from state 𝑠 , and 𝜋 : 𝑠 → 𝑎. 𝑉 𝜋
∗
is:

𝑉 𝜋
∗
(𝑠) = 𝑅(𝑠) + 𝛾 max

𝑎∈𝐴(𝑠)
𝑄 (𝑎)

where 𝑅(𝑠) is the reward received for entering state 𝑠 , and 𝛾 is a

discount factor on future rewards. 𝑄 (𝑎) is:

𝑄 (𝑎) =
∑︁
𝑠′
𝑃𝑟 (𝑠 ′ |𝑠, 𝑎)𝑉 𝜋

∗
(𝑠 ′)

thus admitting a recursive definition for 𝑉 𝜋
∗
:

𝑉 𝜋
∗
(𝑠) = 𝑅(𝑠) + 𝛾 max

𝑎∈𝐴(𝑠)

∑︁
𝑠′
𝑃𝑟 (𝑠 ′ |𝑠, 𝑎)𝑉 𝜋

∗
(𝑠 ′)

In the limit, this recursion converges due to the discount factor 𝛾 .

From this we can determine a recursive definition of 𝑄 (𝑎):

𝑄 (𝑎) =
∑︁
𝑠′
𝑃𝑟 (𝑠 ′ |𝑠, 𝑎) ∗ 𝑅(𝑠 ′) + 𝑃𝑟 (𝑠 ′ |𝑠, 𝑎)𝛾 max

𝑎′∈𝐴(𝑠′)
𝑄 (𝑎′)

which says the quality of an action is equal to expected reward for

performing that action plus the expected quality of the best action

next. We can also rephrase 𝜋∗ (𝑠) in terms of 𝑄 (𝑎):

𝜋∗ (𝑠) = max

𝑎∈𝐴(𝑠)

∑︁
𝑠′
𝑃𝑟 (𝑠 ′ |𝑠, 𝑎)𝑅(𝑠 ′) + 𝑃𝑟 (𝑠 ′ |𝑠, 𝑎)𝛾 max

𝑎′∈𝐴(𝑠′)
𝑄 (𝑎′)

= max

𝑎∈𝐴(𝑠)
𝑄 (𝑎)

In other words, 𝜋∗ (𝑠) is that action in 𝐴(𝑠) which has the highest

quality 𝑄 (𝑎).
In EAU, we use the 𝑉𝑎𝑙𝑢𝑒 function to determine the worth of

a history, and so there is no reward 𝑅 or discount 𝛾 in the EAU

equation for the quality of an action (eq. 2). In the case that 𝑉𝑎𝑙𝑢𝑒

is a discounted sum of rewards on moments, however, we can show

that the quality of an action (and therefore the optimal action) in

EAU is the same as in an MDP. Beginning from the base case, we

have

𝑄 (𝐾) =
∑︁
ℎ∈𝐾

𝑉𝑎𝑙𝑢𝑒 (ℎ) ∗ 𝑃𝑟𝛼 (ℎ |𝑚)

When 𝑉𝑎𝑙𝑢𝑒 (ℎ) is the discounted sum of rewards on moments, we

can write

𝑄 (𝐾) =
∑︁
ℎ∈𝐾

∏
(𝑚𝑖 ,𝑚𝑖+1) ∈ ℎ
s.t.𝑚𝑖 ≥ 𝑚

𝑃𝑟𝛼 (𝑚𝑖+1 |𝑚𝑖 ) ∗ ©«
∑︁
𝑚𝑡 ∈ℎ

𝛾𝑡 ∗ 𝑅(𝑚)ª®¬
To avoid calculating the discounted sum and total probability of

a history for each action, we use dynamic programming to ac-

cumulate the rewards and probabilities throughout the recursive

procedure. Equation 2 can then be written:

𝑄 (𝐾) =
∑︁

𝑚′∈𝑀′
𝐾

𝑃𝑟𝛼 (𝑚′ |𝑚)
(
𝑅(𝑚′) + 𝛾 max

𝐾 ′∈𝐶ℎ𝑜𝑖𝑐𝑒𝑚′𝛼
𝑄 (𝐾 ′)

)
This identifies EAU action quality under discounted sum history

values with Bellman action quality in MDPs. It follows, then that

the EAU optimal action and the Bellman optimal action are the



same in such cases. This means in EAU an agent’s obligations are

properties of a world where it has taken its Bellman optimal action.

4.3 Model Checking Obligations
The problem of EAU model checking is: given an EAU branching

time modelM, determine whetherM, 0/ℎ |= ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] for
some history ℎ ∈ 𝐻0, where 𝐴 is a formula in PCTL. By Defini-

tion 3.3, this model checking problem can be performed in two

sequential steps: first, find the optimal actions at 𝐻0 (i.e. all 𝐾
∗ ∈

𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 ), and second, determine if all these optimal actions 𝐾∗

guarantee 𝐴 (i.e. 𝐾∗ ⊆ |𝐴|M
0

). If all optimal actions guarantee 𝐴,

then we can sayM has the obligation to ensure 𝐴 at index 0/ℎ.

Algorithm 1: EAU Model Checking

Data: an MDP𝑀𝐷𝑃 , a state 𝑠 in𝑀𝐷𝑃 to check from, the

PCTL component 𝐴 of an EAU obligation.

Result: a Boolean value 𝑟𝑒𝑠𝑢𝑙𝑡 : ⊤ if the model has the

obligation to ensure 𝐴, ⊥ otherwise.

𝑟𝑒𝑠𝑢𝑙𝑡 ← ⊤;
/* use value iteration to find optimal actions */

𝑂𝑝𝑡𝑖𝑚𝑎𝑙 ← ValueIteration(𝑀𝐷𝑃, 𝑠);
for 𝐾 ∈ 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 do

/* create EAU model with first action 𝐾 */

M𝐾 ← ModelAction(MDP, K);
/* call PRSIM to check PCTL formula */

𝑣𝑎𝑙𝑖𝑑 ←M𝐾 |= 𝐴;
if ¬𝑣𝑎𝑙𝑖𝑑 then

/* not all optimal actions ensure 𝐴 */

𝑟𝑒𝑠𝑢𝑙𝑡 ← ⊥;
return 𝑟𝑒𝑠𝑢𝑙𝑡 ;

end
end
return 𝑟𝑒𝑠𝑢𝑙𝑡 ;

To find the optimal actions of an EAU branching time model

elicited from anMDP, we perform value iteration [5]. Value iteration

is a dynamic programming technique that can be used to find an

optimal policy in an MDP. In finding an optimal policy for the

MDP upon which the EAU model is based, we find the optimal

action to take from any given state in that model. Then, for each

𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙0𝛼 , we construct a modelM𝐾 for which the only

available action at moment 0 is𝐾 (i.e.𝐶ℎ𝑜𝑖𝑐𝑒0𝛼 = 𝐾 ). For each model

M𝐾 , we employ the PRISM model checker to verify ifM𝐾 |= 𝐴
[13]. If a modelM𝐾 satisfies 𝐴, then we can say that the action 𝐾

ensures𝐴. If everyM𝐾 satisfies𝐴, then all optimal actions ensure𝐴,

which, by Definition 3.3, means that the agent 𝛼 has the obligation

to ensure 𝐴.

5 EXTRACTING DEONTIC OBLIGATIONS
When designing the agent, including its reward function, the sys-

tem designer is trying to endow the agent with certain objectives,

including certain obligations. A complex agent, however, will dis-

play behavior that is unforeseen by the designer, especially an agent

that actively learns and modifies itself. Indeed such an agent, by

modifying its reward function and/or its policy, is giving itself new
objectives and obligations. It is thus necessary to explore the obli-

gations that a given agent has to understand what it is trying to

achieve, and use this understanding and formal methods to improve

its design where needed. For example, the designer may think to

check that a nurse robot has an obligation to eventually help a pa-

tient (⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑃>=1.0 [ ℎ𝑒𝑙𝑝𝑠]]), but would be surprised to find

that it also has the obligation to sometimes speed away to the next

patient after helping (⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑃>=0.4 [ (ℎ𝑒𝑙𝑝𝑠 =⇒ 𝑠𝑝𝑒𝑒𝑑𝑠)]]).
One approach to exploring the space of obligations is to enu-

merate all obligations that an agent has, up to a given obligation

length (measured, for instance, by the number of production rule

applications in the grammar of EAU). However, for even small max-

imum lengths, this process of enumeration can produce upwards of

100,000 formulas — more than any designer would care to address.

Further, as we will see in section 7, the average random obligation

is not likely to be pertinent to the designer’s task. Our challenge

then is to develop a way of generating the agent’s obligations that

are interesting to the designer.
To model designer interest, we rely on a Bayesian Optimization

(BO) setup [17]. BO seeks to minimize an expensive black-box

function 𝑓 (𝑥) using a small number of evaluations. To do so it

samples the search space, and with each sample 𝑥𝑘 it computes

𝑓 (𝑥𝑘 ) and uses it to refine a surrogate model 𝑔(𝑥). The surrogate,
which is typically stochastic, is cheaper to evaluate than 𝑓 (𝑥), and
guides the selection of the next sample, balancing exploration and

exploitation. See [8] for details of BO. BO is commonly used in

domains where evaluating the objective 𝑓 (𝑥) is costly, such as

material engineering [21], hyper-parameter tuning [20], and A/B

testing [14].

In our case, we seek to maximize the ‘interest function’ of a given

designer, which maps an EAU formula 𝜑 to how interesting it is.

Evaluating 𝑓 (𝜑) for a given formula 𝜑 involves asking the human

designer to score it on a scale of [0, 100]. Thus the search space is the
space of all EAU formulas (over a given set of atomic propositions).

One novelty of our setup is that our search space is constrained

by the model checker: we are only interested in formulas that are

valid for the MDP under study (the model checker returns True for

them).

For this work, we adapt the grammar-constrained Bayesian opti-

mization over string spaces approach of BOSS [15]. This approach

uses a Gaussian process with a string kernel as its surrogate model,

expected improvement as its acquisition function, and a genetic

algorithm to maximize the acquisition function. See [15] for details.

To seed the Bayesian optimization process, we generate 𝑁 ran-

dom, valid obligations; this is done by sampling using the strategy

from [15], then rejecting invalid formulas and sampling new ones,

until the desired number of seed formulas is reached. The designer

using our tool then assigns an interest score in the range [0, 100]
to each obligation.For every subsequent iteration, the Gaussian

process fits itself to the previous data, and the genetic algorithm

produces a population of formulas designed to maximize the acqui-

sition function. Out of these, the most interesting valid formula is

selected, scored by the designer, and the next iteration begins.

Once a pre-fixed number of optimization steps have completed,

the genetic algorithm produces a population of valid formulas. In

this final execution of the genetic algorithm, the fitness of a formula



Figure 2: Diagram of the Bayesian optimization search of the
space of valid obligations.

is determined by a function of three variables: the surrogate model’s

predicted score of the formula, the validity of the formula, and

which generation the formula comes from.We employ an annealing

process to move from high-scoring, but potentially invalid formulas

in the earlier generations of genetic optimization to descendants

that are valid, and still high-scoring. These final, high-scoring, valid

obligations, or optimized formulas, are presented to the designer.

This provides an alternative to reviewing thousands of enumerated

formulas, and to trying to hand-design potential formulas that

hopefully cover all desired obligations.

6 EXPERIMENTAL SETUP
We implemented the above algorithm into a tool available to review-

ers in an anonymous repository at https://github.com/sabotagelab/

generating-mdp-obligations. To demonstrate that our tool can gen-

erate interesting, valid obligations, we devised experiments to mea-

sure a system designer’s interest in the optimized formulas; that

is, after the BO completes, the trained surrogate interest model

generates ten valid formulas: these are rated by the designer, and

we evaluate whether she indeed found them to be interesting. We

performed an initial pilot study (N=4) of computer science gradu-

ate students familiar with formal logic and MDPs. We familiarized

users of our tool with the “cliff-world” MDP (figure 3), which is

used in these experiments. We asked the users to take the role of a

system evaluator — to imagine that they had trained an autonomous

system to learn values as a black box, and that it had been trained to

avoid obstacles and reach the goal state.
1
Their task in evaluating

this MDP was to determine if the system’s obligations aligned with

their expectations; that is, that the agent had obligations to reach

the goal state reliably, and to avoid reaching the failure state.

An experiment proceeded as follows. First, to seed the optimiza-

tion, the evaluator was given a list of 10 randomly generated, valid

formulas, and was asked to assign a value to each of these for-

mulas indicating how interesting they found that formula to be: 0

for an uninteresting formula, and 100 for a maximally interesting

formula. After seeding, the evaluator participated in 20 iterations

of Bayesian optimization as the tool explored the space of valid

obligations. Then the tool generated 10 formulas that were valid,

1
Though our aim is to explore ethical obligations, and the cliff-world example lacks

ethical content, it remains an important step in showing our tool’s effectiveness.

Systems with more ethically relevant labels would support ethical obligations more

directly.
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name=0
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name=11 name=13

Figure 3: The “cliff-world” MDP. State 0 (the “cliff”) is an
absorbing failure state, and state 14 is an absorbing goal state.
State 10 is the starting state, and cannot be accessed after
being exited. States 11 and 13 are walls and cannot be entered.
An agent in cliff-world has 4 actions available to it in any
state: up, down, left, and right. A chosen action has a 70%
chance of success, and each of the remaining three actions
has a 10% “slip” chance. An action result that would move
the agent into a wall, or other inaccessible state, leaves the
agent in the same starting state.

and maximized the model’s response - which we call the ‘optimized

formulas’. These were mixed with 10 random, valid formulas. Fi-

nally, this mix of random and optimized formulas formed their

validation set, and was scored by the evaluator to validate the tool’s

performance.

The code used for this experiment, including model checking and

obligation generation, is available to reviewers in an anonymous

repository available at https://github.com/sabotagelab/generating-

mdp-obligations.

7 RESULTS
We investigate the usefulness of our tool through experimental

results from the initial pilot study (N=4).

We will first present an example of an obligation generated

randomly: ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝑃≥0.8 [𝑛𝑎𝑚𝑒 = 13U 𝑛𝑎𝑚𝑒 = 0]]. This obli-
gation is for the agent to ensure that the lower-bound probability is

not greater than 80% that it is always in state 13 until it reaches state

0. Of course, since state 13 can not be reached by any means, and

since the agent does not start in either state 13 or state 0, the prob-

ability has a minimum value 0%. Thus, this obligation is trivially

met. We found that the majority of randomly generated formulas

were of this nature.

Now we will show examples of obligations generated by the

trained tool. Our first example is ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝑃≤0.6 [ 𝑛𝑎𝑚𝑒 = 14]].
This is an obligation for the agent to ensure that the upper-bound

probability is not less than 60% that it eventually reaches state

https://github.com/sabotagelab/generating-mdp-obligations
https://github.com/sabotagelab/generating-mdp-obligations
https://github.com/sabotagelab/generating-mdp-obligations
https://github.com/sabotagelab/generating-mdp-obligations


Percent of Quartile Optimized

Evaluator Q1 Q2 Q3 Q4

1 0.8 1.0 0.2 0.0

2 1.0 0.8 0.2 0.0

3 1.0 0.4 0.4 0.2

4 1.0 1.0 0.0 0.0

Mean 0.95 0.8 0.2 0.05

Table 1: Proportion of each quartile composed by optimized
formulas.

RMSE

Evaluator Optimized Random All

1 14.30 17.21 15.82

2 27.31 20.07 23.97

3 31.63 27.25 29.52

4 17.93 13.98 16.08

All Evaluators 23.84 20.23 22.11

Table 2: Root Mean Squared Error of the model’s predictions
for optimal formulas, random formulas, and all formulas;
for each individual evaluator, and all evaluators combined.

14 (the goal state). This obligation is directly related to the task

of the agent, which piqued the interest of evaluators. However,

this obligation can be met regardless of what the agent chooses

as its first action. Another example of an optimized formula is

⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝑃≥0.6 [ 𝑛𝑎𝑚𝑒 = 15]]. This obligation is for the agent to

ensure that the lower-bound probability is greater than 60% that

it eventually reaches state 15. While this obligation doesn’t seem

immediately related to the task of the agent, it does give insight

into the agent’s values. Both of these obligations were generated

for different evaluators — the former for an evaluator interested in

the agent reaching its goal, and the latter interested in the agent’s

specific decisions. This shows the tool’s ability to adapt to different

evaluator objectives.

Quantitatively, the success of the tool is best indicated by the

proportion of tool-generated (“optimized”) formulas in a user’s top

quartile of evaluated formulas. A strong separation in evaluator

interest would show that the optimized formulas are more useful to

the evaluator than random formulas, and would suggest that gener-

ating more optimized formulas is better than randomly exploring

the space of valid obligations.

As shown in table 1, the mean of this top quartile proportion

is 0.95. This indicates that the tool indeed generates obligations

that are more interesting than random formulas. More generally,

figure 4 shows the bi-modal distribution of interest associated with

random and optimized obligations. This figure shows that the peak

of the optimized formula distribution is more interesting than the

peak of the random formula distribution by more than 70 points

out of 100. The average optimized and random formula received a

score of 66 and 13, respectively — a difference of 53; more than half

the range of interest.

Another measure of performance for our tool is the surrogate

model’s accuracy at predicting an evaluator’s interest in a formula.

Table 2 shows that the root mean squared error for all formulas is
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Figure 4: Histogram of evaluators’ scores in the validation
stage, separated between optimized formulas and random
formulas. Random formulas have amean score of 12.50 (stan-
dard deviation = 22.04), and optimized formulas have a mean
score of 66.38 (std. dev = 20.89). Higher score is better.
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Figure 5: Evaluators’ interest scores vs. surrogate model
scores across the validation sets of all evaluators.

fairly low overall, but can vary appreciably between evaluators, and

we believe a lower RMSE is desirable and achievable. We attribute

some of this variance to the sensitivity of the optimization process

to the seed formulas — if the model is seeded with 10 low-scoring

formulas, the search for high-scoring formulas progresses much

more slowly.

Figure 5 shows each formula evaluated in the validation stage of

the experiments, with the evaluator’s interest in a formula on the

x-axis, and the model’s prediction of interest on the y-axis. This
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Figure 6: Evaluator interest scores vs. surrogate model scores on validation set formulas; separated by evaluator.

figure shows some notable trends in the behavior of the evaluators

and the model. As seen in figure 4, most random formulas received

an evaluator score of 0, but the model spreads its predictions for

random formulas between 0 and 40. Evaluator scores for optimized

formulas cluster around 66 (fig. 4), and we see here that the model

always scores optimized formulas higher than 40.

We are also interested in how well the model’s scores correlate

with the evaluator’s scores. We measure this correlation with the

Pearson correlation coefficient (R), shown in table 3. If the correla-

tion is strong, then we can expect the tool to continue to generate

interesting formulas for the user. Otherwise, the correlation is loose,

and we would expect higher error between the model’s predictions

and the evaluator’s scores. A perfect predictor would have an over-

all R value of 1.0. As the table shows, there was poor correlation

between model and evaluator scores for evaluator 3. This is made

especially clear in figure 6, where the correlation is clearly poor,

but the model fails to score beyond a fairly limited range for ei-

ther random or optimized formulas. Measured across all evaluators,

however, correlation is strong (R = 0.77), so we should expect future

optimized formulas to continue to be interesting.

Qualitatively, the optimization process tends to converge on

certain features very quickly. This is evidence that the model is

effectively learning, but it introduces two downsides. The first is

that formulas that the evaluator is queried with can become repeti-

tive as the optimizer attempts to fine-tune an already high-scoring

formula. The second is that the optimizer can sometimes become

PCC

Evaluator Optimized Random All

1 0.11 0.89 0.93

2 -0.06 0.10 0.79

3 -0.06 -0.15 0.50

4 0.45 Und. 0.93

All Evaluator 0.16 0.55 0.77

Table 3: Pearson Correlation Coefficient (PCC) of the model’s
predictions and evaluator scores for optimal formulas, ran-
dom formulas, and all formulas; for each individual evalu-
ator, and all evaluators combined. The PCC of random for-
mulas for evaluator 4 is undefined because the only line that
could describe the correlation of these scores is vertical.

focused on a particular proposition that the evaluator routinely

finds interesting — helpfully exploring the contexts in which that

proposition is useful, but less helpfully ignoring other propositions

that may be equally as interesting. These downsides may be ame-

liorated by encouraging more exploration, or by other techniques

we address in section 8.

8 DISCUSSION
This work introduced a new deontic logic — Expected Act Utilitari-

anism — designed to describe the ethical obligations of models used



in reinforcement learning. We also developed theory and proce-

dures to evaluate Markov decision processes in this logic, including

a model checking algorithm. Finally, we demonstrated a tool for

effectively exploring the space of valid obligations in an MDP using

Bayesian optimization. This human-guided approach to exploring

obligations is novel, and so we evaluate its performance in a pi-

lot study by comparison against random exploration, and through

qualitative analysis. We show that our approach performs much

better than random, and that its model’s deviations average to less

than a quarter of its range.

In future work, beginning with the logic of EAU, we would

like to encourage its development into a more expressive logic.

In particular, we would like to include an evaluation index that

specifies a policy, so that an obligation may belong to a certain

plan an agent has adopted. While model checking with respect to

a policy would be straightforward to implement, the implications

of such an adoption on the mechanisms of the logic would require

further attention. We are also interested in including conditional

modalities, and developing model checking algorithms to suit.

We suggest future experiments with more complex systems as

well. Especially systems with more salient propositional labels —

this would lend richer semantic context about the environment to

the formulas, and may highlight whatever ethical dilemmas the

system comes across.

Regarding the Bayesian optimization algorithms, we suggest the

investigation of a number of potential improvements. Model tuning

was not a priority in this work, andmay yield significant increases in

performance. We also found that the model faced difficulty learning

to tighten bounds on the probability modality (e.g. 𝑃>=0.9 [𝑞] is
inherently more interesting than 𝑃>=0.3 [𝑞] if both are valid). To

this end, we suggest exploring evolution strategies in the genetic

algorithm that penalize loose bounds, or automatically pursue the

tightest bounds feasible. Similarly, rejection sampling and annealing

to valid formulas may not be necessary (or ideal) if the model

is taught offline to score invalid formulas poorly. However, we

have not determined if the Gaussian process with string kernel is

complex enough to capture the relevant features. To that end, we

are interested in the learning capabilities of models with potentially

more representational power.

Finally, how the human evaluator interacts with the tool may

also play an important role in its effectiveness. Switching from a

score out of 100 to pairwise comparisons between formulas may

increase the reliability of human reporting, but changes the learning

objective from predicting a score to predicting a probability that

one formula is more favorable than another. Finally, allowing the

user more avenues of interaction with the tool (other than question

answering) may lead to more effective use. For example, including

a method to tell the tool that an evaluator is no longer interested

in a proposition they once found interesting could allow the model

to retain a general knowledge about the evaluator’s interests while

avoiding the space of formulas including that proposition.

9 CONCLUSION
The logic and associated algorithms introduced in this paper estab-

lish a thread between formal methods, reinforcement learning, and

explainability. These tools arm us with the capability to describe,

reason about, verify, and search ethical specifications in a large class

of autonomous agents.
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A VALIDITY PROOFS
Following are the proofs for the validities introduced in section 3.3.

𝐷𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] =⇒ [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴]



ByDefinition 3.3, the antecedent holds that, for all𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 ,

it is the case that 𝐾 ⊆ |𝐴|M𝑚 . By Equation 3, all 𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼
are also in 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 . The consequent [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] is valid just

in case there is an action 𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 such that 𝐾 ⊆ |𝐴|M𝑚 [12,

pg. 23]. Since every 𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 is 𝐾 ⊂ |𝐴|M𝑚 , it follows that

there is an action 𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 for which 𝐾 ⊆ |𝐴|M𝑚 . Thus the

consequent must be implied by the antecedent, and 𝐷𝛼⊗ must hold.

𝑅𝐸𝛼⊗ :

𝐴 ≡ 𝐵
⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ≡ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]

To show this, let 𝐴 ≡ 𝐵. It follows that the histories in moment𝑚

that are labeled 𝐴 are labeled such if and only if they are labeled

𝐵; that is |𝐴|M𝑚 ≡ |𝐵 |M𝑚 . Thus, for any 𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 such that

𝐾 ⊆ |𝐴|M𝑚 , it is also the case that 𝐾 ⊆ |𝐵 |M𝑚 , and vice-versa. Then,

if all 𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 are also 𝐾 ⊆ |𝐴|M𝑚 , then 𝐾 ⊆ |𝐵 |M𝑚 . Further,

if all 𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 are also 𝐾 ⊆ |𝐵 |M𝑚 , then 𝐾 ⊆ |𝐴|M𝑚 . Thus,

by Definition 3.3, when 𝐴 ≡ 𝐵 is taken as true, ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ⇐⇒
⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵], so 𝑅𝐸𝛼⊗ must hold.

𝑁𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ⊤]
By 𝑁 for 𝑐𝑠𝑡𝑖𝑡 [12, pg. 17], it is the case that 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 (ℎ) ⊆ |⊤|M𝑚
for all ℎ ∈ 𝐻𝑚 . Thus, for all 𝐾 in 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 , 𝐾 ⊆ |⊤|M𝑚 . Since

𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 is a subset of𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 by Equation 3, all𝐾 ∈ 𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼
also hold 𝐾 ⊆ |⊤|M𝑚 . Thus, by Definition 3.3, ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ⊤] holds.

𝑀𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧𝐵] =⇒ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵]
From the antecedent we know that all optimal actions 𝐾∗ |𝐾∗ ∈
𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 ensure 𝐾∗ ⊆ |𝐴∧𝐵 |M𝑚 by Definition 3.3. By Equation

1, we know that all𝐾∗ are in the set of histories {ℎ ∈ 𝐻𝑚 | M,𝑚/ℎ |=
𝐴∧𝐵}. From the evaluation rule for conjunction [12, Def. 2.3],

M,𝑚/ℎ |= 𝐴∧𝐵 iffM,𝑚/ℎ |= 𝐴 andM,𝑚/ℎ |= 𝐵. Thus, the

set of histories |𝐴∧𝐵 |M𝑚 must be composed of histories that sat-

isfy 𝐴 at moment 𝑚 and that satisfy 𝐵 at moment 𝑚. That is

|𝐴∧𝐵 |M𝑚 = {ℎ ∈ 𝐻𝑚 | M,𝑚/ℎ |= 𝐴 andM,𝑚/ℎ |= 𝐵}. Thus,
all 𝐾∗ ⊆ |𝐴|M𝑚 ∩ |𝐵 |M𝑚 . It follows that 𝐾∗ ⊆ |𝐴|M𝑚 and 𝐾∗ ⊆ |𝐵 |M𝑚 .

Now, by Definition 3.3, we have ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] and ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵],
since all optimal actions 𝐾∗ guarantee𝐴 and guarantee 𝐵. Thus the

consequent holds, and so too does the principle𝑀𝛼⊗.

𝐶𝛼⊗ : ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐵] =⇒ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧𝐵]
From the antecedent we know that all optimal actions 𝐾∗ |𝐾∗ ∈
𝐸-𝑂𝑝𝑡𝑖𝑚𝑎𝑙𝑚𝛼 ensure 𝐾∗ ⊆ |𝐴|M𝑚 and 𝐾∗ ⊆ |𝐵 |M𝑚 by Definition

3.3. Thus 𝐾∗ must be composed of histories that satisfy 𝐴∧𝐵 at

moment 𝑚. That is, 𝐾∗ ⊆ {ℎ ∈ 𝐻𝑚 | M,𝑚/ℎ |= 𝐴∧𝐵}. This is
also the set of histories |𝐴∧𝐵 |M𝑚 by Equation 1. So we can say

𝐾∗ ⊆ |𝐴∧𝐵 |M𝑚 . Since 𝐾∗ is the set of optimal actions, we have

that all optimal actions guarantee 𝐴∧𝐵, which, by Definition 3.3,

validates ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧𝐵], and so 𝐶𝛼⊗ holds.

𝐷∗𝛼⊗ : ¬(⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴])
By contradiction, we assume

⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴] to be valid. By 𝐶𝛼⊗ we retrieve

⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧¬𝐴]. By 𝐷𝛼⊗ we can infer [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴∧¬𝐴].
Using the evaluation rule for [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ([12, pg. 23]), we know
there is some action 𝐾 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 such that 𝐴∧¬𝐴 is true for

every history in 𝐾 at moment𝑚. That is, every index of evaluation

𝑚/ℎ ∈ 𝐾 validates𝑚/ℎ |= 𝐴∧¬𝐴. Thus, by the conjunction rule

[12, Def. 2.3] every evaluation index𝑚/ℎ ∈ 𝐾 validates𝑚/ℎ |= 𝐴
and𝑚/ℎ |= ¬𝐴. Using the rules of evaluation for negation we have

𝑚/ℎ |= 𝐴 and𝑚/ℎ ̸ |= 𝐴. This is a contradiction, so the principle 𝐷∗𝛼
must hold.

𝐷∗
𝛼,𝛽
⊗ : ¬(⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛽 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴])

Again by contradiction, we assume ⊗[𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ∧ ⊗[𝛽 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴]
to be valid. By 𝐷𝛼⊗ we can infer [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] and [𝛽 𝑐𝑠𝑡𝑖𝑡 : ¬𝐴].
Using the evaluation rule for [𝛼 𝑐𝑠𝑡𝑖𝑡 : 𝐴] ([12, pg. 23]), we know
there is some action 𝐾𝛼 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛼 such that 𝐴 is true for every

history in𝐾𝛼 at moment𝑚, regardless of the actions of other agents.

Similarly, we know there is some action 𝐾𝛽 ∈ 𝐶ℎ𝑜𝑖𝑐𝑒𝑚𝛽 such that

¬𝐴 is true for every history in 𝐾𝛽 at moment𝑚, regardless of the

actions of other agents. By independence of agents [12, pg. 30]

the intersection of all selected actions must be nonempty. That is,

𝐾𝛼 ∩ 𝐾𝛽 ≠ ∅, so it follows that there exists a history ℎ′ in both

𝐾𝛽 and 𝐾𝛼 . Since all histories in 𝐾𝛼 satisfy 𝐴 at moment𝑚, and

all histories in 𝐾𝛽 satisfy ¬𝐴 at moment 𝑚, the history ℎ′ must

satisfy both 𝐴 and ¬𝐴 at moment𝑚. This is a contradiction, so the

principle 𝐷∗
𝛼,𝛽
⊗ must hold.
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